

## VENTURA PORT DISTRICT BOARD OF PORT COMMISSIONERS

Chris Stephens, Chairman Brian Brennan, Vice Chairman Jackie Gardina, Secretary Everard Ashworth, Commissioner Michael Blumenberg, Commissioner

Brian D. Pendleton, General Manager Todd Mitchell, Business Operations Manager Andy Turner, Legal Counsel Jessica Rauch, Clerk of the Board

## PORT COMMISSION AGENDA <u>TELECONFERENCE</u> NOVEMBER 18, 2020 5 TELECONFERENCE LOCATIONS VENTURA PORT DISTRICT OFFICE 1603 ANCHORS WAY DRIVE VENTURA, CA 93001

IN ACCORDANCE WITH THE CALIFORNIA GOVERNOR'S EXECUTIVE STAY AT HOME ORDER AND THE COUNTY OF VENTURA HEALTH OFFICER DECLARED LOCAL HEALTH EMERGENCY AND BE WELL AT HOME ORDER RESULTING FROM THE NOVEL CORONAVIRUS, THE VENTURA PORT DISTRICT ADMINISTRATION BUILDING IS CLOSED TO THE PUBLIC. THIS MEETING IS BEING HELD IN ACCORDANCE WITH THE STATE EMERGENCY SERVICES ACT, THE GOVERNOR'S EMERGENCY DECLARATION, AND THE GOVERNOR'S EXECUTIVE ORDER NO. 25-20 ISSUED ON MARCH 12, 2020 TO ALLOW ATTENDANCE BY MEMBERS OF THE PORT COMMISSION BY TELECONFERENCE IN FULL COMPLIANCE WITH THE BROWN ACT.

## PUBLIC PARTICIPATION OPTIONS

1. Join a Zoom meeting LIVE: https://us02web.zoom.us/j/84137894311 Meeting ID: 841 3789 4311

1-669-900-6833 1-877-853-5257

- If you do not wish to speak but would like to submit a written comment on a specific agenda item, do so via email by 4:00PM on the day of the meeting. Please submit your comment to the Clerk of the Board at <u>jrauch@venturaharbor.com</u>. Written comments will be distributed to the Commissioners and will be attached to the minutes of the meeting but will not be read aloud during the meeting.
- 3. If you wish to speak on a specific agenda item when watching the live Zoom meeting, please email the Clerk of the Board at <u>irauch@venturaharbor.com</u> by 4:00PM on the day of the meeting so you can participate appropriately.

Attendees can dial \*9 or use the 'raise hand' function in Zoom if they would like to speak during public comment periods.

## CLOSED SESSION – 5:00PM

#### **CALL TO ORDER:** By Chairman Chris Stephens.

**ROLL CALL:** By the Clerk of the Board.

#### **PUBLIC COMMUNICATIONS (3 minutes)**

The Public Communications period is set aside to allow public testimony on items only on the Closed Session Agenda. Each person may address the Commission for up to three minutes or at the discretion of the Chair. Attendees can dial \*9 or use the 'raise hand' function in Zoom if they would like to speak during public comment periods.

## CONVENE IN CLOSED SESSION – 5:05PM

#### **CLOSED SESSION AGENDA (1 hour 25 minutes)**

See Attachment to Agenda-Closed Session Conference with Legal Counsel.

## **OPEN SESSION – 7:00PM**

CALL TO ORDER: By Chairman Chris Stephens.

PLEDGE OF ALLEGIANCE: By Chairman Chris Stephens.

**ROLL CALL:** By the Clerk of the Board.

## **ADOPTION OF AGENDA (3 minutes)**

Consider and approve, by majority vote, minor revisions to agenda items and/or attachments and any item added to or removed/continued from the Port Commission's agenda. Administrative Reports relating to this agenda and materials related to an item on this agenda submitted after distribution of the agenda packet are available for public review at the Port District's office located at 1603 Anchors Way Drive, Ventura, CA during business hours as well as on the District's website - <u>www.venturaharbor.com</u>.

## **APPROVAL OF MINUTES (3 minutes)**

The Minutes of the October 21, 2020 Regular Meeting minutes will be considered for approval.

#### **PUBLIC COMMUNICATIONS (3 minutes)**

The Public Communications period is set aside to allow public testimony on items not on today's agenda. Each person may address the Commission for up to three minutes or at the discretion of the Chair. Attendees can dial \*9 or use the 'raise hand' function in Zoom if they would like to speak during public comment periods.

## **CLOSED SESSION REPORT (3 minutes)**

Closed Sessions are not open to the public pursuant to the Brown Act. Any reportable actions taken by the Commission during Closed Session will be announced at this time.

## **BOARD COMMUNICATIONS (5 minutes)**

Port Commissioner's may present brief reports on port issues, such as seminars, meetings and literature that would be of interest to the public and/or Commission, as a whole. Port Commissioner's must provide a brief summary and disclose any discussions he or she may have had with any Port District Tenants related to Port District business.

## STAFF AND GENERAL MANAGER REPORTS (5 minutes)

Ventura Port District Staff and General Manager will give the Commission updates on important topics or items of general interest if needed.

## LEGAL COUNSEL REPORT (5 minutes)

Legal Counsel will report on progress of District assignments and any legislative or judicial matters.

## **CONSENT AGENDA:** (5 minutes)

Matters appearing on the Consent Calendar are expected to be non-controversial and will be acted upon by the Board at one time, without discussion, unless a member of the Board or the public requests an opportunity to address any given item. Approval by the Board of Consent Items means that the recommendation is approved along with the terms set forth in the applicable staff reports.

## a) Approval of 2021 Port Commission Meeting Schedule

Recommended Action: Roll Call Vote.

That the Board of Port Commissioners approve the 2021 Port Commission meeting schedule.

## b) Approval of Out of Town Travel Requests

Recommended Action: Roll Call Vote.

That the Board of Port Commissioners approve the out of town travel requests for:

- a) Tucker Zimmerman, Harbor Patrol I, to attend the California Division of Boating and Waterways marine firefighting course in Marina Del Rey, CA; and
- b) Casey Graham, Marine Safety Officer, to attend the California Division of Boating and Waterways rescue boat handling course in Marina Del Rey, CA.

## STANDARD AGENDA:

1) Consideration of Operations Plan and Economic and Fiscal Impacts of the Proposed Ventura Shellfish Enterprise Project

## Recommended Action: Roll Call Vote.

That the Board of Port Commissioners:

- Authorize the submission of the Ventura Shellfish Enterprise Operations Plan to the U.S. Army Corps of Engineers, California Coastal Commission, and other regulatory agencies as appropriate; and,
- b) Receive the Economic and Fiscal Impacts of the proposed Ventura Shellfish Enterprise.

## 2) Approval of Notice of Completion for the Ventura Harbor Village Painting Project Recommended Action: Roll Call Vote.

That the Board of Port Commissioners adopt Resolution No. 3401:

- a) Accepting the work of Garland/DBS, Inc. for the Ventura Harbor Village Painting Project; and,
- b) Authorize staff to prepare and record a Notice of Completion with the Ventura County Recorder.

## 3) Rejection of Bids for the Ventura Harbor Village Restroom ADA Remodel

Recommended Action: Roll Call Vote.

That the Board of Port Commissioners reject all bids received for the Ventura Harbor Village ADA Restroom Remodel for 1559 Spinnaker Drive.

## 4) Ventura Port District Operations Update as it Relates to COVID-19

Recommended Action: Informational. (Verbal Report)

That the Board of Port Commissioners receive an update on:

- a) The COVID-19 Ventura Harbor Rental Abatement and Deferment Program; and
- b) Status of Ventura Port District operations.

## ADJOURNMENT

This agenda was posted on Friday, November 13, 2020 by 5:00 p.m. at the Port District Office and online at <u>www.venturaharbor.com</u> - Port District Business - Meetings and Agendas.

In compliance with the Americans with Disabilities Act, if you need special assistance to participate in this meeting, please contact the Ventura Port District at (805) 642-8538. Notification 48 hours before the meeting will enable the District to make reasonable arrangements to ensure accessibility. (28 CFR 35.102.35.104 ADA Title II)

## ATTACHMENT TO PORT COMMISSION AGENDA CLOSED SESSION CONFERENCE WITH LEGAL COUNSEL

## WEDNESDAY, NOVEMBER 18, 2020

- 1. Conference with Legal Counsel Existing Litigation per Government Code Section 54956.9(d)(1):
  - a) Baer vs. Ventura Port District;
    - Ventura Co. Sup. Court Case No. 56-2020-00546514-CU-OE-VTA Ventura Harbor Marine Associates vs. Ventura Port District;
  - b) Ventura Harbor Marine Associates vs. Ventura Port District; Ventura Co. Sup. Court Case No. 56-2020-00541974-CU-NP-VTA
     c) RDPH Properties, Inc. vs. Ventura Port District;
  - KDPH Properties, Inc. vs. Ventura Port District,
     Ventura Co. Sup. Court Case No. 56-2020-00546511-CU-WM-VTA
     Chrysilian Living Trust vs. Ventura Port District;
  - d) Chrysiliou Living Trust vs. Ventura Port District; Ventura Co. Sup. Court Case No. 56-2020-00546532-CU-BC-VTA
- 2. Conference with Legal Counsel Potential Litigation per Government Code Section 54956.9(d)(4): One (1) Case.
- 3. Conference with Real Property Negotiators Per Government Code Section 54956.8:

| a) Property:                         | Parcel 8<br>(Adjacent to National Park Service Headquarters and Visitor<br>Center at 1901 Spinnaker Drive)                                                    |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Negotiating Parties:                 | Brian D. Pendleton, Todd Mitchell, Andy Turner<br>National Park Services                                                                                      |
| Under Negotiation:                   | Terms of Option to Acquire/Lease Property                                                                                                                     |
| b) Property:<br>Negotiating Parties: | <b>1449 Spinnaker Drive, Suite #A and B</b><br>Brian D. Pendleton, Todd Mitchell, Andy Turner<br>Andria's Seafood Specialties dba Andria's Seafood Restaurant |
| Under Negotiation:                   | Terms of New Restaurant Lease Agreement                                                                                                                       |
| c) Property:<br>Negotiating Parties: | <b>1431 – 1691 Spinnaker Drive</b><br>Brian D. Pendleton, Todd Mitchell, Andy Turner<br>All Ventura Harbor Village Tenants                                    |
| Under Negotiation:                   | COVID-19 Ventura Harbor Rental Abatement and Deferment<br>Program                                                                                             |
| d) Property:                         | Parcels 10A, 4, 9, 7, 15, 16, 18, 2, 3, 1, 19,<br>3A1, 3A2, 3A4, 20, 17, 6                                                                                    |
| Negotiating Parties:                 | Brian D. Pendleton, Todd Mitchell, Andy Turner<br>All Master Tenants                                                                                          |
| Under Negotiation:                   | COVID-19 Ventura Harbor Rental Abatement and Deferment Program                                                                                                |



# BOARD OF PORT COMMISSIONERS NOVEMBER 18, 2020

# APPROVAL OF MINUTES October 21, 2020 Regular Meeting

## **VENTURA PORT DISTRICT**

## BOARD OF PORT COMMISSIONERS MINUTES OF OCTOBER 21, 2020

## **CLOSED SESSION**

## CALL TO ORDER:

The Ventura Board of Port Commissioners Regular Closed Session Meeting was called to order by Chairman Chris Stephens at 6:00PM at the Ventura Port District Administration Office, 1603 Anchors Way Drive, Ventura, CA 93001 and via Zoom meeting.

## ROLL CALL:

## **Commissioners Present:**

Chris Stephens, Chairman Brian Brennan, Vice Chairman Jackie Gardina, Secretary via teleconference Michael Blumenberg via teleconference

## **Commissioners Absent:**

Everard Ashworth

## Port District Staff:

Brian Pendleton, General Manager Todd Mitchell, Business Operations Manager Jessica Rauch, Clerk of the Board

## Legal Counsel:

Andy Turner via teleconference Elsa Sham via teleconference

## PUBLIC COMMUNICATIONS: None.

## CONVENED TO CLOSED SESSION AT 6:05PM.

ADJOURNMENT: Closed Session was adjourned at 6:30PM.

## **OPEN SESSION**

#### **ADMINISTRATIVE AGENDA:**

## CALL TO ORDER:

The Ventura Board of Port Commissioners Regular Open Session Meeting was called to order by Chairman Chris Stephens at 7:00PM at the Ventura Port District Administration Office, 1603 Anchors Way Drive, Ventura, CA 93001 and via Zoom Meeting.

PLEDGE OF ALLEGIANCE: By Business Operations Manager, Todd Mitchell.



## ROLL CALL:

## **Commissioners Present:**

Chris Stephens, Chairman Brian Brennan, Vice Chairman Jackie Gardina, Secretary via teleconference Michael Blumenberg via teleconference

## **Commissioners Absent:**

Everard Ashworth

## Port District Staff:

Brian Pendleton, General Manager Todd Mitchell, Business Operations Manager Jessica Rauch, Clerk of the Board John Higgins, Harbormaster via teleconference Dave Werneburg, Marina Manager via teleconference Joe Gonzalez, Capital Improvements Manager via teleconference Sergio Gonzalez, Maintenance Supervisor via teleconference Jennifer Talt-Lundin, Marketing Manager via teleconference Gloria Adkins, Accounting Manager via teleconference

## Legal Counsel:

Andy Turner via teleconference Elsa Sham via teleconference

## **ADOPTION OF AGENDA**

ACTION: Commissioner Brennan moved, seconded by Commissioner Gardina, and carried by a vote of 4-0 to adopt the October 21, 2020 agenda.

## **APPROVAL OF MINUTES**

The Minutes of the October 7, 2020, 2020 Regular Meeting were considered as follows:

ACTION: Commissioner Gardina moved, seconded by Commissioner Brennan, and carried by a vote of 4-0 to approve the October 7, 2020 Regular Meeting.

## PUBLIC COMMUNICATIONS: None.

**CLOSED SESSION REPORT:** Mr. Turner stated that the Board met in closed session; discussed and reviewed all items on the closed session agenda. The Board gave direction to staff as how to proceed. No action was taken that is reportable under The Brown Act.

## **BOARD COMMUNICATIONS:**

**STAFF AND GENERAL MANAGER REPORTS:** Marketing Manager, Jennifer Talt-Lundin updated the Commission on the holiday activities that will occur at the Village. General Manager, Brian Pendleton congratulated Sam Sadove, Tom Derecktor and Leonora Valvo on the closing of the Parcel 20 transaction.

## LEGAL COUNSEL REPORT: None.

## STANDARD AGENDA:

## 1) Ventura Isle Marina: Safe Harbor Marinas Change in Ownership

Recommended Action: Roll Call Vote.

That the Board of Port Commissioners:

- 1. Consent to Change in Ownership of SHM Ventura Isle, LLC to Sun Communities Operating Limited Partnership, an affiliate of Sun Communities, Inc.
- 2. Authorize the General Manager to execute the Consent to Change of Ownership upon:
  - a. District Legal Counsel review of supporting transactional documents;
  - b. Receipt of Appreciation Rent in the amount of approximately \$862,000; and,
  - c. Reimbursement of the District's legal fees associated with the transaction.

Report by Brian D. Pendleton, General Manager and Kate Pearson, Vice President of Business Development, Safe Harbor Marinas.

Public Comment: None.

- ACTION: Commissioner Brennan moved, seconded by Commissioner Blumenberg and carried by a vote of 4-0 to:
  - 1. Consent to Change in Ownership of SHM Ventura Isle, LLC to Sun Communities Operating Limited Partnership, an affiliate of Sun Communities, Inc.
  - 2. Authorize the General Manager to execute the Consent to Change of Ownership upon:
    - a. District Legal Counsel review of supporting transactional documents;
    - b. Receipt of Appreciation Rent in the amount of approximately \$862,000; and,
    - c. Reimbursement of the District's legal fees associated with the transaction.

## 2) Water Quality Monitoring and Maintenance in Ventura Harbor

Recommended Action: Informational.

That the Board of Port Commissioners receive an informational report on ongoing activities and methods employed by District staff and our business partners to maintain and monitor water quality in Ventura Harbor.

Report by Brian D. Pendleton, General Manager; John Higgins, Harbormaster; Todd Mitchell, Business Operations Manager.

Public Comment: Derek Turner is concerned about sludge streaks and trash in the Harbor and believes there needs to be more pump out stations for boaters. Councilmember Lorrie Brown commented that maybe there could be a partnership with the City, Ventura Port District and Ventura Land Trust. Michael Wagner, owner of Andria's Seafood commented that the squid fleets are not pumping out in the Harbor.

ACTION: The Board of Port Commissioners received an informational report on ongoing activities and methods employed by District staff and our business partners to maintain and monitor water quality in Ventura Harbor.

## 3) City of Ventura Proposal to Ban Styrofoam and Campaign to Reduce Single-Use Plastics Recommended Action: Informational.

That the Board of Port Commissioners receive a status report on the City of Ventura's Ordinance banning the use of Expanded Polystyrene (EPS) commonly called Styrofoam and the Surfrider campaign to reduce single-use plastics.

Report by Jessica Rauch, Clerk of the Board.

Public Comment: Michael Wagner, owner of Andria's Seafood thought there was a company in Los Angeles County that picked up sytrofoam and recycled it. Councilmember Lorrie Brown clarified that the City Ordinance was only Styrofoam, not all single-use plastics.

## ACTION: The Board of Port Commissioners received a status report on the City of Ventura's Ordinance banning the use of Expanded Polystyrene (EPS) commonly called Styrofoam and the Surfrider campaign to reduce single-use plastics.

## 4) Quarterly Update on the Ventura Port District Goals and 5-Year Objectives

Recommended Action: Informational.

That the Board of Port Commissioners receive an update on the status of Ventura Port District 5-Year Objectives.

Report by Brian D. Pendleton, General Manager.

Public Comment: Derek Turner asked why water quality was not included in the objectives and where would it go. Michael Wagner, owner of Andria's Seafood does not believe water quality in the Harbor is an issue. Councilmember Lorrie Brown suggested more diversification of Village tenants.

## ACTION: The Board of Port Commissioners received an update on the status of Ventura Port District 5-Year Objectives.

## 5) Ventura Port District Operations Update as it Relates to COVID-19

Recommended Action: Informational. (Verbal Report)

That the Board of Port Commissioners receive an update on:

- a) The COVID-19 Ventura Harbor Rental Abatement and Deferment Program; and
- b) Status of Ventura Port District operations.

Report by Brian D. Pendleton, General Manager.

Public Comment: Michael Wagner, owner of Andria's Seafood stated that business will not survive with these payment schedules and the District should help with rent. Sam Sadove asked the Commission to consider one year or one and half years to pay back rents.

## ACTION: The Board of Port Commissioners received an update on the City of Ventura's Temporary Eviction Moratorium.

**ADJOURNMENT:** The meeting was adjourned at 9:20PM.

The next meeting is Wednesday, November 18, 2020.



# BOARD OF PORT COMMISSIONERS

# NOVEMBER 18, 2020

# DEPARTMENTAL STAFF REPORTS OCTOBER 2020 & LONG TERM GOALS 5-YEAR OBJECTIVES INDEX

#### Ventura Port District - Long Term Goals 5-Year Objectives

|          | Long Term Goals                   |                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                   |  |  |
|----------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <u>#</u> | # Category Sub # Intent/Strategy  |                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                   |  |  |
|          | Safety & Navigation               | Maintain and enhance a safe and navigable harbor                                                                                                                                                                                                                                      | а | Securing funding for dredging the Harbor entrance through the Army Corps of Engineers in coordination with<br>agencies and our elected officials; |  |  |
| 1        |                                   |                                                                                                                                                                                                                                                                                       | b | Dredging the Inner Harbor and preserving infrastructure;                                                                                          |  |  |
| -        |                                   |                                                                                                                                                                                                                                                                                       | с | Providing superior Harbor Patrol, Maintenance, and related District services;                                                                     |  |  |
|          |                                   |                                                                                                                                                                                                                                                                                       | d | Preserving and enhancing infrastructure, equipment and facilities for a modernized, efficient and safe working<br>harbor.                         |  |  |
|          | Commercial &                      |                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                   |  |  |
| 2        | <b>Recreational Boating &amp;</b> | Support and promote commercial and recreational boating and fishing.                                                                                                                                                                                                                  |   |                                                                                                                                                   |  |  |
|          | Fishing                           |                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                   |  |  |
| 3        | Economic Vitality                 | Increase economic development, vitality, and diversity of the District through effective leasing and marketing strategies.                                                                                                                                                            |   |                                                                                                                                                   |  |  |
| 4        | Sustainability                    | Promote sustainable use of our natural environment through business practices and programs designed in concert with our tenants, educators, agencies, and interest groups.                                                                                                            |   |                                                                                                                                                   |  |  |
| 5        | Relationships                     | Build respectful, productive, and mutually beneficial business relationships with our tenants, public agencies, elected officials and the community.                                                                                                                                  |   |                                                                                                                                                   |  |  |
| 6        | Public Service                    | Provide exceptional public service and transparency at all levels within the organization through effective leadership, training, mentoring, and oversight.<br>This promotes accountability, increased public trust, and a more efficient, effective and public focused organization. |   |                                                                                                                                                   |  |  |

|                      | 5 Year Objectives                   |                                                                                                               |       |                                                                                                                                                                                                           |  |  |
|----------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| # Category Objective |                                     |                                                                                                               | Sub # | Intent/Strategy                                                                                                                                                                                           |  |  |
|                      | Harbor Dredging                     | Ensure that annual dredging occurs at<br>the federal Harbor entrance and as<br>needed in the inner Harbor     | 1     | Support and advocate for congressional funding to the Army Corps of Engineers in support of the Harbor's annual dredging<br>program                                                                       |  |  |
| D                    |                                     |                                                                                                               | 2     | Provide an on-going leadership role and active participation with California Marine Affairs and Navigation Conference (CMANC) and other relevant organizations in support of federal and state assistance |  |  |
|                      |                                     |                                                                                                               | 3     | Ventura Port District Dredging                                                                                                                                                                            |  |  |
|                      |                                     | Strengthen communication and                                                                                  | 1     | Collaborate with business partners and stakeholders through increased engagement, communication, and participation.                                                                                       |  |  |
| E                    | Public and Civic<br>Engagement Plan | further develop close working<br>relationships with stakeholders,<br>business partners, and civic leaders     | 2     | Collaborate with City, regional, state, and federal agency officials in pursuit of mutually beneficial projects, programs                                                                                 |  |  |
|                      |                                     |                                                                                                               | 3     | Public and Civic Engagement Planning                                                                                                                                                                      |  |  |
|                      |                                     |                                                                                                               | 1     | Reactivate Ventura's commercial fishing association and/or establish fishermen working group as part of improved<br>stakeholder engagement                                                                |  |  |
|                      |                                     | Support current commercial fishing<br>industry central to Ventura's premier                                   | 2     | Continue improvements of Commercial Fishing Industry service offerings by District                                                                                                                        |  |  |
| F                    | Commercial Fishing                  | working waterfront through:<br>stakeholder engagement,<br>diversification, and infrastructure<br>improvements | 3     | VSE Project Grant utilization                                                                                                                                                                             |  |  |
|                      |                                     |                                                                                                               | 4     | Complete permitting, regulatory, and legislative approvals for VSE project                                                                                                                                |  |  |
|                      |                                     |                                                                                                               | 5     | VSE Subleasing                                                                                                                                                                                            |  |  |
| м                    | Master Tenants &                    | Collaborate with existing and future<br>Master Tenants to maintain, improve,<br>and develop the Harbor        | 1     | Engagement and support of Master Tenants for successful business operations at the Harbor                                                                                                                 |  |  |
|                      | Parcels 5+8                         |                                                                                                               | 2     | Evaluate opportunities for Parcels 5 and 8                                                                                                                                                                |  |  |
| Р                    | National/State Parks                | Maintain Channel Islands National<br>Park Service (NPS) presence at Harbor                                    | 1     | Coordinate with NPS Superintendent and General Services Administration (GSA) to secure long-term leases for NPS<br>personnel currently located at 1441 and 1691 Spinnaker Dr. (Harbor Village)            |  |  |
| P                    | Collaboration                       | Draw upon Ventura Harbor area Nat'l.<br>& State parks and wetland areas to<br>enhance ecotourism              | 2     | Coordinate with National & California State Parks to develop destination-based ecotourism offerings                                                                                                       |  |  |
|                      |                                     | Continue to increase and/or movimize                                                                          | 1     | Evaluate pedestrian, bicycling, transit networks and parking within and around the Harbor                                                                                                                 |  |  |
| т                    | Village Parking & Traffic           | Continue to increase and/or maximize<br>visitor parking and traffic circulation<br>during busy periods        | 2     | Pursue needed improvements and management plans                                                                                                                                                           |  |  |
|                      |                                     |                                                                                                               | 3     | Evaluate pedestrian, bicycling, transit networks and pursue needed improvements, enforcement strategies in partnership with the City                                                                      |  |  |
|                      | Harbor Village                      | Maintain and improve Harbor Village                                                                           | 1     | Complete Harbor Village refresh programs                                                                                                                                                                  |  |  |
| v                    |                                     | infrastructure and enhance the overall visitor experience                                                     | 2     | Leasing/Property Management Action Plan                                                                                                                                                                   |  |  |
|                      |                                     |                                                                                                               | 3     | Marketing Action Plan                                                                                                                                                                                     |  |  |

# DEPARTMENTAL STAFF REPORTS CAPITAL PROJECTS

## LONG-TERM GOALS:

Goal 1: Safety & Navigation Maintain and enhance a safe and navigable harbor c: Providing superior Harbor Patrol, Maintenance, and related District services. d: Preserving and enhancing infrastructure, equipment, and facilities for a modernized, efficient and safe working harbor.

Goal 3: Economic Vitality

Increase economic development, vitality, and diversity of the District through effective leasing and marketing strategies

Goal 4: Sustainability

Promote sustainable use of our natural environment through business practices and programs designed in concert with our tenants, educators, agencies, and interest groups

Goal 5: Relationships Build respectful, productive, and mutually beneficial business relationships with our tenants, public agencies, elected officials, and the community.

Goal 6: Public Service

Provide exceptional public service and transparency at all levels within the organization through effective leadership, training, mentoring, and oversight. This promotes accountability, increased public trust, and a more efficient, effective, and public focused organization.

## **5-YEAR OBJECTIVES:**

Objective E: Public and Civic Engagement Plan Strengthen communication and further develop close working relationships with stakeholders, business partners, and civic leaders

1: Collaborate with business partners and stakeholders through increased engagement, communication, and participation.

**Objective F: Commercial Fishing** 

Support current commercial fishing industry central to Ventura's premier working waterfront through: stakeholder engagement, diversification, and infrastructure improvements 2: Continue improvements of Commercial Fishing Industry service offerings by District

Objective V: Harbor Village

Maintain and improve Harbor Village infrastructure and enhance the overall visitor experience. 1: Complete Harbor Village refresh programs

## VENTURA PORT DISTRICT

DEPARTMENTAL STAFF REPORT

| TO:      | Board of Port Commissioners                |  |
|----------|--------------------------------------------|--|
| FROM:    | Todd Mitchell, Business Operations Manager |  |
|          | Joe A. Gonzalez, Capital Projects Manager  |  |
| SUBJECT: | October 2020 Capital Projects Report       |  |

## CALIFORNIA COASTAL CONSERVANCY FISHERIES GRANT Status: Ongoing Budget: On Budget

On September 29<sup>th</sup>, the District received grant documentation from the California Coastal Commission for a \$318,600 Fisheries Grant which was accepted by the Board of Port Commissioners at its October 7<sup>th</sup> meeting. The final grant award contract makes relevant costs incurred by the District after May 1, 2020 reimbursable up to \$316,800. The grant is being used to fund two projects: 1) the modernization of the Fishermen's Storage Yard and, 2) the procurement and installation of a second derrick crane for the fish pier. Staff has submitted a draft Work Program to the Conservancy and is awaiting approval which will be followed by an updated budget proposal.

Jensen Design & Survey, Inc. has received approval from the City of Ventura Planning Department for the project and have applied for building permits. Formal bidding for the construction will take place once the building permits have been received.

Staff is currently working with Longitude 123, Inc. on specifications and in seeking quotes to secure the 26 storage containers needed. Unfortunately, there is a current global shortage of storage containers which will impact delivery times (estimated at 10-14 weeks). Staff is requiring all containers to meet "one-trip" specification requirements from all vendors, as this will maximize the longevity of the storage containers in our marine environment. The specifications are also requiring a roof sealer to be added to all containers' as additional protection.

The second element to the project is the procurement of a second 1-ton derrick crane for the fish pier. The manufacturer (Allied Power Products) is remedying some issues with hot-dip galvanization of two components. The galvanization is essential to properly protect the crane from corrosion. The District will be going to bid for some structural repairs and cathodic protection improvements at the fish pier in November, as well as, going to bid for the crane assembly and installation upon delivery (likely Q4 2020 or Q1 2021).

## 1591 SPINNAKER DRIVE PATIO REMODEL

## Status: Ongoing

## Budget: Over budget

This summer, dry rot and termite damage were identified in the sidewalls and vertical posts of the patio at the old Blackbeard's restaurant. In anticipation of finding a restaurant tenant to lease the space, Staff determined that the patio should be renovated. Originally this project was planned for staff to complete in-house. Due to the COVID-19, staff is currently concentrating on the safety of the public by cleaning and sanitizing public areas more frequently. This unforeseen development has resulted in the need to outsource some projects at a modest increase in cost.

## VENTURA HARBOR VILLAGE MISCELLANEOUS PAINTING PROJECTS Status: Ongoing

## Budget: Over budget

Staff continues to work with local painting companies to paint several items within the Village, e.g. metal hand rails, common signage, ADA Contrasting stripes on common areas steps etc. these projects were not part of the buildings master painting project. Originally this project was planned for staff to complete in-house, unfortunately due to the Covid-19 current situation, staff is currently concentrating more on the safety of the public by cleaning/sanitizing more of the public areas. This unforeseen development has resulted in the need to outsource this project at modest increase in cost.





## **ONGOING CAPITAL PROJECTS:**

## **VPD ELEVATORS**

The elevators located at 1559 and 1567 Spinnaker Drive had their yearly inspection from the State (State of California Department of Industrial Relations Division of Occupational Safety and Health). The 1567 elevator passed inspection and the State has issued the permit to operate. Staff continues to work with ThyssenKrupp Elevator and the State to address the 1559 elevator preliminary orders from the State's inspection. Technicians are also waiting on parts. The 1559 elevator is currently in service while these minor conditions are corrected.

## Additional Projects:

- 1567 ADA Restrooms Remodel
- 1591 suite 112 ADA entry upgrades
- 1575 suite 104 (Sugar Lab)
- VHV trash enclosures project

Status: Rebidding project Status: Waiting on the City for plans approval Status: Monitoring/Assisting contractors Status: Working with Architects with plans

# DEPARTMENTAL STAFF REPORTS

## Dredging

## LONG-TERM GOALS:

Goal 1: Safety & Navigation Maintain and enhance a safe and navigable harbor a: Securing funding for dredging the Harbor entrance through the Army Corps of Engineers in coordination with agencies and our elected officials b: Dredging the inner harbor and preserving infrastructure

> Goal 2: Commercial & Recreational Boating & Fishing Support and promote commercial and recreational boating and fishing

Goal 5: Relationships Build respectful, productive, and mutually beneficial business relationships with our tenants, public agencies, elected officials, and the community.

## **5-YEAR OBJECTIVES:**

Objective D: Harbor Dredging

Ensure that annual dredging occurs at the federal Harbor entrance and as needed in the inner harbor

1: Support and advocate for congressional funding to the Army Corps of Engineers in support of the Harbor's annual dredging program

2: Provide on-going leadership role and active participation with California Marine Affairs and Navigation Conference (CMANC) and other relevant organizations in support of federal and state assistance.

3: Ventura Port District Dredging

#### VENTURA PORT DISTRICT DEPARTMENTAL STAFF REPORT

Meeting Date: November 18, 2020

| TO:      | Board of Port Commissioners                |
|----------|--------------------------------------------|
| FROM:    | Brian D. Pendleton, General Manager        |
|          | Todd Mitchell, Business Operations Manager |
| SUBJECT: | October 2020 Dredging Report               |

## VENTURA HARBOR ENTRANCE CHANNEL DREDGING

There are no updates for the month of October. However, the District will be hosting an in-person meeting with the US Army Corps of Engineers' South Pacific Division Chief of Operations & Regulatory as well as the Los Angeles District Chief of Navigation Section, and the Project Manager for Ventura's entrance channel dredging on November 17.

## **INNER HARBOR DREDGING – PERMIT AMENDMENTS**

On October 9<sup>th</sup>, the VPD Dredging Team (including VPD GM) submitted two draft reports to the US Army Corps of Engineers local regulatory office to review prior to the District formally seeking an amendment to our dredging permits. Feedback is expected in early November and will be considered before the formal requests is submitted.

# DEPARTMENTAL STAFF REPORTS

# FACILITIES

## LONG-TERM GOALS:

Goal 1: Safety & Navigation Maintain and enhance a safe and navigable harbor c: Providing superior Harbor Patrol, Maintenance, and related District services. d: Preserving and enhancing infrastructure, equipment, and facilities for a modernized, efficient and safe working harbor.

Goal 3: Economic Vitality Increase economic development, vitality, and diversity of the District through effective leasing and marketing strategies

Goal 4: Sustainability

Promote sustainable use of our natural environment through business practices and programs designed in concert with our tenants, educators, agencies, and interest groups

Goal 5: Relationships Build respectful, productive, and mutually beneficial business relationships with our tenants, public agencies, elected officials, and the community.

Goal 6: Public Service

Provide exceptional public service and transparency at all levels within the organization through effective leadership, training, mentoring, and oversight. This promotes accountability, increased public trust, and a more efficient, effective, and public focused organization.

## **5-YEAR OBJECTIVES:**

Objective E: Public and Civic Engagement Plan Strengthen communication and further develop close working relationships with stakeholders, business partners, and civic leaders

1: Collaborate with business partners and stakeholders through increased engagement, communication, and participation.

**Objective F: Commercial Fishing** 

Support current commercial fishing industry central to Ventura's premier working waterfront through: stakeholder engagement, diversification, and infrastructure improvements 2: Continue improvements of Commercial Fishing Industry service offerings by District

Objective V: Harbor Village

Maintain and improve Harbor Village infrastructure and enhance the overall visitor experience. 1: Complete Harbor Village refresh programs

## VENTURA PORT DISTRICT

| _ |          |                                            |  |
|---|----------|--------------------------------------------|--|
|   | TO:      | Board of Port Commissioners                |  |
| ļ | FROM:    | Todd Mitchell, Business Operations Manager |  |
|   |          | Sergio Gonzalez, Maintenance Supervisor    |  |
| į | SUBJECT: | October 2020 Facilities Report             |  |

## **MAINTENANCE ACTIVITES**

## COVID-19 MAINTENANCE RESPONSE /UPDATE:

#### Status: Ongoing

## Budget: Over normal operating budget

The Maintenance Department has responded to the COVID-19 pandemic by increasing janitorial services throughout the District with a concentration on high-touch surfaces, including restrooms, door handles, etc.

Maintenance staff continues to work with shifts staggered to minimize overlap in arrival and departure times. In addition, Maintenance has implemented a variation in staff schedule to ensure a Maintenance employee is on shift until 7:00 PM, 7 days a week to improve visibility of staff throughout the Village through October 31, 2020. Staff has been provided reusable washable face coverings and surgical masks, nitrile gloves and disinfectant wipes upon request. Staff has continued to self-screen and log all data entry. Morale remains good and Village facilities are kept at a high standard of cleanliness.

Signage has been placed throughout the village addressing the social distancing guidelines. Staff continues to work with tenants to ensure cooperative compliance with these orders.



All restrooms throughout the Village are open, although hours were reduced based on restaurant hours and to discourage issues with vandalism and theft. As of October 7, 2020, the District has opened all public restrooms at Ventura Harbor Village to accommodate the influx of visitors due to the County's reopening. Open restrooms hours have been adjusted to close at 11:00 pm.

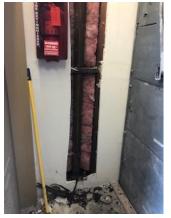
## LAUNCH RAMP PARKING LOT PALM TREE TRIMMING: Status: Completed

## Budget: Within budget

Coordinated with contractor to trim 44 washingtonia and 1 canary palm tree throughout the launch ramp parking lot and adjacent Ventura Port District property.

## Before






## VENTURA HARBOR VILLAGE 1591 ELECTRICAL ROOM CAST IRON PIPE: Status: Completed

## Budget: Within budget

Staff identified a cast iron pipe inside the Ventura Harbor Village 1591 electrical room that had ruptured due to rust. It would leak into the electrical room causing a safety issue. Maintenance replaced the cast iron pipe with ABS from the above parapet primary catch basin to the inlet inside the wall to the floor. Repatched wall after completion.

Ruptured cast pipe in wall



Replaced ABS pipe to ground



Replaced pipe to above



## VPD BUILDING ROLLING GATE RERPLACEMENT: Status: Completed Budget: Within budget

After many years of service, the main entrance rolling gate to the Ventura Port District yard has begun to fail and was beyond repair. Coordinated with contractor to have entire gate replaced with a heavier duty galvanized replacement.

## Old rolling gate



New rolling gate



# Old rolling gate failure



## CAPITAL PROJECT MANAGER/ PROPERTY MANAGER:

Assist Capital Project Manager & Property Manager with pending projects.

## **VHV PAINTING PROJECT:**

In coordination with the Capital Project Manager, assist in final details of painting project completion

## MARINA/MARKETING DEPARTMENTS:

The Maintenance Department continues to perform monthly inspections on all gangways, docks, fire extinguishers and fire boxes. Assist Marketing Department with banner placement and COVID-19 related signage.

## HARBOR PATROL:

Assist in the everyday operations by performing preventive maintenance and on the spot repairs of equipment, vehicles, and vessels.

## FACILITIES:

Staff continues to perform everyday maintenance and on the spot repairs throughout the Ventura Harbor Village and other VPD properties.

# DEPARTMENTAL STAFF REPORTS

## FEDERAL

## LONG-TERM GOALS:

Goal 1: Safety & Navigation Maintain and enhance a safe and navigable harbor a: Securing funding for dredging the Harbor entrance through the Army Corps of Engineers in coordination with agencies and our elected officials

> Goal 2: Commercial & Recreational Boating & Fishing Support and promote commercial and recreational boating and fishing

Goal 5: Relationships

Build respectful, productive, and mutually beneficial business relationships with our tenants, public agencies, elected officials and the community.

## 5-YEAR OBJECTIVES:

Objective D: Harbor Dredging

Ensure that annual dredging occurs at the federal Harbor entrance and as needed in the inner harbor

1: Support and advocate for congressional funding to the Army Corps of Engineers in support of the Harbor's annual dredging program

2. Provide on-going leadership role and active participation with California Marine Affairs and Navigation Conference (CMANC) and other relevant organizations in support of federal and state assistance

3: Ventura Port District Dredging

## **Federal Update**

November 1, 2020

## A Look Ahead: Lame Duck

Later this month, Congress will return to Washington, D.C. and head into a lame duck session. During the lame duck, Congress is expected to focus on the following legislative priorities:

\*\*\*\*\*

- Fiscal Year 2021 Appropriations: The federal government is currently being funded by a Continuing Resolution (CR) until December 11<sup>th</sup>. Prior to the December 11<sup>th</sup> deadline Congress must do one of the following: 1) pass all twelve FY21 appropriations bills in an omnibus package, 2) pass some of the bills in a minibus package and pass another CR for the remaining bills, or 3) pass another CR to keep the government open. Despite Presidential election year politics, it is not uncommon for Congress to be in an end of the year appropriations predicament. While it would be preferable to see the FY21 appropriations bills completed before a new Congress starts in January, there is a possibility that some, or all, of the FY21 bills will carry forward to be resolved by the 117th Congress.
- COVID-19 Relief Package: House Speaker Nancy Pelosi and Treasury Secretary Steven Mnuchin have been negotiating for weeks on a new COVID-19 relief package. While they were unable to reach a deal before the election, there is continued hope that a deal can be made during the lame duck.
- Water Resources Development Act: The House Transportation & Infrastructure Committee and Senate Environment & Public Works Committee have been in conference negotiations on a WRDA 2020 bill since August. These discussions have gone well and both side hope to produce a final conference report before Thanksgiving. Should they succeed, this schedule would maintain WRDA's bi-annual course.

With the 116<sup>th</sup> Congress coming to an end in December, any bills that have been introduced that have yet to pass both the House and the Senate and signed into law by the President will die. This means that Members will only have a few weeks once Congress returns to Washington, D.C. after the election to try and get their bills passed. Any bills that are unable to get across the finish line will have to be re-introduced in the new 117<sup>th</sup> Congress.

## **President Issues Executive Order to Create Water Subcabinet**

In late October, the President issued an Executive Order (EO) entitled "Modernizing America's Water Resource Management and Water Infrastructure." The EO touches on a broad range of water issues including water storage for Western farmers, Florida Everglades restoration, and the Great Lakes. The EO called for the formal creation of a "water subcabinet" to coordinate across the agencies with a hand in water infrastructure, supplies, and quality. The following federal officials have been designated as part of the water subcabinet:

- Department of the Interior Assistant Secretary of Water and Science Dr. Tim Petty.
- EPA Assistant Administrator for Water David Ross
- U.S. Department of Agriculture Under Secretary for Farm Production and Conservation Bill Northey
- Assistant Secretary of the Army for Civil Works R.D. James
- U.S. Department of Energy Assistant Secretary for the Office of Energy Efficiency and Renewable Energy Daniel R. Simmons
- Deputy National Oceanic and Atmospheric Administration Administrator Rear Admiral Gallaudet

## **DOT IG Releases Report on FY21 Top Management Challenges**

The Department of Transportation (DOT) Inspector General (IG) released a report highlighting DOT's most significant challenges for meeting the department's mission in FY21. The report identifies the following safety challenges:

- Aviation safety. Key challenges: improving FAA's oversight of aircraft certification processes and enhancing aviation safety oversight while working in a collaborative environment.
- Surface transportation safety. Key challenges: ensuring compliance with safety regulations and programs and continuing progress in safety monitoring and enforcement.
- Air traffic control and airspace modernization. Key challenges: modernizing new systems while introducing new capabilities and implementing new performance-based navigation flight procedures and delivering benefits to airspace users.
- Surface transportation infrastructure. Key challenges: enhancing oversight of surface transportation projects and employing effective asset and performance management.
- Contract and grant fund stewardship. Key challenges: awarding pandemic relief and other DOT contracts and grants efficiently, effectively, and for intended purposes and enhancing contract and grant management and oversight to achieve desired results and compliance with requirements.
- Information security. Key challenges: addressing longstanding cybersecurity weaknesses and developing Departmentwide policy to validate the proper adoption and security of cloud services.
- Financial management. Key challenges: strengthening procedures to monitor and report grantee spending and preventing an increase in improper payments.

 Innovation and the future of transportation. Key challenges: adapting oversight approaches for emerging vehicle automation technologies and ensuring the safe integration of Unmanned Aircraft Systems in the National Airspace System.

## **Highway Relief Act**

The Highway Relief Act (HR 8510), introduced earlier this month by Representative Rodney Davis (R-IL), would provide the US Transportation Secretary the discretion to waive certain state and municipal contributions in FY21 and FY22 for federally funded highway projects. Essentially, the bill would have the federal government fund 100% of certain projects. The bill was introduced as a way to assist state and local departments of transportation whose budgets have been severely impacted by the COVID-19 pandemic.

# CDC Releases Interim Guidance Recommending Use of Face Masks on Transportation

The Centers for Disease Control and Prevention (CDC) released interim guidance that provides a strong recommendation for mask wearing by passengers on and operators of various modes of transportation to prevent spread of COVID-19. CDC recommends the guidance is followed by passengers on airplanes, ships, ferries, trains, subways, buses, taxis, and ride-shares as well as by operators of these services.

## **FAA Issues New UAS Fact Sheet**

Federal Aviation Administration (FAA) has issued an updated fact sheet which provides details on the rules for small unmanned aircraft systems (UAS) or drone operations for drones weighing less than 55 pounds.

## DEPARTMENTAL STAFF REPORTS HARBOR PATROL

## LONG-TERM GOALS:

Goal 1: Safety & Navigation Maintain and enhance a safe and navigable harbor c: Providing superior Harbor Patrol, Maintenance, and related District services. d: Preserving and enhancing infrastructure, equipment, and facilities for a modernized, efficient and safe working harbor.

> Goal 2: Commercial & Recreational Boating & Fishing Support and promote commercial and recreational boating and fishing.

Goal 5: Relationships Build respectful, productive, and mutually beneficial business relationships with our tenants, public agencies, elected officials, and the community.

Goal 5: Public Service

Provide exceptional public service and transparency at all levels within the organization through effective leadership, training, mentoring, and oversight. This promotes accountability, increased public trust, and a more efficient, effective, and public focused organization.

## **5-YEAR OBJECTIVES:**

Objective E: Public and Civic Engagement Plan Strengthen communication and further develop close working relationships with stakeholders, business partners, and civic leaders 1: Collaborate with business partners and stakeholders through increased engagement, communication, and participation.

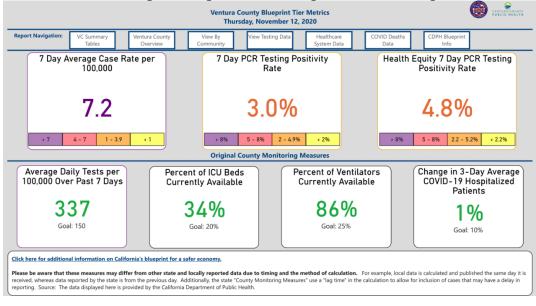
## VENTURA PORT DISTRICT

| DEPARTMEN | NIAL STAFF REPORT                          | weeu |
|-----------|--------------------------------------------|------|
| TO:       | Board of Port Commissioners                |      |
| FROM:     | Brian D. Pendleton, General Manager        |      |
|           | John Higgins, Harbormaster                 |      |
| SUBJECT:  | October 2020 Harbormaster/Harbor Patrol Re | port |

## PUBLIC SAFETY

## **Overview:**

The shorter days and increased nighttime boating activity continue to keep staff busy. We have also seen our first winter wind event during the first weekend of November. Over the weekend, we sustained winds of 30 knots and gusts up to 45 knots. These strong winds added extra calls for service. During these hazardous conditions, staff displays a warning on the electronic message sign, flys the weather flags at the office, and points people to real-time weather available online.




This weekend event also resulted in the county's first small rains, which activated the Arundell Barranca. Both private citizens and staff have recovered significant amounts of trash within the Harbor. A furture meeting with the City and County will be needed to look at ways to mitigate this problem.

## COVID-19

## **Community Overview:**

Ventura County has seen an increase in COVID-19 infections. There is a chance the County may move from California's "Red" Tier. While the increase in cases is significant there has not been a significant increase in hospitalizations. The second image shows that hospitalizations have only seen a slight rise in the non-ICU category. Moving forward, the efforts remain focused towards social distancing, wearing masks, and regular hand washing.





Ventura County websites: www.vcemergency.com & www.venturarecovers.org

## **COVID-19 FEMA Reimbursement Status:**

We continue to move forward in the process. We have received questions on our submissions, and we were able to reply in a "soft response" manner which is somewhat informal. It is our hope that this will suffice and ensure the process moves forward as efficiently as possible. Our Initial numbers were revised in the soft response: \$77,756.61 in costs and after the 25% match we are seeking \$56,317.46.

## **Essential Supplies:**

No change in our demand or supply lines. We cautiously watch the trends and will make more aggressive purchases should the trends consistently go the wrong way.

## **BEACHES**

## Harbor Cove:

Harbor Cove continues to see moderate daily visits. Due to public pools operating below capacity, there are swimmers daily. We will leave the swim buoys out to accommodate these athletes. These groups utilize various safety practices like swimming in small groups, wearing bright swim caps, and even swimming with a line attached to a floatation device for enhanced safety.

The beach accessibility mat will also stay to accommodate the public. We will coordinate with the City to store it just before the annual dredging.

Due to the State Health Order, the Beach Volleyball Courts remain closed.

## South Beach:

No significant changes have been noted. The Santa Clara Estuary berm was breached on November 13<sup>th</sup> and is currently flowing. Since this is a condition of inner harbor dredging, we will monitor it in the months to come.

## State Park Lifeguards:

In late October and after significant drops in crowds, we decided to stop weekend lifeguard coverage. The Harbor Cove tower will remain in place, and the other two have relocated back to the Surfers Knoll parking lot. Should we experience any heat waves, we can discuss further coverage or utilize our Marine Safety Officers.

## Harbor Patrol Naloxone Administration:

Harbor Patrol is on its second year participating in California's Naloxone Distribution Project. The program provides first responders both the medication Naloxone aka Narcan via a nasal spray, and a standing medical order for the administration.

Now on our second year in the program, we have had the opportunity to use it successfully on two calls. The most recent was an unconscious subject in a vehicle at Harbor Cove. I was the first on scene, and after a quick medical assessment, I determined the patient met the criteria for administration.

I administered the nasal spray, and the patient resumed breathing and awoke shortly after. Paramedics with AMR transported the patient to a local hospital for further observation. The Paramedics provided the patient with a Narcan kit along with drug treatment educational materials in the hope of steering him towards a recovery program.

## Cal State Long Beach Shark Lab:

We continue to work with CSULB Shark Lab on their White Shark Research. On November 12th, we transported researchers out to recover the three acoustic receivers in the Ventura area. While there were little observations of sharks and only one tagged in our area, there were significant numbers in the Santa Barbara area over the summer. The receivers positioned off our coastline were intended to catch the migration north or south throughout the season.

We received the results of the receiver later that evening. There was little activity during the summer months. In the last week, there has been an increase in activity. They expected this as the sharks begin their migration to Mexico in November. It is worth noting while these receivers have identified sharks in the area, there have been no reports from the public or issues noted.

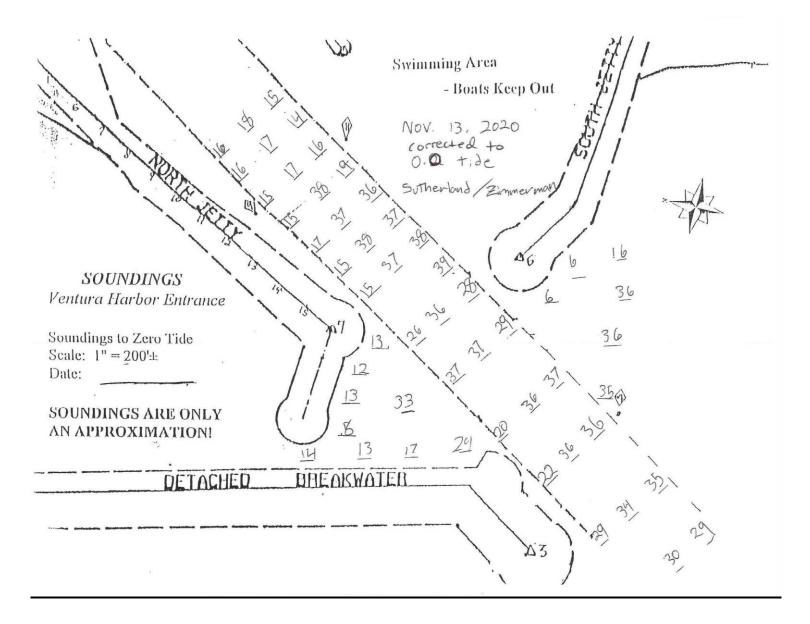
This program has started to put the puzzle pieces together on the White Shark activity along our coastline. The most notable conclusion is there have been significant increases in the number of these sharks and record levels of beach users with minimal interactions. Most of the time, the public is recreating near these sharks who are uninterested in an exchange. Public safety agencies have developed better methods to assess the risk and warn the public in areas with larger sharks.

## Marine Firefighting Training:

We put on an 8-hour Marine Firefighting training with three of our Marine Safety Officers on October 24th. The class went over the basic concepts of marine firefighting, protective equipment, and hands-on training in fire suppression. During this time, it also allowed our Full-Time Harbor Patrol Officers to share information and techniques on operating safely in this environment.

## VENTURA HARBOR PATROL BLOTTER

Additional calls for service can be found in our bi-weekly


blotter. You can request to be included in the email distribution list by emailing: harbormaster@venturaharbor.com or find it online: https://venturabreeze.com/category/harborpatrol-blotter/



## 911 CALLS DISPATCHED (26 CALLS RECEIVED 10/15-11/8)

| 911 CALLS DISPAT     | CHED (26 C                                                                                              | ALL             | S RECEIVED 1                      | 0/15-                                           | <u>11/8)</u>                   |         |                                         |
|----------------------|---------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|-------------------------------------------------|--------------------------------|---------|-----------------------------------------|
| Incident Case Number | <u>s</u> Units                                                                                          | <u>Priority</u> | Problem                           | <u>Agency</u>                                   | Address                        | City    | Response<br>Date                        |
| <u>20-0084961</u>    | BOAT17, HARB1,<br>ME2                                                                                   | F7              | HAZARD INVESTIGATION              | Ventura<br>County Fire<br>Department            | 1363 Spinnaker Dr              | Ventura | 10/15/2020<br>8:11:27<br>PM             |
| <u>20-0084998</u>    | HARB1, ME2,<br>MED471,<br>MED474                                                                        | M5              | BEHAVIORAL EMERGENCY<br>NON EMD   | Department                                      | 1050 Schooner Dr               | Ventura | 10/16/2020<br>12:25:26<br>AM            |
| <u>20-0085033</u>    | HARB1, ME2,<br>MED474                                                                                   | M5              | ASSAULT NON EMD                   | Department                                      | 1050 Schooner Dr               | Ventura | 10/16/2020<br>2:05:07<br>AM             |
| <u>20-0085114</u>    | MED471                                                                                                  | M5              | SICK PERSON                       | Ventura<br>County Fire<br>Department            | 1860 Spinnaker Dr              | Ventura | 10/16/2020<br>11:44:22<br>AM            |
| <u>20-0085211</u>    | B15, B2, BOAT17,<br>CSTGRD1,<br>EMS63, HARB1,<br>LIFEGD2, ME1,<br>ME7, MED471,<br>OR1                   | F5              | OCEAN RESCUE LOW                  | Ventura<br>County Fire<br>Department            | 135 Shoreline Dr               | Ventura | 10/16/2020<br>4:23:26<br>PM             |
| <u>20-0085371</u>    | HARB1, ME2                                                                                              | F7              | INVESTIGATION                     | Ventura<br>County Fire<br>Department            | E Harbor BI / Olivas Park Dr   | Ventura | 10/17/2020<br>7:17:36<br>AM             |
| <u>20-0085932</u>    | HARB1, ME2,<br>MED471                                                                                   | M7              | HEMORRHAGE/LACERATIONS<br>NO CODE | Ventura<br>County Fire<br>Department            | 1215 Anchors Way               | Ventura | 10/18/2020<br>10:00:49<br>PM            |
| <u>20-0086395</u>    | EMS63, HARB1,<br>ME2, ME7,<br>MED661,<br>MED662                                                         | M3              | UNCONSCIOUS/FAINT HIGH            | Ventura<br>County Fire<br>Department            | 1050 Schooner Dr               | Ventura | 10/20/2020<br>1:57:04<br>PM             |
| 20-0086493           | HARB1, ME2,<br>MED471                                                                                   | M5              | MEDICAL ALARM                     | Ventura<br>County Fire<br>Department            | 1215 Anchors Way               | Ventura | 10/20/2020<br>9:59:32<br>PM             |
| 20-0086828           | HARB1, ME5,<br>MED421,<br>MED451,<br>MED665, MT5                                                        | МЗ              | SICK PERSON HIGH                  | Ventura<br>County Fire<br>Department            | 1215 Anchors Way               | Ventura | 10/22/2020<br>8:06:55<br>AM             |
| <u>20-0088444</u>    | HARB1, ME106,<br>MED471,<br>MED474                                                                      | M3              | UNCONSCIOUS/FAINT HIGH            | Ventura<br>County Fire<br>Department            | 1080 Navigator Dr              | Ventura | 10/26/2020<br>6:39:51<br>PM             |
| <u>20-0088607</u>    | BOAT17, HARB1,<br>HARB2, ME106,<br>MED473                                                               | М3              | UNCONSCIOUS/FAINT HIGH            | Department                                      | 1691 Spinnaker Dr              | Ventura | 10/27/2020<br>10:44:48<br>AM            |
| <u>20-0088745</u>    | HARB1, ME7,<br>MED471                                                                                   | M5              | ASSAULT NON EMD                   | Department                                      | 1215 Anchors Way               | Ventura | 10/27/2020<br>4:41:50<br>PM             |
| 20-0089296           | HARB1, ME2                                                                                              | F5              | FIRE MISC                         | Department                                      | E Harbor Blvd / Spinnaker Dr   | Ventura | 10/29/2020<br>6:42:46<br>AM             |
| 20-0089675           | HARB1, ME2,<br>MED471                                                                                   | M7              | FALL NO CODE                      | Department                                      | 1651 ANCHORS WAY DR            | Ventura | 10/30/2020<br>6:33:09<br>AM             |
| 20-0090038           | MED003                                                                                                  | M7              | ALLERGIES/ENVENOMATION<br>NC      | Department                                      | 1559 Spinnaker Dr              | Ventura | 10/31/2020<br>2:58:12<br>AM             |
| 20-0090531           | HARB1, ME2,<br>MED471                                                                                   | M3              | BREATHING PROBLEMS HIGH           | Ventura<br>County Fire<br>Department<br>Ventura | 1363 SPINNAKER DR              | Ventura | 11/1/2020<br>1:28:11<br>PM<br>11/3/2020 |
| 20-0091287           | HARB1, ME7                                                                                              | F7              | FIRE ALARM                        | County Fire<br>Department                       | 1414 Angler Ct                 | Ventura | 2:24:40<br>PM<br>11/4/2020              |
| <u>20-0091520</u>    | MED473                                                                                                  | M3              | CONVULSIONS/SEIZURES<br>HIGH      | Ventura<br>County Fire<br>Department            | 1400-1999 Spinnaker Dr         | Ventura | 9:30:10<br>AM                           |
| <u>20-0091597</u>    | B2, B20, BOAT17,<br>CSTGRD1,<br>EMS48, HARB1,<br>LIFEGD2, ME2,<br>ME5, MED471,<br>MED661, OR1           | F5              | OCEAN RESCUE LOW                  | Ventura<br>County Fire<br>Department            | 34°14'48.69"n / 119°16'23.56"w |         | 11/4/2020<br>1:50:33<br>PM              |
| <u>20-0091689</u>    | B2, B22, B68,<br>BOAT1, BOAT15,<br>E121, E66,<br>HARB1, HARB2,<br>ME1, ME102,<br>ME2, ME4, MT5,<br>T160 | F3              | MARINA FIRE                       | Ventura<br>County Fire<br>Department            | 1010-1099 Navigator Dr         |         | 11/4/2020<br>5:39:11<br>PM              |
| <u>20-0091929</u>    | HARB1, ME2,<br>MED473                                                                                   | M3              | CHEST PAIN NON TRAUMA<br>HIGH     | Ventura<br>County Fire<br>Department            | 1860 Spinnaker Dr              | Ventura | 11/5/2020<br>2:33:02<br>PM              |
| 20-0092592           | B1, B14, BOAT17,<br>CSTGRD1,<br>EMS48, EMS63,<br>HARB1,<br>LIFEGD2, ME1,<br>ME5, MED471,<br>MED473, OR1 | F5              | OCEAN RESCUE LOW                  | Ventura<br>County Fire<br>Department            | 135 Shoreline Dr               | Ventura | 11/7/2020<br>1:54:58<br>PM              |
| <u>20-0092631</u>    | B1, B14,<br>CSTGRD1,<br>EMS63, HARB1,<br>LIFEGD2, ME2,<br>ME5, MED473,<br>OR1                           | F5              | OCEAN RESCUE LOW                  | Ventura<br>County Fire<br>Department            | 135 Shoreline Dr               | Ventura | 11/7/2020<br>4:13:55<br>PM              |
| 20-0092827           | HARB1, ME2,<br>MED663                                                                                   | M5              | MEDICAL ALARM                     | Department                                      | 1215 Anchors Way               | Ventura | 11/8/2020<br>11:05:14<br>AM             |
| <u>20-0092881</u>    | HARB1, ME5                                                                                              | F7              | PUBLIC SERVICE                    | Ventura<br>County Fire<br>Department            | 1215 Anchors Way               | Ventura | 11/8/2020<br>1:55:08<br>PM              |
|                      |                                                                                                         |                 |                                   |                                                 |                                |         |                                         |

## **SOUNDINGS:**



# DEPARTMENTAL STAFF REPORTS

## MARINA

## LONG-TERM GOALS:

Goal 1: Safety & Navigation Maintain and enhance a safe and navigable harbor c: Providing superior Harbor Patrol, Maintenance, and related District services. d: Preserving and enhancing infrastructure, equipment, and facilities for a modernized, efficient, and safe working harbor.

> Goal 2: Commercial & Recreational Boating & Fishing Support and promote commercial and recreational boating and fishing.

Goal 5: Relationships Build respectful, productive, and mutually beneficial business relationships with our tenants, public agencies, elected officials, and the community.

Goal 6: Public Service

Provide exceptional public service and transparency at all levels within the organization through effective leadership, training, mentoring, and oversight. This promotes accountability, increased public trust, and a more efficient, effective, and public focused organization.

## **5-YEAR OBJECTIVES:**

Objective E: Public and Civic Engagement Plan Strengthen communication and further develop close working relationships with stakeholders, business partners, and civic leaders 1: Collaborate with business partners and stakeholders through increased engagement, communication, and participation.

**Objective F: Commercial Fishing** 

Support current commercial fishing industry central to Ventura's premier working waterfront through: stakeholder engagement, diversification, and infrastructure improvements.
2: Continue improvements of Commercial Fishing Industry service offerings by District

## VENTURA PORT DISTRICT

| DEPARTMENTAL STAFF REPORT |                                            | Meeting Date: November 18, 2020 |
|---------------------------|--------------------------------------------|---------------------------------|
| TO:                       | Board of Port Commissioners                |                                 |
| FROM:                     | Todd Mitchell, Business Operations Manager |                                 |
|                           | Dave Werneburg, Marina Manager / Commer    | cial Fisheries                  |
| SUBJECT:                  | October 2020 Marina Report                 |                                 |

## MARINA DEPARTMENT ACTIVITIES

## California Market Squid Harvest – Ventura Harbor

- No commercial squid landings in October for Ventura Harbor
- 19 20 YTD (Starting April 1, 2019): 581 landings, 9,262,965 lbs. / 4,631 tons
- California Squid Season Limit: 118,000 tons

## **Commercial Fishing / Climate Change**

Climate change is a very real challenge for the commercial fishing industry. 71% of the Earth's surface is water-covered; the oceans hold about 96.5% of all Earth's water. It is estimated the oceans have absorbed 93% of the heat trapped by climate change, making them hotter and more acidic. The salmon harvest this season suffered seriously. The issue is not isolated to the west coast; the Gulf of Maine is warming at a faster pace than 99% of other bodies of water and, by 2050, could lose 60% of its lobsters.

## They're Back!

On a brighter note, our Marina is rapidly repopulating for the squid fishing season. The much anticipated Nina condition La appears to be bringing down local water temperatures. Nets are being mended. being provisions loaded. fuel tanks being topped off. At the current time, 102 of our 103 wet slips are either occupied or we have reservations



for; the one remaining 55' slip will be occupied within a week or so. Channel Islands Harbor has a very limited capacity for larger commercial fishing vessels, particularly deep-draft vessels such as the purse seiners; thus, we are the port of choice for the commercial fishing fleet.

| Total Slip Count              | 103 | 100% |  |  |  |
|-------------------------------|-----|------|--|--|--|
| Slips Assigned / Reservations | 102 | 99%  |  |  |  |
| Slips Currently Occupied      | 73  | 71%  |  |  |  |
| Slips Available               | 1   | .09% |  |  |  |

## **VENTURA HARBOR VILLAGE MARINA**

# DEPARTMENTAL STAFF REPORTS

## MARKETING

## LONG-TERM GOALS:

Goal 3: Economic Vitality

Increase economic development, vitality, and diversity of the District through effective leasing and marketing strategies.

Goal 5: Relationships

Build respectful, productive, and mutually beneficial business relationships with our tenants, public agencies, elected officials, and the community.

Goal 5: Public Service

Provide exceptional public service and transparency at all levels within the organization through effective leadership, training, mentoring, and oversight. This promotes accountability, increased public trust, and a more efficient, effective, and public focused organization.

## 5-YEAR OBJECTIVES:

Objective E: Public and Civic Engagement Plan

Strengthen communication and further develop close working relationships with stakeholders, business partners, and civic leaders

1: Collaborate with business partners and stakeholders through increased engagement, communication, and participation.

Objective V: Harbor Village

Maintain and improve Harbor Village infrastructure and enhance the overall visitor experience 3: Marketing Action Plan

# **OCTOBER MARKETING REPORT**

Enhance Visitor Experiences

## NATIONAL SEAFOOD MONTH

National Seafood Month showcased an array of seafood options found throughout Ventura Harbor restaurants and fresh fish markets. Each spot was highlighted on social media with a dedicated post as well as inclusion in a Seafood themed video boosted to local foodies.

**114K** Total Social Reach

**4 K** Campaign Engagement

## DOG COSTUME CONTEST

HOWL-O-WEEN went virtual this year! Participants took photos of their furry friends all dressed up and entered online for a chance to win pup-prizes. Promotion highlighted pet-friendly Ventura Harbor! Bonus points were awarded to those who took photos onsite to encourage visitation without large gathering. There were **40 official digital entries** & the public voted to determine a Fan Favorite winner.

**39K** Total Social Reach





Skeletons on display in Village & on the water to encourage guests to find, photograph & post on social media and share experiential Harbor memories to their personal feeds. Photo ops & a hearse with a skeleton party also featured onsite.

17K #SeasideSkeleton Social Reach

**1 K** #SeasideSkeleton Engagement









POST PICTURES

WIN PRIZES

CLICK HERE

## WITCH PADDLE

Approximately 30+ witches "flew" on the waterfront for the Witches Paddle on October 30th it was a community organized & safely distanced event. Marketing team assisted in the promotion of fun on the water with Ventura Boat Rentals equipment and attracted coverage with LA Times photographer. Festivities were virtually streamed live as well:



**72 K** Total Social Reach

> **6 K** Engagement

## **EVENT REVENUE**

1 Outside Event 4 Onsite Weddings

= \$1,980 total

NOTE - Each event is Covid approved with social distancing protocol.



# **OCTOBER MARKETING REPORT**

Engage Customers via Paid Media

## DATA DRIVEN DECISIONS

Demographic data is derived from website & social media platform analytics, and campaign performance. The regional drive market influenced strategic marketing messages. The top demographics for October 2020 are:





LOS ANGELES VENTURA COUNTY SANTA CLARITA

## nterests

HALLOWEEN DINING EVENTS SHOP SEASIDE SKELETON HUNT DOG COSTUME CONTEST WITCHES PADDLE

#### PLEASE NOTE:

The data above is a summary of top results for the month, it is not reflective of all demographic data for Ventura Harbor overall.

## PAID ADVERTISING WITH LOCAL & REGIONAL REACH

- VC Reporter Digital Banner Ads
- VC Reporter Paid Eblast
- VC Reporter Print Ad
- VC Star Digital Banner Ads
- 805 Living Magazine Ad
- Ventana Magazine Ad
- Macaroni Kid Paid Digital Articles
- Trendi Eats Social Posts
- Facebook Paid Ads
- Instagram Boosted Posts
- Downtown Ventura Big Belly Ads
- Ventura RV Park Welcome Booklet Ad
- Visit Ventura Digital Web Banner
- Visit Ventura Onsite Display & Maps

## **VIDEO CONTENT CREATION**

Working with Steel Cut Productions & thanks to harbor businesses, a second video launched to promote Ventura Harbor as a seafood destination covering both restaurants & fish markets. Video was shared as a paid social post to key markets as well as featured on the Village website. Footage will now be edited to be evergreen to share year round to inspire visitors and customers. SEAS the Day Video paid ad continued into October also. See stats below:



Seafood Lovers 9,162 Reach | 395 Link Clicks | \$50 Spend



SEAS the Daynk25,831 Reach | 699 LinkIClicks | \$110 Spend







MONTH



### **OCTOBER MARKETING REPORT**

Social Media & Content Development

### **INSTAGRAM**

**19.891** Followers (**1** 3%) **16,147** Engagement ( **^** 94%) **561,445** Impressions ( **^** 106%)



SAMPLE

SOCIAL

TOPICS

### FACEBOOK

**26,358** Followers ( 1%) **34,535** Engagement ( 144%) **918,752** Impressions ( **^**3%)





TWITTER

5.543 Followers (1%)

**25** Link Clicks ( $\downarrow$ 6%)

Posts highlighting each restaurant & market for National Seafood Month, Halloween merchandise, eats, & activities, Spiny Lobster Season, Making INCLUDE: Strides Against Cancer pop-up fundraiser, World Series, plus the below...



Ride your bike down for Califórnia Clean Air Day



200lb Blue Fin Tuna from Ventura Fresh Fish



Once in a Blue Moon promo for the Halloween full moon

### SOCIAL MEDIA STORIES

Total Stories Posted: 21 videos + 3 photos + 32 shares | Total Impressions: 15k (^70%) Sample Topics: Virtual walk through experience of festivities & décor Halloween Day, Witches Paddle, Dog Costume Contest public voting, Pottery Gallery new online store.

### PAID SOCIAL ADS

Seafood Month Part 1 (carousel ad): 16,776 Reach | 1,357 Link Clicks | \$100 Spend

Seafood Month Part 2 (video): 9,162 Reach | 395 Link Clicks | \$50 Spend

Halloween Seaside (graphic): 28,608 Reach | 2,303 Link Clicks | \$125 Spend

Plus Continuation of Ads from previous month: Ventura Harbor (video): 25,831 Reach | 699 Link Clicks | \$110 Spend California Love (image): 9,678 Reach | 167 Link Clicks | \$37 Spend Beat the Heat Seaside (image): 2,489 Reach | 75 Link Clicks | \$13 Spend



VENTURAHARBORVILLAGE.COM 7 Fun Ways to Celebrate Halloween at Ventura Harbor



Ventura Harbor is a prime spot for SE to celebrate Seafood Monthline afood Month! W



### TO 9K SUBSCRIBERS Frenchies Now Open 1,401 opens | 94 clicks

**BLOGS & EBLASTS** 



Hair Extensions Now Open 1,296 opens | 40 clicks



Seafood Eats Contest 1,319 opens | 40 clicks



National Seafood Month **1,392** opens | **144** clicks



Seafood Video 1,408 opens | 166 clicks



Harbor Halloween 1,257 opens | 70 clicks



### **OCTOBER MARKETING REPORT**

Earned Media & Tourism

### EARNED DIGITAL MEDIA

Ventura Harbor content appeared in the following digital media in October:



### Los Angeles Times



SANTA BARBARA NEWS-PRESS



VCC Stars. Book of the second second



### **CALIFORNIA 101**

Cal 101 Travel Instagram takeover feat. all harbor businesses & ammenities



### **RECOVERY MESSAGING**

Visit California reports that Enewsletters continue to be the #1 return on investment for engagement during the pandemic. Ventura Harbor continues to generate multiple eblasts and enewsletters a month to engage and inform subscribers on safely traveling to the Ventura Harbor and businesses. Paid social media campaigns are targeting drive markets within a 100 miles radius of the harbor.

### VIRTUAL TRAVEL TRADE OUTREACH

Marketing Manager was asked by Visit Ventura to represent Ventura region with Central Coast Tourism for the virtual Western States Virtual Expo targeting travel agents & tour operators. The Central Coast Tourism booth had the most total visitors and 2nd most unique visitors in the California Delegation. Reps answered questions about what was open & shared updates on each region to introduce the Central Coast to new visitors. 2,100 travel advisors registered / 1,095 visitors to the Central Coast virtual booth

### EARNED PRINT MEDIA



#### Hair Extensions By Shirley Opens In Ventura Harbor Village

mpiral by variaing in the finality's hair cases dramatic solar, during a discussion basics of your and diverys mirror with contemport plating, ing long, incients lacks, Shirip Kino, "An an effect of the second s



sterilization in a medical-grave autoclave, and porcelain scaling tubs without bacteria-bactoring jets that are distificted uning abschieda and a countown clock? Prenchise schemes frame-producing acrylic nails and particle-groue cellina do employs a verification system that filters impurites out of 50 cubic square feet of air around each nail station. While Cross and here team await the green light for indoor services, they have devised a aufe and plassant alternative using their outdoor areas. Technicians work on clients at stations spaced six feet apart and, of

What: The Seasalt Zookie, caramel-pretzel ice cream, Nutella, caramel sauce, whipped cream, and cookie crumbles atop a fresh-baked, fish-shaped pastry Where: Coastal Cone (coastalcone.com) in Ventura Harbor Village When: Year-round

# DEPARTMENTAL STAFF REPORTS

### PROPERTY

### LONG-TERM GOALS:

Goal 3: Economic Vitality

Increase economic development, vitality, and diversity of the District through effective leasing and marketing strategies.

Goal 5: Relationships

Build respectful, productive, and mutually beneficial business relationships with our tenants, public agencies, elected officials, and the community.

Goal 5: Public Service

Provide exceptional public service and transparency at all levels within the organization through effective leadership, training, mentoring, and oversight. This promotes accountability, increased public trust, and a more efficient, effective, and public focused organization.

### **5-YEAR OBJECTIVES:**

Objective E: Public and Civic Engagement Plan

Strengthen communication and further develop close working relationships with stakeholders, business partners, and civic leaders

1: Collaborate with business partners and stakeholders through increased engagement, communication, and participation.

Objective V: Harbor Village

Maintain and improve Harbor Village infrastructure and enhance the overall visitor experience 1: Complete Harbor Village refresh programs

2: Leasing/Property Management Action Plan

### VENTURA PORT DISTRICT

DEPARTMENTAL STAFF REPORT

| TO:      | Board of Port Commissioners                |
|----------|--------------------------------------------|
| FROM:    | Todd Mitchell, Business Operations Manager |
|          | Robin Baer, Property Manager               |
| SUBJECT: | October 2020 Property Manager Report       |

### CURRENT TENANT REPORT

- 1) Harbor Businesses seeking COVID-19 Ventura Harbor Rental Abatement and Deferment Program, Resolution Number 3398 (for the month of October)
  - Staff continues to work with tenants on their qualification for this new plan and/or the City Ordinance
- 2) Sugar Lab 1575 Spinnaker #105A/B
  - Tenant construction is coming close to completion. Estimated opening first week of December 2020 (depending on City inspections/certificate of occupancy)
- 3) Rated Sports 1591 Spinnaker #201 move to #207
  - Tenant is growing and has chosen to increase square footage (746 to 1,420). A new lease is being negotiated.
  - Staff is negotiating with a prospective new tenant for unit #201 (746 sf)
- 4) *Month-To-Month Tenants* --- Staff continues to keep communication lines open, be creative in lease terms and work with these tenants to secure them into long term leases in the near future.

### **CURRENT AVAILABILITY REPORT**

1)1567 Spinnaker Drive #100 -

- District has received City of Ventura planning permit to buildout the space
- Staff has received a proposal and is currently reviewing the contents.
  - Staff continues to meet with the prospective tenant to review and discuss their proposal, layout, and timelines.

2)1591 Spinnaker Drive #114 & 115. This space is being advertised on our leasing outreach programs listed below.

### LEASING OUTREACH

- 1) Leasing Outreach Daily exposure with our ads online via LoopNet/CoStar which covers the following:
  - Listed on Ventura Harbor Village and Ventura Harbor websites, along with window leasing signage on available properties
  - Top three commercial real estate marketplaces:
    - LoopNet, City Feet and Showcase;
    - Email Networking blasts from interested parties
    - 150 plus online newspaper websites including Wall Street Journal
    - 24 Million visitors to these sites /200,000 real estate professionals use CoStar

### **OCCUPANCY LEVELS AT HARBOR VILLAGE**

October 2020

| CATEGORY      | TOTAL       | Harbor                                                   | Harbor                                                 | Harbor      | Harbor      | City *       | City *    |
|---------------|-------------|----------------------------------------------------------|--------------------------------------------------------|-------------|-------------|--------------|-----------|
|               | Square      | Vacancy                                                  | Vacancy                                                | Available   | Available   | Vacancy      | Available |
|               | Footage     | Sq Ft                                                    | %                                                      | Sq Ft       | %           | %            | %         |
| Office        | 19,759      | 1,420                                                    | 7%                                                     | 2,703       | 14%         | 24%          | 42%       |
| Retail        | 22,518      | 0                                                        | 0%                                                     | 13,075      | 58%         | 26%          | 37%       |
| Restaurant    | 32,197      | 1,537                                                    | 5%                                                     | 3,927       | 12%         | 42%          | 42%       |
| > Harbor Vac  | ancy No     | o tenant or                                              | lease                                                  |             |             |              |           |
| Office        |             | 1591 Haw                                                 | kridge Syste                                           | ms          |             |              |           |
| Retail        |             | N/A                                                      |                                                        |             |             |              |           |
| Restaurant    |             | 1591 Blac                                                | kbeard's                                               |             |             |              |           |
| > Harbor Ava  | ilable T    | enant on l                                               | MTM lease                                              | , including | g Harbor Va | cancy numb   | ers       |
| Office        |             | 1591 Cust                                                | .591 Custom Embroidery, Hawkridge Systems, Martin/Gray |             |             |              |           |
| Retail        |             | 1559 Comedy Club                                         |                                                        |             |             |              |           |
|               |             | 1567 Carousel , HV Gallery, Treasure Cove, Potters Guild |                                                        |             |             |              |           |
|               |             | 1583 Lemon & Lei                                         |                                                        |             |             |              |           |
|               |             | 1591 Ultimate Escape Rooms                               |                                                        |             |             |              |           |
| Restaurant -  |             | 1575 805 Bar/Copa Cubana                                 |                                                        |             |             |              |           |
|               |             | 1591 #114/#115 Blackbeard's                              |                                                        |             |             |              |           |
| * City Bas    | ed on com   | parable sq                                               | uare foota                                             | ge within ' | Ventura 930 | 001 area     |           |
| ** Occupanc   |             |                                                          |                                                        | -           |             |              | S         |
| *** City Rest | -           |                                                          |                                                        |             |             |              |           |
| **** Definiti | ion of avai | lable inclu                                              | des MTM s                                              | tatus but t | he District | is not takin | g action  |
| to replace te | nants on M  | /ITM durin                                               | g the pand                                             | emic.       |             |              |           |

<u>SALES REPORTS</u> The attached summary for August and September provides sales for three categories: restaurants, retail, and charters. The reports compare the monthly sales for 2019 and 2020. They also include year-to-date comparisons. The year-to-date overall sales for Harbor Village Tenants in August were 22.94% down and September were down 21.73% from the same time last year.

### ATTACHMENTS:

Attachment 1 – August 2020 Sales Report Attachment 2 – September 2020 Sales Report

### Ventura Harbor Village Tenant Sales Summary

### Month of 08/2020

|             | <u>Au</u> | <u> </u>  | <u>A</u> | ugust-2019 | %<br><u>Change</u> |
|-------------|-----------|-----------|----------|------------|--------------------|
| Restaurants | \$        | 1,919,183 | \$       | 1,761,239  | 8.97%              |
| Retail      | \$        | 605,567   | \$       | 495,988    | 22.09%             |
| Charters    | \$        | 515,056   | \$       | 804,280    | -35.96%            |
| Total       | \$        | 3,039,806 | \$       | 3,061,507  | -0.71%             |

Year-to-date through August 2020

| rour to date through | i lagaot 2 | -020       |          |            | %             |
|----------------------|------------|------------|----------|------------|---------------|
|                      | <u>A</u>   | ugust-2020 | <u>A</u> | ugust-2019 | <u>Change</u> |
| Restaurants          | \$         | 9,593,155  | \$       | 11,071,578 | -13.35%       |
| Retail               | \$         | 2,692,935  | \$       | 3,100,851  | -13.15%       |
| Charters             | \$         | 2,079,586  | \$       | 4,470,777  | -53.48%       |
| Total                | \$         | 14,365,676 | \$       | 18,643,206 | -22.94%       |

### Ventura Harbor Village Tenant Sales Summary

### Month of 09/2020

|             | <u>Sep</u> | tember-2020 | <u>Sep</u> | tember-2019 | %<br><u>Change</u> |
|-------------|------------|-------------|------------|-------------|--------------------|
| Restaurants | \$         | 1,609,242   | \$         | 1,503,859   | 7.01%              |
| Retail      | \$         | 500,035     | \$         | 373,621     | 33.83%             |
| Charters    | \$         | 430,629     | \$         | 554,464     | -22.33%            |
| Total       | \$         | 2,539,906   | \$         | 2,431,944   | 4.44%              |

### Year-to-date through September 2020

|             | optonia   | 2020         |           |              | %             |
|-------------|-----------|--------------|-----------|--------------|---------------|
|             | <u>Se</u> | otember-2020 | <u>Se</u> | otember-2019 | <u>Change</u> |
| Restaurants | \$        | 11,202,397   | \$        | 13,078,305   | -14.34%       |
| Retail      | \$        | 3,192,971    | \$        | 3,479,478    | -8.23%        |
| Charters    | \$        | 2,510,216    | \$        | 5,040,342    | -50.20%       |
| Total       | \$        | 16,905,584   | \$        | 21,598,125   | -21.73%       |



## BOARD OF PORT COMMISSIONERS

## NOVEMBER 18, 2020

## <u>CONSENT AGENDA ITEM A</u> APPROVAL OF 2021 PORT COMMISSION MEETING SCHEDULE

### **VENTURA PORT DISTRICT**

CONSENT AGENDA ITEM A

BOARD COMMUNICATION

Meeting Date: November 18, 2020

| TO:      | Board of Port Commissioners                       |
|----------|---------------------------------------------------|
| FROM:    | Brian D. Pendleton, General Manager               |
|          | Jessica Rauch, Clerk of the Board                 |
| SUBJECT: | Approval of 2021 Port Commission Meeting Schedule |

#### **RECOMMENDATION:**

That the Board of Port Commissioners approve the 2021 Port Commission meeting schedule.

#### SUMMARY:

The Board of Port Commissioners has continued to meet twice per month, with August dark and November/December once per month.

#### LONG-TERM GOALS:

- Goal 6: Public Service
  - Provide exceptional public service and transparency at all levels within the organization through effective leadership, training, mentoring, and oversight. This promotes accountability, increased public trust, and a more efficient, effective and public focused organization.

### **5-YEAR OBJECTIVES:**

- Objective E: Public and Civic Engagement Plan
  - Strengthen communication and further develop close working relationships with stakeholders, business partners, and civic leaders.
    - 1: Collaborate with business partners and stakeholders through increased engagement, communication, and participation.

#### **BACKGROUND:**

Meetings of the Board shall be held twice a month, unless directed by the Board; excluding August, November and December in the Ventura Port District Office located at 1603 Anchors Way Drive, Ventura, California. The Board may, at times, elect to meet at other times and locations within the City and upon such election shall give public notice of the change of location.

Regular Meetings are held the first and third Wednesday of every month (excluding August) at 7:00PM, with Closed Session before. Regular Meetings are for approval of Consent and Standard Agenda Items. Special and Emergency meetings of the Board may be called and held from time to time pursuant to the procedures set forth in the Ralph M. Brown Act.

When the day for any regular meeting falls on a legal holiday, the regularly scheduled meeting for that day shall be deemed cancelled unless otherwise provided by the Board. Any meeting of the Board may be cancelled in advance by a majority vote of the Board.

### FISCAL IMPACT: None.

### ATTACHMENTS:

Attachment 1 – 2021 Port Commission Schedule

\*Dates, times and locations of all meetings may vary. Please check the agenda packet for exact information\*

| Wednesday    | <b>Closed Session</b> | <b>Open Session</b> |
|--------------|-----------------------|---------------------|
| January 6    | 5:30PM                | 7:00PM              |
| January 20   | 5:30PM                | 7:00PM              |
| February 3   | 5:30PM                | 7:00PM              |
| February 17  | 5:30PM                | 7:00PM              |
| March 3      | 5:30PM                | 7:00PM              |
| March 17     | 5:30PM                | 7:00PM              |
| April 7      | 5:30PM                | 7:00PM              |
| April 21     | 5:30PM                | 7:00PM              |
| May 5        | 5:30PM                | 7:00PM              |
| May 19       | 5:30PM                | 7:00PM              |
| June 2       | 5:30PM                | 7:00PM              |
| June 16      | 5:30PM                | 7:00PM              |
| July 7       | 5:30PM                | 7:00PM              |
| July 21      | 5:30PM                | 7:00PM              |
| September 1  | 5:30PM                | 7:00PM              |
| September 15 | 5:30PM                | 7:00PM              |
| October 6    | 5:30PM                | 7:00PM              |
| October 20   | 5:30PM                | 7:00PM              |
| November 17  | 5:30PM                | 7:00PM              |
| December 15  | 5:30PM                | 7:00PM              |

Board Meetings are held at: Ventura Port District Office 1603 Anchors Way Drive Ventura, CA 93001



### BOARD OF PORT COMMISSIONERS

## NOVEMBER 18, 2020

### CONSENT AGENDA ITEM B

### APPROVAL OF OUT OF TOWN TRAVEL REQUESTS

### VENTURA PORT DISTRICT

| DOAND OOI |                                         | Miccung Da |
|-----------|-----------------------------------------|------------|
| TO:       | Board of Port Commissioners             | -          |
| FROM:     | Brian D. Pendleton, General Manager     |            |
|           | John Higgins, Harbormaster              |            |
| SUBJECT:  | Approval of Out of Town Travel Requests |            |
|           |                                         |            |

### **RECOMMENDATION:**

That the Board of Port Commissioners approve the out of town travel requests for:

- a) Tucker Zimmerman, Harbor Patrol I, to attend the California Division of Boating and Waterways marine firefighting course in Marina Del Rey, CA; and
- b) Casey Graham, Marine Safety Officer, to attend the California Division of Boating and Waterways rescue boat handling course in Marina Del Rey, CA.

#### SUMMARY:

Harbor Patrol Officer I, Tucker Zimmerman will travel to Marina Del Rey, California to participate in the California Division of Boating and Waterways marine firefighting course from November 16 – November 20, 2020. This course is one of several for which staff strives to have all employees attend. Mr. Zimmerman was previously approved to attend this course, but it was cancelled due to COVID. It is now been rescheduled with smaller class sizes.

Marine Safety Officer, Casey Graham will travel to Marina Del Rey, California to participate in the California Division of Boating and Waterways rescue boat handling course from November 16 – November 20, 2020. This course is one of several for which staff strives to have all Harbor Patrol employees attend.

#### LONG-TERM GOALS:

- Goal 6: Public Service
  - Provide exceptional public service and transparency at all levels within the organization through effective leadership, training, mentoring, and oversight. This promotes accountability, increased public trust, and a more efficient, effective and public focused organization.

### **5-YEAR OBJECTIVES:**

- Objective E: Public and Civic Engagement Plan
  - Strengthen communication and further develop close working relationships with stakeholders, business partners, and civic leaders.
    - 1: Collaborate with business partners and stakeholders through increased engagement, communication, and participation.

#### BACKGROUND:

Employees are encouraged to attend conferences, meetings, seminars, and other activities that provide an opportunity to be informed concerning matters of interest to the District and their position.

#### FISCAL IMPACTS:

The travel and training costs are included in the Harbor Patrol FY20-21 budget. However, there may be an opportunity for reimbursement for both these trainings through the California Division of Boating and Waterways.

Estimated cost for Tucker Zimmerman's travel is as follows:

| Registration  | \$0.00     |
|---------------|------------|
| Lodging       | \$711.45   |
| Meals         | \$450.00   |
| Mileage       | \$86.25    |
| Miscellaneous | \$100.00   |
| TOTAL         | \$1,347.70 |

Estimated cost for Casey Graham's travel is as follows:

| Registration  | \$0.00     |
|---------------|------------|
| Lodging       | \$711.45   |
| Meals         | \$450.00   |
| Mileage       | \$86.25    |
| Miscellaneous | \$100.00   |
| TOTAL         | \$1,347.70 |

ATTACHMENTS:

None.



### BOARD OF PORT COMMISSIONERS

## NOVEMBER 18, 2020

# Standard Agenda Item 1 Consideration of Operations Plan and Economic and Fiscal Impacts of the Proposed Ventura Shellfish Enterprise Project

#### VENTURA PORT DISTRICT BOARD COMMUNICATION

| TO:      | Board of Port Commissioners                                             |
|----------|-------------------------------------------------------------------------|
| FROM:    | Brian D. Pendleton, General Manager                                     |
| SUBJECT: | Consideration of Operations Plan and Economic and Fiscal Impacts of the |
|          | Proposed Ventura Shellfish Enterprise Project                           |

### **RECOMMENDATION:**

That the Board of Port Commissioners:

- 1. Authorize the submission of the Ventura Shellfish Enterprise Operations Plan to the U.S. Army Corps of Engineers, California Coastal Commission, and other regulatory agencies as appropriate; and,
- 2. Receive the Economic and Fiscal Impacts of the proposed Ventura Shellfish Enterprise.

#### SUMMARY:

On September 16, 2020, the Board of Port Commissioners received an informational report on the Preliminary Operations Plan and Draft Economic and Fiscal Impacts of the Proposed Ventura Shellfish Enterprise Project (VSE). At that time, the Board requested that staff return on October 7<sup>th</sup> to provide the public and stakeholders with adequate time to review the draft documents and provide comment. A notice was sent to approximately 300 stakeholders requesting their comments be provided by October 1<sup>st</sup> to be included in the agenda packet. Written or public comments received after this date were circulated at the meeting and included in the minutes.

The Ventura Port District (Port District) filed an application with the U.S. Army Corps of Engineers (Corps) for a permit to establish an aquaculture farm in federal waters near Ventura Harbor (Blocks 664 and 665). The Port District filed an application with the California Coastal Commission (Coastal Commission) for a Coastal Consistency Determination for the same project. Both were submitted in October 2018. The Preliminary Operations Plan (Operations Plan) has been developed in support of these applications and is intended for the use by federal and state regulators in developing project conditions of approval. The Draft Economic and Fiscal Impacts of the Proposed VSE Project (Economic and Fiscal Impacts Report) was requested by the Board for public policy considerations. It is not required by federal and state regulators, nor the 2018 California Sea Grant awarded to the Port District. However, development of the Economic and Fiscal Impacts Report can be beneficial to the Board and a broad spectrum of federal, state and local policy makers, commercial fishing and shellfish farming interests, researchers and stakeholders in considering projects of this nature.

It is the goal of this meeting to summarize responses to stakeholder comments received regarding the Preliminary Operations Plan and Draft Economic and Fiscal Impacts of the proposed VSE project, and seek authorization to submit the Operations Plan to the Corps, Coastal Commission and other regulatory agencies as appropriate. Concurrently, staff and the project team request the Board receive the Economic and Fiscal Impacts of the Proposed VSE Project which may be updated from time to time to reflect material changes in the aquaculture industry or the project itself that significantly impact projected outcomes.

### LONG-TERM GOALS:

- Goal 1: Safety & Navigation
  - Maintain and enhance a safe and navigable harbor
    - a: Securing funding for dredging the Harbor entrance through the Army Corps of Engineers in coordination with agencies and our elected officials

- Goal 2: Commercial & Recreational Boating & Fishing
  - Support and promote commercial and recreational boating and fishing

### **5-YEAR OBJECTIVES:**

- Objective F: Commercial Fishing
  - Support current commercial fishing industry central to Ventura's premier working waterfront through: stakeholder engagement, diversification, and infrastructure improvements
    - 3: VSE Project Grant Utilization
- Objective D: Harbor Dredging
  - Ensure that annual dredging occurs at the federal Harbor entrance and as needed in the inner Harbor
    - 1: Support and advocate for congressional funding to the Army Corps of Engineers in support of the Harbor's annual dredging program

### BACKGROUND:

The VSE project is an initiative proposed by the Port District with support from project volunteers that seeks to permit twenty 100-acre plots for growing the naturalized Mediterranean mussel (*Mytilus galloprovincialis*), in California coastal waters via submerged long lines within the Santa Barbara Channel near Ventura Harbor. Increasing the supply of safe, sustainably produced domestic seafood is a priority of the State Legislature, NOAA and the U.S. Department of Commerce.

The VSE project objectives include:

- To increase the supply of safe, sustainably produced, and locally grown shellfish while minimizing potential negative environmental impacts;
- To enhance and sustain Ventura Harbor as a major west coast fishing port and support the local economy;
- To provide economies of scale, pre-approved sub-permit area, and technical support to include small local producers who would not otherwise be able to participate in shellfish aquaculture;
- To provide an entitlement and permitting template for aquaculture projects state-wide;
- To enhance public knowledge and understanding of sustainable shellfish farming practices and promote community collaboration in achieving VSE objectives; and,
- To advance scientific knowledge and state of the art aquaculture practices through research and innovation.

The project's origins, goals and project funding are extensively discussed in a project status report to the Board on July 17, 2019. The VSE Annual Status Report was provided to the Commission and stakeholders at the July 15, 2020 Board meeting.

Since receiving the permit application, the Corps conducted its required public comment process, and received comments from the USCG and the Ventura Local Agency Formation Commission (LAFCo). On January 15, 2020, the Corps sent a letter to the Port District requesting a Navigation Risk Assessment, as requested by the USCG, and resolution of a jurisdictional issue raised in the LAFCo letter. As stated in the Corps' letter: "If the requested information cannot be submitted within 30 days, the Corps will withdraw your permit application. When you do provide the requested information, the Corps will resume review of your previously submitted permit application." On February 18, 2020, the Corps notified the Port District that its application had

been administratively withdrawn, again stating that it would resume processing the application once the Port District provides the information requested in the January 15 letter.

The Navigation Risk Assessment, prepared by COWI on the Port District's behalf, was presented to the Commission and stakeholders at two Board meetings held on July 1 and 15, 2020. It is complete and submitted to the Corps, Coastal Commission and USCG. The project team presented the findings to the USCG in August.

The Port District is working cooperatively with the Ventura LAFCo to resolve their differences and provided an update on the issue as part of the VSE Annual Status Report to the Commission and stakeholders at the July 15, 2020 Board meeting.

### FISCAL IMPACT:

There is no fiscal impact associated with this informational report. The 2018 CA Sea Grant subaward is \$266,660. The District's required cost match for the 2018 CA Sea Grant is \$272,210. This cost match is achieved through volunteer contributions of time by Ashworth Leininger Group (ALG), Coastal Marine Biolabs (CMB), The Cultured Abalone (TCA) and District staff plus direct costs incurred by the District.

Additionally, the Port District has contracted Illuminas Consulting to prepare a project economic and fiscal impact analysis that was presented in draft form to the Board on September 2, alongside the Preliminary Operations Plan; and Kelson Marine, to provide continued engineering evaluation of the proposed project.

The accounting of grant funds, District costs and volunteer hours are documented through quarterly financial reports prepared for Board consideration and approval.

### ATTACHMENTS:

Attachment 1 – Preliminary Operations Plan Response to Comments

Attachment 2 – VSE Preliminary Operations Plan

Attachment 3 – Economic and Fiscal Impacts of the Proposed Ventura Shellfish Enterprise Project Attachment 4 – Shellfish Grower Proforma

### VENTURA SHELLFISH ENTERPRISE PRELIMINARY OPERATIONS PLAN – RESPONSE TO COMMENTS

| # | Comment<br>Originator                                                         | Location in<br>Document                | Public Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|-------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | EDC, FOE,<br>OCR, SCF,<br>CCPN, WCF,<br>EACWM,<br>SBCK,<br>NWAMA,<br>CBD, OPS | Project<br>Location and<br>Description | Thank you for the opportunity to comment on the<br>Preliminary Operations Plan for the proposed Ventura<br>Shellfish Enterprise Project. As explained in our July<br>13, 2020, letter, the undersigned groups are concerned<br>about the proposed siting of this Project in federal<br>waters. Collectively, our organizations have extensive<br>knowledge of marine resources off the California coast<br>and experience navigating the various laws and policies<br>associated with coastal and marine development. We<br>remain convinced that state environmental, safety, and<br>health regulations and public processes are more robust<br>and protective than their federal counterparts.<br>Additionally, LAFCo rules prohibit the District from<br>pursuing a project in federal waters. For these reasons,<br>we urge you to refrain from submitting the Preliminary<br>Operations Plan to the Army Corps of Engineers and<br>California Coastal Commission. | Many of these comments were already addressed in VPD's response to the commenters' previous comments, provided on September 1, 2020. A copy of the letter (attachments excluded) is attached to the November 18, 2020 Board of Port Commissioners Report. Please refer to our previous correspondence for a discussion of issues not discussed below. Many of these comments concern issues beyond the scope of the Preliminary Operations Plan. As noted in our previous letter, we welcome the opportunity to meet with the commenters to discuss these issues and concerns.                                                                                                                                                                                                                                                                                                                                                                           |
|   |                                                                               |                                        | Instead, we urge the District to work with the relevant<br>state agencies to explore a proposal in state waters. The<br>California Coastal Commission is working on a<br>Guidance for aquaculture projects in state waters that<br>will be completed by the end of the year. The California<br>Department of Fish and Wildlife is tasked with<br>preparing a programmatic Environmental Impact<br>Report for aquaculture in state waters, and is<br>completing an Aquaculture Information Report. The<br>California Ocean Protection Council identified<br>promoting sustainable aquaculture as a primary<br>objective in its 2020-2025 Strategic Plan, with a goal<br>of developing a statewide aquaculture action plan<br>focused on marine algae and shellfish by 2023. These<br>efforts involve coordination with various state agencies<br>to produce a comprehensive process for reviewing                                                                       | Regarding the ongoing state processes, VPD is aware of the<br>California Coastal Commission (CCC) draft guidance and has<br>in fact encouraged the CCC to expand its guidance to include a<br>discussion of its federal consistency review for projects in<br>federal waters. We assume that the CCC can use any applicable<br>guidance in its review of the Ventura Shellfish Enterprise<br>(VSE) project as part of its consistency certification.<br>Regarding the California Department of Fish and Wildlife's<br>(CDFW) draft programmatic environmental impact report<br>(PEIR), there have been efforts to draft the PEIR over the past<br>14 years, but we understand that there is no current CDFW<br>effort ongoing at this time to complete the PEIR analysis.<br>Further, as mentioned in our previous communication, the<br>California Fish and Game Commission (CFGC) has imposed a<br>moratorium on new aquaculture lease applications in |

| # | Comment<br>Originator | Location in<br>Document | Public Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|-----------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                       |                         | proposed projects and ensure adequate attention to environmental, health, and safety concerns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | California state waters; therefore, there is no legally viable state waters alternative available at this time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |                       |                         | In contrast, the federal review process is mired in<br>controversy and potential legal obstacles. Several<br>federal laws and regulations are weaker than state<br>requirements, e.g., the National Environmental Policy<br>Act lacks the substantive mandate to avoid or minimize<br>environmental effects that the California<br>Environmental Quality Act requires. In addition, the<br>Coastal Commissions consistency review under the<br>federal Coastal Zone Management Act lacks the<br>permitting authority, environmental review, oversight,<br>and enforcement that apply to issuance of coastal<br>development permits. | See our previous September 1, 2020 response (Attached to the<br>November 18, 2020 Board of Port Commissioners Report<br>(attachments excluded)). Regarding the legal obstacles cited in<br>the comment, the comment references the recent decision in<br><i>Gulf Fishermen's Ass'n v. Nat'l Marine Fisheries Serv.</i> , 968<br>F.3d 454 (5th Cir. 2020), <i>as revised</i> (Aug. 4, 2020). That<br>decision concerned a NOAA program where NOAA asserted<br>permitting and leasing authority under the Magnuson-Stevens<br>Act which was invalidated by the court. This decision is not<br>applicable to the VSE project, which is not seeking a permit or<br>lease from NOAA (other than consultation with the National<br>Marine Fisheries Service (NMFS) under Section 7 of the |
|   |                       |                         | Finally, state LAFCo requirements do not allow the<br>District to operate in federal waters. Accordingly, we<br>urge the Commission to refrain from submitting the<br>Preliminary Operations Plan to the Army Corps of<br>Engineers and Coastal Commission, and to instead<br>direct your staff to consider a proposal in state waters.                                                                                                                                                                                                                                                                                             | Endangered Species Act (ESA)).<br>The Preliminary Operations Plan was drafted in response to a<br>request from the CCC seeking clarification of responsibilities<br>for operations, monitoring, enforcement, and compliance. It<br>will be relevant information to the CCC that can be utilized in<br>its consistency review of the project and there does not appear<br>to be justification for delaying submission of the Preliminary<br>Operations Plan in compliance with the CCC's request.                                                                                                                                                                                                                                                                                    |

| # | Comment<br>Originator               | Location in<br>Document                | Public Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|-------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Santa Barbara<br>Mariculture<br>Co. | General<br>Comment                     | The first major consideration I would want to know and<br>is not detailed in your report are what are the weather<br>conditions going to be like at the farm.? It's a direct<br>correlation. When the weather gets bad, work<br>proficiency goes down. I would want to know how<br>many days and hours of each day I can go to work.<br>That drives everything. The less days and hours I can<br>be out there, the less I will get done.                                                                                                                                         | The wind speeds and direction, current speeds and direction,<br>and swell intensity were all evaluated in the siting analysis<br>prepared by NOAA's National Centers for Coastal Ocean<br>Science, National Ocean Service (NCCOS-NOS) program, as<br>well as an engineering analysis prepared by Tobias Dewhurst,<br>Kelson Marine Company. The siting analysis prepared by<br>NOAA is attached to the September 12 and 26, 2018 Board of<br>Port Commissioners Report. The engineering analyses are<br>provided as Attachment A and B of the Operations Plan.                                                                                                                                                                             |
|   |                                     |                                        | I would like to see a comparison of weather conditions<br>for offshore farms in New Zealand and England with<br>weather conditions at the VSE project site. I would like<br>to know wind speeds and direction, current speeds and<br>direction, and swell intensity. Knowing this will<br>determine how many days I can go to work and will<br>dictate what can be accomplished in the allotted time.<br>Most mussel farming in the world takes place in<br>sheltered waters. This operation plan does not do<br>enough to address weather and farming in unsheltered<br>waters. | Generally, the weather conditions off the coast of Southern<br>California are much more favorable and have less storm<br>conditions than other areas where shellfish aquaculture is<br>common, including England, Scotland, and Norway. The<br>proforma assumes 200 days on the water (e.g., harvesting) with<br>the remaining work days attending to boat and gear<br>maintenance, seeding, weather-related constraints, etc. In<br>addition, various longline designs have been modeled for<br>various conditions associated with a 100-year storm and are<br>available as attachments to the Operations Plan (see Dewhurst<br>2019 - Appendix A and Dewhurst 2020 – Appendix B).                                                        |
|   |                                     | Project<br>Location and<br>Description | I also wouldn't clump the 20 farms all in one cluster.<br>It seems that if something goes wrong at one farm, that<br>could affect all the farms. As a potential VSE farmer, I<br>wouldn't want to be wronged for someone else's<br>mistakes or problems.<br>I would definitely spread the farms out to mitigate for<br>environmental or operational issues. If some farms are<br>unable to produce mussels for various reasons, at least<br>other farms could be bringing in product keeping the<br>whole collective in business.                                                | As part of the extensive outreach for the project, we sought<br>guidance as to the orientation of the proposed project.<br>Commercial fishing interests had a strong preference towards a<br>consolidated design to minimize impacts to fisheries. A<br>consolidated farm plan also can reduce potential impacts to<br>marine mammals and vessel traffic (including navigational<br>safety and efficiency) through avoiding a potential maze of<br>dispersed and separated farms. Potential impacts to marine<br>mammals with the consolidated design include less<br>interference with migration or feeding routes, less potential for<br>species to be excluded from foraging habitats, and potentially<br>reduced risk of entanglement. |
|   |                                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring of gear compliance, benthic monitoring, and<br>potential marine mammal entanglement is designed in such a<br>manner that it can detect impacts from individual farm sites and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| # | Comment<br>Originator | Location in<br>Document          | Public Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|-----------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                       | Economic<br>and Fiscal<br>Impact | At first glance, the business proposal for me is too<br>outlandish and does not consider the very risky nature<br>of the business. Agriculture and commercial fishing<br>are phenomenally risky and I feel that the VSE is<br>asking it's growers to carry too much debt. \$1.1<br>million of debt with a monthly payment of \$11,000 is<br>significant. What happens when you have a bad<br>production year? The fact that the farm will be pegged<br>at maximum production year after year after the second                                                                                                                                                                                                                                                                                                                                                                                                                | corrective action can be taken on a specific farm if a particular<br>grower encounters problems. For example, equipment will<br>include grower identification information; gear monitoring will<br>be conducted on a regular basis by growers and VPD Harbor<br>Patrol; and the project design has been modeled at various<br>wave, current, and wind conditions to withstand 100-year<br>storms and incorporates safety factors. The engineering<br>analyses are provided as Attachment A and B of the Operations<br>Plan. Noncompliance will also be addressed through operating<br>agreements between the VPD and growers.<br>The current draft grower proforma incorporates crop insurance<br>into the business plan to mitigate for poor production years. |
|   |                       | General<br>Comment               | year is fantasy.<br>Based on a previous mussel farming fantasy, I can<br>almost predict what is going to happen. When<br>production values are overinflated, investor optimism<br>will fuel overinvestment which will produce too many<br>mussels which will drive the price of mussels down and<br>begin to degrade the environment. The reduction in<br>income and production will then bankrupt the mussel<br>farmer. It happens quite a lot in many resource<br>dependent industries. This is bad. This is really bad<br>for me. Too much product without proper marketing<br>will drive the price of mussels down hurting my current<br>business. Too much product in the water may increase<br>the risk of whale entanglement and bottom deposition.<br>This will increase regulatory costs for my business.<br>Too many growers going bankrupt will cause political<br>turmoil for me and decrease public acceptance. | California, and the United States as a whole, imports<br>approximately 60% to 90% of its seafood annually from other<br>countries, of which half is aquaculture. There is a strong<br>demand for seafood that can be met by local sources and a<br>strong market for both the VSE project and other regional<br>growers. For example, in Washington State, there are over a<br>hundred companies engaged in shellfish aquaculture, which<br>supply regional, domestic, and international markets, and have<br>succeeded for decades in meeting demand through a diverse<br>group of small, medium, and large-scale aquaculture<br>companies. The same is true in the New England aquaculture<br>industry.                                                       |

| # | Comment<br>Originator | Location in<br>Document | Public Comment                                                                                                                                                                                                                                                                                                                  | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|-----------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                       | General<br>Comment      | I grow considerably less product on my farm which<br>translates into a lot less environmental impact. My<br>investment is considerably lower which translates into<br>higher probability in surviving production shortfalls.<br>Production shortfalls are the norm in farming. You<br>need to account for this.                 | Regarding the comment concerning potential whale<br>entanglement and benthic impacts, please see the VSE project<br>Biological Assessment which discusses these potential impacts<br>in detail. It concludes that, upon incorporation of the proposed<br>mitigation measures and monitoring plans (including a marine<br>mammal entanglement plan and benthic monitoring plan),<br>these impacts are considered less than significant.<br>The VSE project has been conservatively designed to minimize<br>the project's environmental impact through the incorporation<br>of mitigation measures, best management practices, and robust<br>monitoring plans discussed in greater detail in the VSE project<br>biological assessment and attachments to the Preliminary<br>Operations Plan. |
|   |                       |                         | I know the fantasy is a good sell. There are lots of<br>benefits to optimism, but this VSE proposal has not<br>prepared for the worst. I would like to see scenarios<br>pondered when the worst does happen. If you actually<br>have a plan for when the worst happens, this will<br>actually help you succeed in the long run. | The project is also proposed to be phased, such that only 500 acres will be installed initially. Expansion of the project site to include additional farm acreage will only be allowed provided that the project meets certain identified thresholds and standards established by regulatory agencies as part of their approval of project permits and monitoring plans. In addition, the current draft grower proforma incorporates crop insurance into the business plan to mitigate for poor production years.                                                                                                                                                                                                                                                                          |

| # | Comment<br>Originator | Location in<br>Document          | Public Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|-----------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                       | Economic<br>and Fiscal<br>Impact | Getting 5 farmers to pool their money to buy a boat<br>together is ridiculous. There are all kinds of ways this<br>can go wrong. What I would do is to get all the farmers<br>to pool their money to form a marketing association.<br>The primary function is to keep the farm gate price of<br>mussels high and even to increase as production ramps<br>up. This is central to getting it right.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | As noted above, proper marketing is an important factor.<br>Currently, the draft grower proforma does not include expenses<br>for marketing and assumes that the wholesalers and retailers<br>would bear marketing costs (which indirectly may be borne by<br>the growers).<br>There are lots of different ways to structure the investment in<br>farm vessels. The draft grower proforma currently calls for<br>multiple farms (5 or more) to be serviced and harvested by one<br>purpose-built boat. It doesn't specify whether that boat would<br>be owned by one, all, or any of the farms. It could be owned or<br>financed by any interested party, including the wholesaler, for<br>instance, who could simply charge for the service and take it<br>off the sale price. |
|   |                       | General<br>Comment               | The high cost of doing business in this State makes it<br>hard for the farmer to stay in business. Local seafood<br>has to compete with international products produced at<br>lower costs. The State of California should be buying<br>mussels at the costs it requires it's producers to operate<br>in the State. That's the responsible thing to do. Your<br>mussel farmers need to have price guarantees built into<br>the business plan. The State should not mandate<br>stringent environmental controls for its local seafood<br>producers while allowing for cheap imported seafood<br>to flood the market at an outside environmental cost.<br>Local seafood producers have no chance to prosper in<br>this unfair relationship. Public opinion continues to<br>make local seafood producers the scapegoats for<br>California's degradation of the ocean environment. | VPD has no control over state or federal environmental<br>controls or permitting; however, a key goal of the VSE project<br>is for VPD to acquire all necessary regulatory permits and<br>approvals and perform all required environmental review in<br>order to significantly reduce the startup costs for growers who<br>seek to operate within the VSE project site. In addition, one of<br>the goals of the NOAA California Sea Grant VPD has received<br>includes to provide an entitlement and permitting template for<br>aquaculture projects to the broader industry state-wide.                                                                                                                                                                                        |

| # | Comment<br>Originator                                | Location in<br>Document          | Public Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Mary Luna                                            | Economic<br>and Fiscal<br>Impact | The VSE is a wonderful project that up until now has<br>given all the opportunity to participate in its formation<br>through public comment. I would however like to point<br>out that, at least from my perspective, it still needs to<br>be made more clear what measures will be taken to<br>ensure that one of the objectives "To provide<br>economies of scale, pre-approved sub-permit area, and<br>technical support to include small local producers who<br>would not otherwise be able to participate in shellfish<br>aquaculture" is accomplished. The startup costs seem<br>to be very high for the average businessperson. | A key goal of the VSE project is for VPD to acquire all<br>necessary regulatory permits and approvals and perform all<br>required environmental review in order to significantly reduce<br>the startup costs for growers who seek to operate within the<br>VSE project site.<br>The start-up costs described for this project are reasonable and<br>similar to what small businesses engage in on a regular basis<br>with the cooperation of lending institutions in the U.S. The<br>costs of simply obtaining the permits would financially<br>bankrupt or turn away most applicants, which provides a<br>significant savings for the small start-up businessperson.<br>Indeed, there will still be significant costs for potential growers,<br>including purchasing equipment and seed, monitoring costs,<br>and potential purchase of a boat to service the project site.<br>Growers will be responsible for these operational costs and it<br>is the responsibility of potential growers to determine whether<br>they have the economic resources to finance such additional<br>start-up costs. |
| 4 | Ventura<br>Harbor<br>Marina<br>Associations,<br>LLC. | General<br>Comment               | Requested more time for the public to review and<br>comment on the documents presented at the VPD<br>Board Meeting on September 2, 2020, especially for<br>commercial fishermen who are currently out and have<br>not seen the documents.                                                                                                                                                                                                                                                                                                                                                                                              | More time has been provided for review and public comments<br>are requested by October 1, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|  | A number D   | Direction in the second state of the second st | Direction is a second second for the |
|--|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Appendix B   | Blue whales were incorrectly represented in the report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Blue whales have been observed migrating and feeding through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|  | – Biological | and their presence occurs on an annual basis. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the Santa Barbara Channel on many occasions, with several                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|  | Assessment   | report requires revisions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | occurrences within the Action Area (Point Blue Conservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Science 2018). In general, this species migrates poleward to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feed in the summer and to the tropics to breed in the winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Jefferson et al. 2008). Blue whales, like all cetaceans in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Channel, do not use the entire Channel uniformly. Blue whales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | are found in coastal and pelagic environments on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | continental shelf (Fiedler et al. 1998) and in deep water far                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | offshore between the surface and depths of over 100 m (Croll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | et al. 2001). Most occurrences are north of Santa Rosa and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | western Santa Cruz Island along the 200-meter isobath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Cascadia 2011), approximately 7.4 miles west of the Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Area. These specific locations along the 200 m isobaths are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | areas of upwelling, which brings nutrients to the surface and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | forms the basis of the marine food chain. It's in these areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | where krill are abundant and blue whales congregate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Designated important blue whale feeding areas indicate no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | overlap with the project site (Calambokidis et al. 2015).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In the Biological Assessment, we focused on the species most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | likely to occur in the action area. We don't focus on blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | whales as much because of their far lower incidence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | entanglements per West Coast Whale Entanglement Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reports. Therefore, we assigned a lower potential to occur for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | blue whales in the action area. While blue whales were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | certainly considered, BMPs are targeted towards whales of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | most significant concern.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Last there are autrently engoing discussions on the best                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Last, there are currently ongoing discussions on the best                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | scientific approach in balancing the need for the project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | structural integrity and preventing marine mammal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | entanglements, which will be reflected in future updates to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Operations Plan. Based on comments received, further                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | engineering analyses were performed in November 2020 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | consider structural integrity and whale entanglement risk (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kelson Marine Co. 2020 as Attachment B of the Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plan). In addition, the project design may be further refined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | based on ongoing NOAA studies (e.g., whale entanglement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | simulations). Based on these ongoing discussions, and as data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| # | Comment<br>Originator | Location in<br>Document | Public Comment                                                                                           | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|-----------------------|-------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                       |                         |                                                                                                          | becomes available, future refinement of the project design will be considered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                       |                         | Costs estimated made for the service and harvest vessels were too low.                                   | The Grower Proforma costs for a single 100-acre farm<br>estimated \$300,000 for a 40' service boat plus \$20,000 for<br>specialized seeding equipment. In addition, the cost estimates<br>\$1.5 million for a harvest vessel to be shared by 5 Growers<br>(\$300,000 per 100-acre farm) and additional costs (\$150,000)<br>for harvesting equipment.                                                                                                                                                                                                           |
|   |                       |                         |                                                                                                          | Based on experienced mussel farmers knowledge, these costs<br>were reviewed again and are reasonable. The estimation of a<br>\$1.5 M vessel cost came from quotes Scott Lindell (Woods<br>Hole Oceanographic Institution) received in Europe and New<br>Zealand for new purpose-built harvest boats. These quotes<br>came in lower (about \$1.2M) and included an assumed<br>premium to either import it or build it in the United States. The<br>\$300K per farm price came from the supposition that 5 farms<br>would equally share the cost of its services. |
|   |                       |                         |                                                                                                          | Mr. Lindell is confident that a smaller service boat (30 to 50') can be purchased and re-outfitted for \$300K or less. Some boats may need more work than others to make them usable and most would need a hydraulic crane and starwheels on the rail to make them useful for planting seed and managing buoyancy, which would be a retrofit of less than \$100K.                                                                                                                                                                                               |
|   |                       |                         |                                                                                                          | In addition, research into the cost of similar vessels resulted in<br>a similar cost estimate. That is, $325K - 3390K$ for a 4014 CTC<br>(twin outboard and a small house, bow lander and tow post –<br>aquaculture boat used in Hawaii); and $700K$ for a 4214<br>Reverse chine monohull (used for fishing and crabbing). Costs<br>range depending on how the vessel is outfitted.                                                                                                                                                                             |
|   |                       | General<br>Comment      | Commission should look into grant opportunities for<br>commercial fishermen to afford the startup costs. | Grant opportunities for fishermen will be included in future efforts for this project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| # | Comment<br>Originator          | Location in<br>Document | Public Comment                                                                                      | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|--------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Pacific Coast<br>Federation of | General<br>Comment      | Requested more time to review documents presented at<br>the VPD Board Meeting on September 2, 2020. | More time has been provided for review and public comments are requested by October 1, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | Fisherman's<br>Association     | General<br>Comment      | There have only been three (not five) reported<br>entanglements in lobster gear.                    | In California, the larger problem has been the type of gear.<br>Numbers are not so important as it is that agencies have<br>identified specific types of gear that have been shown to be<br>problematic. This project aims to optimize the design<br>(engineering design) and (data on entanglements).                                                                                                                                                                                                                                                                                                                                                                              |
|   |                                |                         |                                                                                                     | Reported entanglements are predominantly from crab, gillnet<br>and spiny lobster fisheries. Fixed fisheries gear (e.g., pot and<br>trap gear) is the most commonly recognized and reported gear<br>type causing entanglements since 2000. Documented entangled<br>animals and disentanglement efforts in the Pacific Northwest<br>have mostly involved gray whales and humpback whales and<br>have involved both gill nets and crab gear. More recently, from<br>2014 to 2017, the majority of the whale entanglements<br>involved humpback whales and most of the entanglements<br>were from commercial Californian and Washington Dungeness<br>crab traps, and gillnet fisheries. |
|   |                                |                         |                                                                                                     | In contrast to fishing gear, there are far fewer documented<br>entanglement cases in mussel aquaculture gear. Interactions<br>and entanglements with longline aquaculture gear worldwide<br>are rare, and close approaches by protected species are seldom<br>documented. West coast entanglement summaries for 2015 and<br>2016 report no entanglements from mussel aquaculture<br>fisheries.                                                                                                                                                                                                                                                                                      |

| # | Comment<br>Originator | Location in<br>Document | Public Comment                                                                                            | VSE Team Response                                                                                                            |
|---|-----------------------|-------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 6 | Ventura Local         | General                 | LAFCo staff has received multiple inquiries recently                                                      | The comment appears to imply that the statement in the VPD's                                                                 |
|   | Agency                | Comment                 | regarding LAFCo's potential role in the Port District's                                                   | staff report that VPD is working cooperatively with LAFCo to                                                                 |
|   | Formation             |                         | proposed Ventura Shellfish Enterprise (VSE) project to                                                    | resolve their differences is inaccurate. That statement is based                                                             |
|   | Commission            |                         | accommodate a mussel farm. These inquiries stem                                                           | upon a letter jointly submitted by VPD and LAFCo to the U.S.                                                                 |
|   |                       |                         | from misleading language included in the Port                                                             | Army Corps of Engineers (Corps), dated November 12, 2019,                                                                    |
|   |                       |                         | District's staff report prepared for Item 2 on the agenda                                                 | which states "the Commission directed LAFCo staff to work                                                                    |
|   |                       |                         | for the Board's October 7 meeting (Consideration of<br>Preliminary Operations Plan and Draft Economic and | together with Port District staff to continue to explore any<br>available options to resolve the matters raised in the LAFCo |
|   |                       |                         | Fiscal Impacts of the Proposed Ventura Shellfish                                                          | staff report that was prepared for the sphere review, up to and                                                              |
|   |                       |                         | Enterprise Project). Due to this apparent confusion, I                                                    | include special legislation addressing the VSE project "This                                                                 |
|   |                       |                         | wish to clarify LAFCo's position.                                                                         | is also consistent with the direction provided by the Ventura                                                                |
|   |                       |                         | ······································                                                                    | LAFCo Board at its October 16, 2019 meeting to "Direct staff                                                                 |
|   |                       |                         | According to the staff report, the United States Army                                                     | to work with the VPD for a solution to the issue raised                                                                      |
|   |                       |                         | Corps of Engineers withdrew the Port District's                                                           | regarding VPD's planned mussel farm and other options that                                                                   |
|   |                       |                         | application for a permit for the VSE project due, in part,                                                | may include new legislation" VPD continues to seek to                                                                        |
|   |                       |                         | to the fact that the Port District had not resolved "a                                                    | work cooperatively with Ventura LAFCo to resolve their                                                                       |
|   |                       |                         | jurisdictional issue raised in the LAFCo letter" to the                                                   | outstanding issues and plans to reach out shortly to discuss                                                                 |
|   |                       |                         | Army Corps. The staff report continues, "The Port                                                         | these issues further.                                                                                                        |
|   |                       |                         | District is working cooperatively with the Ventura                                                        |                                                                                                                              |
|   |                       |                         | LAFCo to resolve their differences" (pages 18-19 of                                                       |                                                                                                                              |
|   |                       |                         | the staff report).                                                                                        |                                                                                                                              |

| # | Comment<br>Originator | Location in<br>Document | Public Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VSE Team Response                                                                                                                                                              |
|---|-----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                       | General<br>Comment      | At its October 16, 2019 meeting, the Ventura LAFCo<br>reviewed the sphere of influence1 (or sphere) for the<br>Port District to determine if the sphere could be<br>expanded to include the VSE site. The site is located in<br>federal waters outside state boundaries and outside the<br>Port District's jurisdictional boundaries. The inclusion<br>of the territory within the sphere is necessary to allow<br>for LAFCo to authorize the Port District to exercise the<br>functions necessary to develop the mussel farm.<br>However, the Commission determined that it was<br>unable to expand the sphere to include the territory<br>because:                                                                               | These comments go beyond the scope of the Preliminary<br>Operations Plan and are addressed in the extensive comments<br>previously submitted to Ventura LAFCo on this subject. |
|   |                       |                         | <ul> <li>As a state agency, LAFCo can neither expand a sphere of influence to include territory located outside state jurisdiction nor authorize a special district to exercise functions and services outside state jurisdiction, and</li> <li>The principal act for port districts, located in the Harbors and Navigation Code, does not grant port districts the power to exercise the functions/services that are necessary to develop and operate a mussel farm outside state jurisdiction.</li> </ul>                                                                                                                                                                                                                        |                                                                                                                                                                                |
|   |                       |                         | At the direction of the LAFCo Commission, staff<br>worked with Port District staff to identify options to<br>resolve these matters, including special legislation. It<br>became clear almost immediately that special<br>legislation was the only option and, having fulfilled the<br>Commission's direction, LAFCo staff considers its<br>involvement in the matter complete. Though we<br>understand that the District may disagree, LAFCo's<br>position that 1) the Port District must obtain LAFCo<br>approval to develop/operate the VSE and 2) the Port<br>District does not have the authority to develop/operate<br>the VSE in federal waters has not changed, and it is<br>unlikely to change absent special legislation. |                                                                                                                                                                                |

| # | Comment<br>Originator | Location in<br>Document | Public Comment                                             | VSE Team Response                                            |
|---|-----------------------|-------------------------|------------------------------------------------------------|--------------------------------------------------------------|
| 7 | California            | Permit                  | We are writing today to clarify the current status of the  | Comment noted.                                               |
|   | Coastal               | Review                  | project and its review by the Commission. As you are       |                                                              |
|   | Commission            |                         | aware, on February 18, 2020, the U.S. Army Corps of        |                                                              |
|   |                       |                         | Engineers notified the District that its permit            |                                                              |
|   |                       |                         | application had been withdrawn. Upon withdrawal of         |                                                              |
|   |                       |                         | the permit application by the U.S. Army Corps of           |                                                              |
|   |                       |                         | Engineers, the District's consistency certification with   |                                                              |
|   |                       |                         | the Commission was also withdrawn (as noted in the         |                                                              |
|   |                       |                         | March 20, 2020 letter to the District from Commission      |                                                              |
|   |                       |                         | staff). Thus, Commission staff is not currently            |                                                              |
|   |                       |                         | reviewing any aspect of the District's proposed project.   |                                                              |
|   |                       | Permitting              | Furthermore, we strongly recommend that if the             | We appreciate this perspective and are working cooperatively |
|   |                       | Process                 | District proceeds with a shellfish project, that it move   | with the Ventura County LAFCo to resolve this                |
|   |                       |                         | this project proposal into State waters. This              | issue. However, we do not read the California Coastal Act or |
|   |                       |                         | recommendation is based on two factors. First, there is    | Coastal Zone Management Act to require all aquaculture       |
|   |                       |                         | no path forward for the project in federal waters          | projects to be located in state waters. Regardless, there's  |
|   |                       |                         | without significant legislation to overturn existing state | currently no path forward in state waters, as the CFGC has   |
|   |                       |                         | law and that legislation appears unlikely. The             | placed a moratorium on accepting new applications for        |
|   |                       |                         | Commission expressed significant concerns last year        | aquaculture projects in state waters.                        |
|   |                       |                         | over AB-2370, and would not be supportive of a             |                                                              |
|   |                       |                         | similar attempt next year.                                 |                                                              |

| Project Siting<br>and Location | Second, Commission staff strongly believes that siting<br>the project within State waters would result in a safer,<br>more environmentally sustainable and responsible<br>project that would better serve Californians.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The most important consideration concerning site location is<br>selecting a site that avoids or reduces environmental impacts<br>and other issues, such as user conflicts, as much as possible.<br>The VPD is committed to selecting a site that meets that<br>criteria, regardless of whether that site is in federal or state<br>waters. Note that VPD had initially proposed that the project<br>be located in California state waters and engaged in preliminary<br>discussions with the CFGC and CDFW. However, there was<br>significant opposition to the originally proposed project site in<br>state waters from halibut trawlers, who provided public<br>comments several times that the proposed location overlapped<br>with key trawling waters. Based upon that information and in<br>an effort to reduce conflicts with existing users in state waters,<br>VPD decided to move the project to federal waters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Currently, there is not a robust federal regulatory<br>structure in place to review, approve and provide<br>oversight of aquaculture projects in federal waters.<br>Siting the project within State waters would provide an<br>opportunity for a more thorough, transparent and<br>stakeholder-engaged environmental review process<br>that would include compliance with critical state laws<br>such as the California Environmental Quality Act, the<br>Coastal Act, the California Fish and Game<br>Commission's aquaculture leasing requirements, and<br>California Department of Public Health water quality<br>and food safety regulations. Although the regulatory<br>burden may be higher in State waters, there is also more<br>certainty that a project will be implemented and<br>operated in a manner that is protective of coastal and<br>marine resources while providing the desired public<br>and economic benefits.<br>We look forward to continuing engagement with the<br>District on these issues and renew our commitment to<br>working with the District to provide siting information<br>and feedback that can lead to a successful project in<br>State waters. | <ul> <li>VPD, and all federal agencies reviewing the VSE project, respectfully disagree with the assertion that there is not a robust federal regulatory process in place to review aquaculture projects. As you are aware, the project is still subject to review by the CCC through a consistency certification, wherein the CCC determines if the project complies with Coastal Act requirements. The CCC will conduct a public hearing that allows for additional public testimony, which provides the opportunity for transparency and public engagement discussed in the comment.</li> <li>As part of the project's review by the Corps, the project site has been informed by one of the first siting studies performed by the National Oceanic and Atmospheric Administration ("NOAA") for an aquaculture project on the West Coast, which supplemented a previous site study performed by the UCSB Bren School. As mentioned above, NOAA has performed a similar siting analysis evaluating potential project locations in state waters. The NOAA National Centers for Coastal Ocean Science ("NCCOS"), led by Dr. James Morris, are the preeminent experts in this field, having conducted over a dozen such evaluations for aquaculture projects utilizing tools uniquely developed to evaluate aquaculture siting and potential use conflicts. Further, NOAA has access to sensitive data sources that require security clearances, such as military</li> </ul> |

| information, that cannot be easily disseminated in their raw<br>form to state agencies like the CCC and CFGC; thus, NCCOS<br>is uniquely qualified to perform the analysis using all available<br>data. The VSE project analysis incorporated 38 different and<br>verifiable data layers to determine site suitability. NCCOS is<br>also developing ground-breaking 3-D modeling technology to<br>evaluate the potential interactions between aquaculture projects<br>and specific species of whales. The VSE project will be one of<br>the first projects in the country to be evaluated through this<br>technology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The project must also obtain a permit from the Corps pursuant<br>to Section 10 of the Rivers and Harbors Act. As part of that<br>process, the Corps must consult with the U.S. Fish and Wildlife<br>Service and National Marine Fisheries Service ("NMFS")<br>under the ESA, the Magnuson-Stevens Fishery Conservation<br>and Management Act (concerning essential fish habitat), and<br>the Marine Mammal Protection Act (MMPA). NMFS has some<br>of the preeminent experts in the country regarding marine<br>mammal interaction and fish habitat, particularly in offshore<br>waters. NOAA has taken a lead role in other areas to address<br>marine mammal issues. For example, NOAA took the lead in<br>developing protections to address right whale entanglement in<br>crab and lobster gear in the northeast United States. Dr. Morris<br>and his team have similarly conducted literature reviews and<br>analysis of marine mammal entanglements in mussel<br>aquaculture globally and developed best management practices<br>("BMPs") that should be considered for such projects. Many of<br>the measures incorporated into the VSE project were adopted<br>from NOAA's recommended BMPs and mitigation measures. |
| The project must also be reviewed for environmental effects<br>under the National Environmental Policy Act ("NEPA"), the<br>federal counterpart to the California Environmental Quality<br>Act. A state waters alternative may be included in the NEPA<br>analysis should the Corps determine that an Environmental<br>Impact Statement is required; however, we should note that<br>locating a project farther from shore is often a preferred<br>alternative to <i>reduce</i> environmental impacts, as it lessens<br>interactions with fishing and other vessels; avoids nearshore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| aquatic vegetation like eelgrass and kelp; reduces overlap with<br>several marine mammal migration routes and preferred habitat;<br>and reduces aesthetic impacts. The Corps has a similar public<br>comment period as other state agencies, and actually extended<br>its public comment period to 45 days to solicit comments on<br>the VSE project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The project is also subject to review by the U.S. Food and Drug<br>Administration ("FDA") and the NOAA Seafood Inspection<br>Program ("NOAA-SIP"). These agencies have been at the<br>forefront of developing new regulations for shellfish<br>aquaculture in federal waters, recently approving new<br>regulations for health and biotoxin testing in federal waters in<br>2019. These measures are at least as stringent (and in many<br>cases more stringent) than those imposed by the California<br>Department of Public Health ("CDPH"). Indeed, the VSE<br>project is subject to regulation by <i>both</i> the federal agencies<br>listed above and CDPH once shellfish are landed in state<br>waters. Again, the VSE project has been at the forefront of<br>these regulatory changes, partnering with FDA, NOAA-SIP,<br>and CDPH to develop the first biotoxin monitoring plan under<br>the new regulations in federal waters, subject to review and<br>approval by all three health regulatory agencies. |
| The project is also being reviewed by the U.S. Coast Guard ("USCG"). As part of this review process, VPD commissioned the first navigational risk assessment for an aquaculture project in the United States. Its review and incorporation of proposed mitigation measures will help reduce the possibility of accidents and collisions upon project implementation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| In addition to the requirements listed above, VPD has been<br>responsive to the CCC, including submission of over 400 pages<br>of additional information to the CCC. Pursuant to the CCC's<br>request, the VPD has prepared five monitoring plans for their<br>review, where we are seeking approval at the same time as the<br>project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| As noted above, the FGC recently enacted a moratorium on<br>new aquaculture leases in state waters, partially due to an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|  |  | admission that they do not have familiarity with aquaculture<br>practices or staff knowledgeable concerning offshore marine<br>aquaculture issues. Indeed, a new lease has not been issued by<br>the FGC in California waters in several decades. Therefore, it<br>is unclear what experience the agency would currently                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |  | contribute to the analysis of project impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|  |  | The above comments are not intended to imply that California<br>state agencies do not have a robust environmental review<br>process. They do. But it is also true that the federal agencies<br>involved in this process bring at least as much expertise in<br>evaluating proposals for offshore aquaculture as California<br>state agencies and their review will take place in coordination<br>with the CCC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|  |  | Further, the CCC's consistency review is limited to whether the VSE project complies with the enforceable policies of the California Coastal Act and that the activities will be conducted consistent with the Coastal Act. 16 U.S.C. § 1456(c)(3)(A). The term "enforceable policies" means "policies which are legally binding through constitutional provisions, laws, regulations, land use plans, ordinances, or judicial or administrative decisions, by which a State exerts control over private and public land and water uses and natural resources in the coastal zone." 16 U.S.C. § 1453. The enforceable policies are found in Chapter 3 of the Coastal Act. There are no enforceable policies regarding how robust the federal permitting process is compared to state permitting. Indeed, if the CCC's position is that no consistency certifications could be approved because the process is not as robust as its coastal development permit process, it would eliminate the federal consistency review process altogether, in contravention of the Coastal Zone Management Act. As noted above, the key consideration is whether the project complies with the enforceable policies. VPD continues to believe that a location outside of California marine resources, particularly as |

| # | Comment<br>Originator        | Location in<br>Document | Public Comment                                                                                                                                                                                                                                      | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | Commissioner<br>Brian Brenan | General<br>Comment      | In areas where there are more mussel operations where<br>marine mammals exist, are those entanglement<br>numbers stable? Other areas where there are mussel<br>farming going on and marine mammals is there an<br>accelerated rate of entanglement? | The few mussel farms in our area have not had any<br>entanglement issues. In other areas of the world, there have<br>been a few entanglements but the predominant entanglement<br>issue is slack lines and the use of spat collector ropes, neither<br>of which will be employed in the VSE project. The majority of<br>marine mammal populations in the Santa Barbara channel are<br>stable. Gray whale and humpback whale populations have seen<br>an incredible comeback in population numbers over the years<br>after regulations were set in place pursuant to the MMPA and<br>ESA, which can be seen in current stock assessment reports for<br>2018 and 2019 respectively. |

| 9 | Commissioner<br>Jackie<br>Gardina | Economic<br>and Fiscal<br>Impact | Referring to SBMC comments above:<br>Where does the economic estimation for the project fall<br>in the continuum of worst to best case scenario – is the<br>current estimation average? How was the grower cost<br>estimation reached? | The Economic and Fiscal Impact was prepared by Michael Wright (Illuminas Consulting), an expert in developing financial analyses and strategies. The Economic and Fiscal Impact prepared by Mr. Wright incorporated cost estimates described in the grower proforma assembled by Scott Lindell (Woods Hole Oceanographic Institution), an expert and researcher in marine aquaculture development. The grower proforma prepared by Mr. Lindell provides a focused analysis from the perspective of the shellfish grower while the Economic and Fiscal Impact prepared by Mr. Wright incorporates the grower cost estimates and provides an analysis into the economic and fiscal effects on the VPD and the greater local economy. A range estimate was not prepared for the cost estimates. The proforma is calculated using static assumptions, which in turn were arrived at by examining a range of possible values informed by existing farming activities, professional quotes, and professional farming experience. The following provides a few examples of cost assumptions. For example, based on research and experience the cost of a service vessel is estimated to range from \$200,000 was assumed for this cost estimate. Similarly, based on experience the annual mussel production per longline is estimated to range from 4 pounds per foot on the low end to 8 pounds per foot on the high end. In this case the midpoint value of 6 pounds per foot was assumed for this cost. Conversely, the cost for the longlines, buoys, and anchors are based on manufacture quotes coupled with professional experience to arrive at \$16,992.00 per longline based on conservative bulk pricing of 24 longlines at a time. The proforma assumes a 1 year build out with full production (assumed annual production of 585,000 pounds of mussels) beginning in Year 2. In addition, the proforma assumes 200 days on the water (e.g., harvesting) with the remaining workdays attending to boat and gear maintenance, seeding, weather-related constraints, etc. Please refer to the attachments provided in the Ec |
|---|-----------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---|-----------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| #  | Comment<br>Originator | Location in<br>Document | Public Comment                                                                                                                                                                                                                                                                                                                                      | VSE Team Response                                  |
|----|-----------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 10 | Commissioner<br>Mike  |                         | Referring to SBMC comments above:                                                                                                                                                                                                                                                                                                                   | Thank you for your comments and video suggestions. |
|    | Blumenberg            |                         | Letter was sobering which talked about some of the<br>challenges. Recommended YouTube video of B.<br>Friedman. Video take-aways: challenges talked about<br>in letter are in video; and challenges of regulation.<br>Ventura Port District is trying to help fisherman and<br>make the project achievable by navigating regulatory<br>requirements. |                                                    |

| 11 | Sam Sandove | Regarding marine mammals: Brian's appropriate<br>question about differences about circumstances that<br>doesn't exist and you are comparing to east coast and<br>other parts of the world. I have published papers on<br>marine mammal entanglements and spent decades<br>working with marine mammal entanglements. There<br>was a juvenile sperm whale entangled in mono-<br>filament line a few days ago. It wasn't able to be<br>disentangled. In addition, there have been recent efforts<br>of the State of California to potentially declare the<br>leatherback sea turtle an endangered species. Although<br>they are usually in waters further south than our region.<br>I have seen leatherbacks in the Channel. They are more<br>likely to be entangled than marine mammals. Laurie<br>and team are correct in my opinion. The Port needs to<br>consider in this process the potential of what would<br>happen if they end up with an endangered species<br>entanglement. If they are unable to disentangle or<br>results in mortality, that will trigger a section 7<br>consultation and have a significant impact on the<br>project for an extended or limited period of time. | Marine mammals and sea turtles have a high risk of<br>entanglement in monofilament line. With respect to pinnipeds,<br>the 2014 NOAA Marine Debris Program Report indicated that<br>California sea lions have the highest incidence of entanglement<br>with 70% of entanglements being due to monofilament fishing<br>nets and line.<br>With respect to cetaceans, since 2013 there has been a large<br>increase in the overall number of whale entanglements reported<br>along the U.S. west coast. The 2019 NOAA Fisheries West<br>Coast Whale Entanglement Summary states that while<br>approximately half of entanglement reports cannot be<br>attributed to a specific source, Dungeness crab fishing gear is<br>the most common source that has been identified during this<br>period.<br>Sea turtle entanglement is rare and there are limited reports of<br>sea turtle entanglement in California fishing gear (Ocean<br>Protection Council 2019). Regarding confirmed fishery-related<br>entanglement in California, one Leatherback was confirmed as<br>dead in unidentified fixed gear in September 2015; one<br>Leatherback was released alive from California Dungeness<br>crab gear by a fisherman in April 2016, and one leatherback |
|----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |             | mammals. Although blue whales are concentrated near<br>Channel Islands they are well known to swim in<br>shallow waters. I observed whales 3 miles from the<br>Ventura Harbor. Put into planning and thought process<br>if you have to go through a Section 7 consultation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>was confirmed as dead in unidentified fishing gear in October 2019 (Ocean Protection Council 2019).</li> <li>Overall, from 2013 to 2018, when the source of entangling gear is identifiable, the majority of West Coast entanglement reports involve the commercial Dungeness crab fisheries in California, Oregon and Washington (Ocean Protection Council 2019).</li> <li>Fixed fisheries gear (e.g., pot and trap gear) is the most commonly recognized and reported gear type causing entanglements since 2000. In contrast to fishing gear, there are far fewer documented entanglement cases in mussel aquaculture gear. Interactions and entanglements with longline aquaculture gear worldwide are very rare. Mussel aquaculture gear is an entirely different setup with gear that's not designed to catch marine species. With employing multiple mitigation</li> </ul>                                                                                                                                                                                                                                                                                                                                                          |

| Regarding financial projections: Concern is that<br>revenues might be more. Salaries and numbers<br>projected by salaries are extremely "rosy". Direct<br>salary payment works out to be almost \$70,000 per<br>year; indirect is over \$150,000; average combined is<br>\$79,000, which would mean revenue would have a<br>higher ratio because costs would be less which affects<br>multiplier, payroll taxes, etc. | measures (i.e. no spat collecting ropes and maintaining a taut<br>structure), this project aims to minimize the risk of<br>entanglement.<br>However, as noted by the commenter, the project will need to<br>go through consultation with NMFS pursuant to the MMPA<br>and ESA. With the incorporation of the mitigation measures<br>proposed and based on the very low incidence of documented<br>marine mammal entanglements in mussel aquaculture gear<br>worldwide, there does not appear to be a significant risk of take<br>of marine mammal species; however, NMFS will review that<br>issue during its consultation and make its own take<br>determination.<br>Last, as noted in a comment above, there are currently ongoing<br>discussions on the best scientific approach in balancing the<br>need for the project structural integrity and preventing marine<br>mammal entanglements. Any further refinements will be<br>reflected in future updates to the Operations Plan.<br>As mentioned in a comment above, the grower proforma is<br>calculated using assumptions, which in turn were arrived at by<br>examining a range of possible values informed by existing<br>farming activities, professional quotes, and professional<br>farming experience. The range for average annual staff pay<br><u>including benefits</u> is estimated to be \$40,000 to \$80,000. The<br>proforma utilized a mid-point value of \$65,000 per year for the<br>average annual staff pay (including benefits) for one person.<br>Assuming annual employee <u>benefits</u> cost approximately<br>\$15,000 per year per employee, this results in an hourly pay of<br>approximately \$24 per hour (or \$50,000 per year per employee)<br>in employee wages. The proforma assumes that an annual<br>production of 585,000 pounds per year will require nearly 2<br>full-time equivalent staff (assumes 300,000 lbs. per employee).<br>Therefore, nearly 2 full-time equivalent staff are anticipated to<br>be required per boat. As a result, these employees need to be<br>knowledgeable and skilled at mussel farming operations and it<br>is anticipated the estimated pay plus benefits is the general<br>level of compensation required to attract the |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| # | Comment<br>Originator | Location in<br>Document | Public Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|-----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | necessary. After another review of this assumption Mr. Lindell concludes that it is reasonable and is financially feasible within the framework and assumptions of the current proforma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                       |                         | Comment and question: the 5 <sup>th</sup> circuit court that went<br>against the NMFS recently. They determined they have<br>no authority to issue anything regards to agriculture<br>and the permit for that are based on the MS Act which<br>the 5 <sup>th</sup> circuit ruled doesn't include aquaculture. Its<br>possible this may go to the Supreme Court but they<br>may not give NMFS to give that request. EDC sent in<br>their comments specific for this case in their footnotes.<br>Suggest EDC letter it would be included in the minutes. | The commenter references the recent 5th Circuit decision in <i>Gulf Fisherman's Association v. National Marine Fisheries Service.</i> That case concerned the ability of NMFS to establish its own permitting and leasing program for offshore aquaculture under the Magnuson-Stevens Fishery Conservation and Management Act (MSA). The court ruled that NMFS does not have permitting authority under the MSA. This case is inapplicable to the project. VPD is not seeking a permit from NFMS; it is seeking a permit from the Corps pursuant to its authority under Section 10 of the Rivers and Harbors Act. However, as noted above, NMFS will still have review authority under the MMPA and ESA, which was not at issue in the <i>Gulf Fishermans</i> decision. |

| #  | Comment<br>Originator | Location in<br>Document | Public Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VSE Team Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|-----------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | Michael<br>Wagner     |                         | <ul> <li>Doesn't understand thing on "death". Also doesn't understand statement of no entanglements on mussels because we don't have any. So mute thing to say.</li> <li>Jackie brought up a good question and it wasn't answered.</li> <li>Also, \$60-\$70K for deck hand? I have been in this industry since 1974. If you made \$40K is a lot of money. One thing you guys are overlooking and not putting credence in is an investor in this industry since 1974 you are talking \$150-200K to put a mussel farm out in federal waters.</li> <li>I told Chris almost 6 months to a year ago that we have a major humpback whale entanglement problem. I get one humpback whale engagement, which is the most popular whale, I am out of business. I mean I burned a quarter million dollars out there and there is gonna be</li> </ul> | As mentioned in a comment above, the grower proforma is<br>calculated using assumptions, which in turn were arrived at by<br>examining a range of possible values informed by existing<br>farming activities, professional quotes, and professional<br>farming experience. See the response above related to<br>estimated employee salaries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                       |                         | no second chance. It will kill it. So get this thing back<br>inland up by Carpinteria. Michael Markel told you<br>where you could put it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13 | Alan<br>DeRossett     |                         | Zoom chat box comment: "Some of the costs for<br>Shellfish farming seem to be lots of Fuel any studies on<br>just using an electric fishing. Electric boats are now<br>cheaper to operate. as a fleet like Norway has started."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | See comments above regarding fiscal estimates. While electric<br>boats are not required, any operational methods that can reduce<br>fossil fuel emission in farm operations, such as the use of<br>electric boats, is strongly encouraged. In utilizing these new<br>technologies, Growers can reduce what is already considered a<br>low carbon emission method of harvesting seafood. Indeed, as<br>discussed by Steve Gains (Professor and Dean at University of<br>California, Santa Barbara – Bren School of Environmental<br>Science and Management) for the VSE Workshop hosted in<br>2017, compared with other forms of food production,<br>aquaculture production has a significantly lower carbon<br>footprint. For more information on this topic see the Archived<br>Workshop 1 at www.venturashellfishenterprise.com. |

# Ventura Shellfish Enterprise

# **Preliminary Operations Plan**



### **Prepared for**



Ventura Port District November 2020 Contact: Brian Pendleton

Prepared by **DUDEK** 

1630 San Pablo Avenue Suite 300 Oakland, California 94612 **Contact: Laurie Monarres** 

#### **Operations Plan Revision History**

| Revision Number        | Date          | Reason for<br>Revision                                   | Sections Revised            | Explanation of Revisions                                                                        |
|------------------------|---------------|----------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|
| Example<br>Version 0.0 | August 2020   | Updates provided to<br>Ops Plan based on<br>team review  | Sections 1 through 12       | Multiple revisions made to<br>each section, including<br>refinement of language and<br>content. |
| Version 0.1            | November 2020 | Revisions made based<br>on public review and<br>feedback | Sections 1 through 8 and 11 | Clarifications and refinements<br>made to select sections based<br>on feedback.                 |

This Plan is intended to be a living document that is updated as needed through the project's permitting, construction, and operational phases. Plan revisions and history will be posted in the table above.

#### Acknowledgements

The Ventura Shellfish Enterprise project is an initiative proposed by the Ventura Port District to permit mussel farming in federal waters of the Santa Barbara Channel northwest of Ventura Harbor. Ventura Shellfish Enterprise project volunteers and consultants have been crucial in the development and permitting of this project. Ventura Port District would like to acknowledge all the dedication and commitment shown by project volunteers: Coastal Marine Biolabs, The Cultured Abalone Farm, and Ashworth Leininger Group; as well as our project consultants: K&L Gates, Woods Hole Oceanographic Institution (Scott Lindell), and-Dudek, Kelson Marine Co., and COWI. Ventura Port District would like to give special recognition to the participation of National Oceanic and Atmospheric Administration (NOAA) throughout the development of the project.

# Table of Contents

#### SECTIONS

#### PAGE NO.

| Acr | Acronyms, Abbreviations, and Definitions |                                                  |                         |  |
|-----|------------------------------------------|--------------------------------------------------|-------------------------|--|
| 1   | Introductior                             |                                                  | 1                       |  |
|     | 1.1 Operati                              | ons Plan Purpose                                 | 1                       |  |
|     | 1.2 Plan Or                              | ganization                                       | 1                       |  |
|     | 1.3 Plan Re                              | visions                                          | 2                       |  |
| 2   | Project Loca                             | ition and Description                            | 3                       |  |
|     | 2.1 Project                              | Location                                         | 3                       |  |
|     | 2.2 Project                              | Description                                      | 3                       |  |
|     | 2.2.1                                    | Longlines                                        | 4                       |  |
|     | 2.2.2                                    | Anchors                                          | 5                       |  |
|     | 2.2.3                                    | Floats and Buoys                                 | 5                       |  |
|     | 2.2.4                                    | Construction Timeline                            | <u>56</u>               |  |
|     | 2.2.5                                    | Seeding, Cultivation, and Harvesting             | 6                       |  |
|     | 2.2.6                                    | Sanitary Testing                                 | 6 <u>7</u>              |  |
|     | 2.2.7                                    | Decommissioning                                  | 7                       |  |
|     | 2.2.8                                    | Operational Flexibility                          | 7 <u>8</u>              |  |
|     | 2.3 Project                              | Design Approval                                  | 8                       |  |
|     | 2.4 Project                              | Objectives                                       | 8                       |  |
| 3   | Grower Sele                              | ction Process                                    |                         |  |
| 4   | Summary o                                | Agreements: VPD and Growers                      |                         |  |
| 5   | Grower Trai                              | nings                                            | <u>19</u> 20            |  |
| 6   | Overview of                              | Project Permits and Conditions                   | <del>21</del> 22        |  |
| 7   | Monitoring                               | and Reporting Responsibilities                   | <del>33</del> <u>34</u> |  |
|     | 7.1 Monitor                              | ing                                              | <del>33</del> 4         |  |
|     | 7.2 Reporti                              | ng                                               | <u>51</u> 52            |  |
| 8   | Compliance                               | Monitoring and Enforcement Protocol              | <u>55</u> 56            |  |
|     | 8.1 Pre-Dep                              | loyment Inspections                              | <u>55</u> 56            |  |
|     | 8.2 Offshor                              | e Site Inspections                               | <u>55</u> 56            |  |
|     | 8.3 Routine                              | Site Patrols                                     | <u>55</u> 56            |  |
|     | 8.4 Emerge                               | ncy Responses                                    | <u>5657</u>             |  |
| 9   | Ventura Por                              | t District Project Administration and Management | <u>5758</u>             |  |
|     | 9.1 Adminis                              | strative Management                              | <u>5758</u>             |  |
|     | 9.2 Enforce                              | ment Management                                  | <del>58<u>59</u></del>  |  |
|     | 9.3 Contrac                              | t Management                                     | <u>58</u> 59            |  |
|     | 9.4 Accoun                               | ting Management                                  | <u>58</u> 59            |  |
|     | 9.5 Docksid                              | le Management                                    | <u>58</u> 59            |  |

| 10 | Refinement and Adaptive Management | <del>59<u>60</u></del> |
|----|------------------------------------|------------------------|
| 11 | Process for Permit Amendments      | <del>61<u>62</u></del> |
| 12 | References                         | <del>63</del> 64       |

#### TABLES

| 1 | Maximum Design Features for One Line within a Farm                                         | 4                     |
|---|--------------------------------------------------------------------------------------------|-----------------------|
| 2 | Summary of the Mitigation, Monitoring, and Reporting Program2                              | <del>3</del> 24       |
| 3 | Summary of Pre-Construction Requirements Organized by Mitigation Measure Number and        |                       |
|   | Responsible Entity                                                                         | <del>5</del> 36       |
| 4 | Summary of Construction Requirements Organized by Mitigation Measure Number and            |                       |
|   | Responsible Entity                                                                         | <del>9</del> 40       |
| 5 | Summary of Operation Requirements Organized by Mitigation Measure Number and               |                       |
|   | Responsible Entity4                                                                        | <del>3<u>44</u></del> |
| 6 | Summary of Decommissioning Requirements Organized by Mitigation Measure Number and         |                       |
|   | Responsible Entity4                                                                        | <del>9</del> 50       |
| 7 | Summary of Reporting Requirements Organized by Project Phase and Mitigation Measure Number | 4 <u>54</u>           |

#### FLOWCHARTS

| 1 | Overview of Pre-Construction Activities | 35 <u>35</u>   |
|---|-----------------------------------------|----------------|
| 2 | Overview of Construction Activities     | 38 <u>38</u>   |
| 3 | Overview of Operations Activities       | .42 <u>142</u> |
| 4 | Overview of Decommissioning Activities  | <u>4748</u>    |

#### FIGURES

| 1 | Project Location                      | 9   |
|---|---------------------------------------|-----|
| 2 | Parcel Array Overview                 | .11 |
| 3 | Detailed Plan for Shellfish Longlines | .13 |

#### APPENDICES

| А                | Evaluation of Mussel Backbone System in Extreme Storms                                                                   |
|------------------|--------------------------------------------------------------------------------------------------------------------------|
| В                | Engineering Evaluation of Break-away Links and Cascading Failure Risk for a Mussel Backbone System                       |
| <u>C</u>         | Biological Assessment for the Ventura Shellfish Enterprise Project                                                       |
| <u>BD</u>        | Predator Control Management Plan for the Ventura Shellfish Enterprise Project                                            |
| <u>6</u> E       | Sediment and Water Quality Management Plan for the Ventura Shellfish Enterprise Project                                  |
| Ð <u>F</u>       | Spill Prevention and Response Plan                                                                                       |
| <u>€G</u>        | Aquaculture Gear Monitoring & Marine Debris, and Wildlife Entanglement Plan for the Ventura Shellfish Enterprise Project |
| <u>₽</u> <u></u> | Gear Removal Management Plan for the Ventura Shellfish Enterprise Project                                                |

# Acronyms, Abbreviations, and Definitions

| BMP            | Best Management Practice                                                                                                           |
|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| backbone       | The horizontal longline that supports mussel growing ropes and is suspended by tethers; also known as<br>"horizontal header line." |
| buoy           | A buoyant device at the surface used to mark a nautical location and/or support the longline mussel growing structure              |
| CCC            | California Coastal Commission                                                                                                      |
| CDFW           | California Department of Fish and Wildlife (formerly California Department of Fish and Game)                                       |
| Corps          | U.S. Army Corps of Engineers                                                                                                       |
| Duradan        | A brand of rope made out of blended resins of virgin polypropylene and serves as a floating rope.                                  |
| FDA            | U.S. Food and Drug Administration                                                                                                  |
| float          | A buoyant subsurface device used to support the longline mussel-growing structure.                                                 |
| GDEP           | Aquaculture Gear Monitoring & Marine Debris, and Wildlife Entanglement Plan                                                        |
| Growers        | shellfish growers                                                                                                                  |
| ISSC           | Interstate Shellfish Sanitation Conference                                                                                         |
| lbf            | pound of force                                                                                                                     |
| LDPE           | Low density polyethylene; related to buoys in this Plan.                                                                           |
| Line           | Heavy rope used for aquaculture activities; in some instances, also known as longline or rope.                                     |
| LOP            | Letter of Permission issued by the Corps                                                                                           |
| MMRP           | Mitigation, Monitoring, and Reporting Program                                                                                      |
| MWO            | Marine Wildlife Observer                                                                                                           |
| NOAA           | National Oceanic and Atmospheric Administration                                                                                    |
| NOAA Fisheries | National Marine Fisheries Service                                                                                                  |
| NSSP           | National Shellfish Sanitation Program                                                                                              |
| PATON          | Private Aid to Navigation                                                                                                          |
| Plan           | Ventura Shellfish Enterprise Operations Plan                                                                                       |
| project        | Ventura Shellfish Enterprise Project                                                                                               |
| ROV            | Remotely Operated Vehicle                                                                                                          |
| SCUBA          | Self Contained Underwater Breathing Apparatus                                                                                      |
| SPRP           | Spill Prevention and Response Plan                                                                                                 |
| SWQMP          | Sediment and Water Quality Management Plan                                                                                         |
| tethers        | Shorter longlines that connect the surface buoys to the backbone.                                                                  |
| USCG           | U.S. Coast Guard                                                                                                                   |
| USFWS          | U.S. Fish and Wildlife Service                                                                                                     |
| VPD            | Ventura Port District                                                                                                              |
| VSE            | Ventura Shellfish Enterprise                                                                                                       |

# 1 Introduction

# 1.1 Operations Plan Purpose

This Ventura Shellfish Enterprise (VSE) Preliminary Operations Plan (Plan) is intended to summarize the terms, conditions, and responsibilities of shellfish growers (Growers), Ventura Port District (VPD), and other regulatory agencies associated with the VSE project; and provides the basis for ensuring that all operations, maintenance, monitoring, and decommissioning activities are carried out consistent with the project's approved permits. Users of this Plan include, but are not limited to, Growers and their employees, VPD staff and commissioners, regulatory permitting and enforcement agencies, and the public. The Plan has two primary purposes:

- 1. To clearly describe the respective roles and responsibilities of Growers, VPD, and relevant regulatory agencies; and
- 2. To serve as a consolidated resource for Growers and provide a summary of the VSE project terms, conditions, and other information needed to ensure Grower compliance with project requirements.

In many cases, Growers will be responsible for complying with permit terms and conditions and will report their compliance to VPD, which will then compile this information in reports submitted to the relevant regulatory agencies. If a Grower has any questions concerning the obligations contained herein, he or she should review project permits and associated plans, many of which are attached to this Plan<sup>1</sup>, and follow up with VPD to obtain clarification.

# 1.2 Plan Organization

This Plan is organized by the processes that Growers may encounter with the project. Specifically, **Section 2** provides an overview of the project location and description; **Section 3** provides an overview of the Grower selection process; **Section 4** provides a summary of the proposed agreements between the Growers and VPD; **Section 5** describes both <del>voluntary operational</del> and <del>mandatory compliance</del> training for Growers; **Section 6** provides an overview of all permit conditions, timelines, and monitoring requirements for the project; **Section 7** delineates the specific monitoring roles and reporting requirements of Growers, VPD, and each regulatory agency associated with the project; **Section 8** provides an overview of VPD monitoring and enforcement protocol; **Section 9** provides a summary of VPD administration and management responsibilities for the project; **Section 10** provides a process for refining the details in this Plan, including adaptive management; and **Section 11** describes the process for any proposed permit amendments.

Monitoring and reporting responsibilities are shown in several formats throughout this Plan. The primary sources detailing required mitigation are the management plans (Appendices A-<u>C</u> through F<u>G</u>) summarized in Section 6, Table 2 (Summary of the Mitigation, Monitoring, and Reporting Program). Although the Mitigation Monitoring and Reporting Program (MMRP) (Table 2) provides a summary of mitigation requirements, this Plan provides several additional formats in order to assist the users in more fully understanding process, roles, and responsibilities. The flowcharts and tables in Section 7 provide various illustrative visuals and organizational structures depicting the responsibilities associated with Growers, VPD, and relevant regulatory agencies. The flowcharts are intended to show the process whereas the tables are intended to explain the responsibilities of each party for a given mitigation measure.

<sup>&</sup>lt;sup>1</sup> Any revisions to the management plans will be updated after receiving comments from relevant regulatory agencies.

# 1.3 Plan Revisions

Although this Plan is designed as a comprehensive guide, it is also intended to be a living document that is updated as needed through the project's permitting, construction, and operational phases. The current iteration of this Plan is meant to provide greater detail concerning operational and oversight responsibilities to regulatory agencies during VPD's permitting process.

This Plan will be updated as determined necessary by VPD in coordination with regulatory agencies and Growers. For example, the management plans, project permit conditions, and responsibilities will be updated after agency approvals; the sanitation testing descriptions will be updated after management and contingency plans are in place; and certain sections will be updated once the number of Growers, identity of Growers, and project phasing become more definitive. The date of each revision and a description of the main edits will be provided after the cover page.

# 2 Project Location and Description

# 2.1 Project Location

The Ventura Shellfish Enterprise Project is a multi-party initiative to permit twenty 100-acre farms for growing mussels in open federal waters of the Santa Barbara Channel northwest of Ventura Harbor, approximately 3.53 miles from shore (Figure 1, Project Location). The project will consist of twenty 100-acre farms (total of 2,000 acres) to be used for growing Mediterranean mussel (*Mytilus galloprovincialis*) via submerged long lines (Figure 2, Parcel Array Overview). The project location was selected using marine spatial planning analyses conducted by NOAA (Theuerkauf et. al. 2018). In addition, the growing sites are located on sandy-bottom habitat outside of any rocky reef habitat, as evaluated in Gentry et al. (2017) and illustrated by National Oceanic and Atmospheric Administration (NOAA) United States West Coast nautical charts (NOAA 2017). Project implementation will be phased such that a maximum of 500 acres of growing area will be installed per year, provided that the project meets certain identified thresholds and standards established by regulatory agencies as part of their approval of project permits and monitoring plans.

# 2.2 Project Description

The mussels will be grown and harvested by Growers who operate the farms pursuant to agreements with VPD. The project will consist of twenty 100-acre farms (total of 2,000 acres) to be used for growing Mediterranean mussel via submerged longline technology. Each of the 20 farms is approximately 2,299.5 feet by 1,899.5 feet, for an average farm size of 100.27 acres (Figure 2). Buoys marking the corners of each of the 20 parcels will identify the cultivation area for navigational safety and will comply with all regulations for height, illumination, and visibility, including radar reflection.

There will be a 50-foot setback on each end of the longline pairs (for a total of 100 feet of spacing between lines of adjacent parcels) and 50 foot spacing between the two center pins. Parallel lines will be spaced 150 feet apart, with a 125-foot setback at each of the long sides (for a total of 250 feet of spacing between lines of adjacent parcels). The installation of anchors, longlines, and other facilities will be performed by the Growers, in compliance with all permit requirements. The shape of each of the 100-acre cultivation parcels will be a function of the geometry of the submerged backbone line and anchoring.

Each farm will contain up to 24 lines (12 end-to-end pairs) with each line measuring a distance of approximately 1,075 feet (358 meters) between two anchors. As shown in Figure 3, Detailed Plan for Shellfish Longlines, submerged longlines consist of a central horizontal structural header line, or "backbone," that is attached to the seafloor by sand screw anchors at each end and supported by a series of buoys along the backbone. All of the depicted lines will lie below the surface; their subsurface location will be marked with surface buoys as indicated in the figure. The remaining anchor line buoys shown in the figure are subsurface and used for the purpose of maintaining tension in the system. Inspections of the anchor ropes, anchors, and connecting ropes shall take place at a minimum of twice per month by VPD Harbor Patrol. In addition, maintenance of the longlines will be carried out on a monthly basis, which consists of lifting the longlines out of the water, adding additional buoys as necessary to account for increased mussel weight, and checking for any escaped or damaged longlines or gear.

Overall, the descriptions for the submerged longline system, provided below, is based on engineering modeling designed to withstand a 100-year storm (Dewhurst <del>2019</del>2019; Appendix A). However, it should be noted that operational flexibility is also necessary. For additional details on operational flexibility see Section 2.2.8, Operational Flexibility.

### 2.2.1 Longlines

Each 100-acre parcel has up to 24 longlines, each with a backbone length of about 575 feet (175 meters) and with anchor lines measuring 264 feet (80.5 meters) attached to sand screw anchors, discussed below. For the entire built out project, there will be approximately 480 longlines total. The longlines are thick (1-inch diameter) rope made out of blended resins of virgin polypropylene and polypropylene and the system (along with buoys) produces a fairly rigid structure to which the cultivation ropes are attached. The backbone is estimated to support up to 195 individual mussel growing ropes each up to 30 feet long for a total of up to 5,850 feet of "fuzzy" cultivation line per backbone line (or an equivalent weight of continuous grow ropes)(Figure 3). Cultivation ropes are characterized by extra filaments that provide substrate for mussels to attach. These "fuzzy ropes" are attached to and suspended from the tensioned backbone rope as individual lengths or as continuous grow ropes. The length of the "fuzzy ropes" may be less depending on the lifting capacity of the servicing vessel.

Since significant slack is not likely to occur in the lines during certain storm conditions, the Grower may opt to use either sinking or floating (Duradan) rope throughout the system. However, sinking lines must be used for the tethers that connect the surface buoys to the backbone (as shown in Figure 3) and should be of a loaded breaking strength matched to the surface buoy volume. Sinking lines are proposed to help prevent marine mammal entanglement (Price and Morris 2013; Ludwig et al. 2014) and have been adopted by lobster fisheries as a method to reduce entanglement risk (Johnson et al. 2005; Knowlton et al. 2012).

As an additional precaution against entanglement, grow ropes will be attached to the headrope with a low-breakingstrength twine (0.16 inch diameter), which will facilitate rapid detachment in the unlikely event of any interaction with the longline as well as a 1,100 pound-breakaway link which will be installed between the surface buoys and vertical lines. In the event that a surface buoy becomes disconnected from its attachment line the rope would sink below the connection point and not pose a hazard to vessels. The breakaway link is proposed to have a connection strength of 1,700 pounds, providing a safety factor<sup>2</sup> of 1.5 (Dewhurst 2020; Appendix B). Since there is not currently <u>an industry standard for the recommended safety factor associated with mussel farms, the bBreakaway link strength and design willmay be subject to further ongoing-refinement in response to the best available information (e.g., NOAA whale entanglement simulations). Any such <u>These</u> refinements <u>There are currently ongoing discussions</u> on the best scientific approach in balancing the need for the project structural integrity and preventing marine <u>mammal entanglements, which-will be reflected in future updates to this Operations Plan.</u></u>

Specific project design features for the submerged longlines have been modeled and engineered to withstand current, wave, and 100-year storm events under maximum loading conditions (Dewhurst 2019Appendix A). However, as with any system, the design features have a maximum allowable weight in order to function successfully under these storm events. Table 1 provides a summary of the maximum allowable design features for each of the 24 lines within a farm. Under this project design, the force (lbf) required to lift a fully-stocked backbone two or three meters above the surface is estimated to be 2,927 lbf and 3,397 lbf, respectively.

| Component               | Material <sup>2</sup> | Quantity | Length, ft (m)  | Required<br>Minimum Breaking<br>Strength (lbf) | Required Holding<br>Capacity (lbf) |
|-------------------------|-----------------------|----------|-----------------|------------------------------------------------|------------------------------------|
| Mussel Ropes (Droppers) | Fuzzy rope            | 195      | 30 ft (10 m)    | -                                              | -                                  |
| Anchor Lines            | Duradan <sup>5</sup>  | 2        | 264 ft (80.5 m) | 61,147 lbf                                     | -                                  |
| Anchor Line Buoys       | 420L, LDPE            | 2        | -               | -                                              | -                                  |
| Sub Corner Buoys        | 120L, LDPE            | -        | -               | -                                              | -                                  |

<sup>2</sup> The safety factor is the ratio of ultimate capacity (e.g., breaking strength) to the maximum expected demand (e.g., the maximum expected tension).

#### Table 1. Maximum Design Features for One Line within a Farm<sup>1</sup>

| Component                             | Material <sup>2</sup> | Quantity | Length, ft (m) | Required<br>Minimum Breaking<br>Strength (lbf) | Required Holding<br>Capacity (lbf)                |
|---------------------------------------|-----------------------|----------|----------------|------------------------------------------------|---------------------------------------------------|
| Corner Buoys                          | 300L, LDPE            | 2        | -              | -                                              | -                                                 |
| Corner Float Line <sup>3</sup>        | Duradan⁵              | 2        | 20 ft (6.1 m)  | -                                              | -                                                 |
| Long Line                             | Duradan⁵              | 1        | 575 ft (175 m) | 61,727 lbf                                     | -                                                 |
| Long Line Buoys                       | 120L, LDPE            | 30       | -              | -                                              | -                                                 |
| Tethers <sup>4</sup>                  | Duradan <sup>4</sup>  | 30       | 3 ft (0.9 m)   | -                                              | -                                                 |
| Surface Center Buoys                  | 300L, LDPE            | 10       | -              | -                                              | -                                                 |
| Surface Center Buoy Line <sup>3</sup> | Duradan⁵              | 10       | 20 ft (6.1 m)  | -                                              | -                                                 |
| Helical Anchors                       | -                     | 2        | -              | -                                              | 65,821 lbf (horizontal);<br>13,754 lbf (vertical) |

**Notes:** ft = feet; m = meters; lbf = pound of force.

<sup>1</sup> Design features determined by as determined by site-specific storm load modeling and threshold values.

<sup>2</sup> LDPE = Low Density Polyethylene

<sup>3</sup> The surface center lines and corner float lines may be lowered to 40 feet to avoid predation by birds.

<sup>4</sup> Sinking lines must be used for tethers, which connect the surface buoys to the backbone. Sinking lines should be of a loaded

breaking strength matched to the surface buoy volume.

<sup>5</sup> The longlines are thick (1-inch diameter) rope made out of blended resins of virgin polypropylene and polypropylene (Duradan), a floating rope. Sinking or floating rope can be used.

### 2.2.2 Anchors

Helical sand screw anchors have been shown to exhibit superior holding power as compared to other anchoring systems. Sand screw anchors also have the advantage of being removable at project decommissioning. Sand screw anchors will be installed by a hydraulic drill with a drill head that operates from a rig lowered to the ocean floor. The sand screw anchors will be screwed into the sandy bottom ocean floor approximately 10 to 20 feet (3 to 6 meters) deep into the sediment. Each 100-acre farm will contain up to 48 anchors for a total of 960 anchors at full project build out.

### 2.2.3 Floats and Buoys

Buoys marking the corners of each parcel will identify the cultivation area for navigational safety and will comply with all regulations for height, illumination, and visibility, including radar reflection. As the project will be a phased development, individual users will also mark their own areas as part of the operational requirements. Permanent surface buoys for each longline will consist of two 300L surface corner buoys with one corner buoy supporting and marking either end of the backbone. During the mussel production cycle, a combination of surface buoys and submerged floats attached to the backbone line will be used to maintain tension on the structural backbone line as the weight of the mussel crop increases. These will consist of buoys with 300L buoyancy attached at necessary intervals along the surface and connecting to the backbone line, in combination with smaller submerged floats with 120L buoyancy affixed directly to the backbone line. The combination of surface and submerged buoyancy is designed to create a tensioned but flexible structure that is capable of responding dynamically to surface waves and storms. Additional buoys included in system include anchor line floats, which are attached at 98 feet (30 meters) above each anchor.

The number of surface buoys required for each longline is dependent on the growth period of the mussels. Longlines initially seeded with spat are expected to only require two surface corner buoys (with smaller submerged buoys) whereas a fully stocked longline may support up to 12 individual surface buoys, including the two corner buoys. The exact number of surface buoys present at any one time will depend on mussel growth and harvesting operations. Harvesting operations are expected to occur on a regular basis throughout the year with regular rotations within a 100-acre farm of stocking and harvesting of all 24 longlines.

Each of the mussel ropes will hold a maximum stocking density of 8 pounds wet dry weight mussel mass per linear foot of grow rope (Appendix A and B). Assuming the maximum 195 grow ropes, each 30 feet long, the total wet dry weight per line would total 46,800 pounds. To float and maintain tension in the backbone system at maximum stocking density, the backbone lines will be held up by a maximum of 30 submerged longline floats attached by short 3 feet (0.9 meters) long tethers and up to 10 surface center buoys attached by 15- to 40-foot-long (6.1-meter-long) tethers. All surface buoys will be uniquely marked with an identifying number of the Grower.

Buoys and floats attached to the central horizontal portion of the backbone line support the line, provide a means of lifting the backbone line to access the cultivation ropes, and determine the depth of the submerged backbone, which will vary seasonally from 15 to 40 feet below the surface. To avoid predation, all tethers for the center floats and corner floats can be extended to 40 feet (12.2 meters) so the backbone is lowered to 40 feet below the surface.

### 2.2.4 Construction Timeline

Installation of anchors, longlines, and buoys will be performed by Growers in compliance with all permit requirements and VPD agreements. Construction in each individual 100-acre farm will take place only after VPD approval of a sub-permit and/or agreement with the individual Grower. While project development is dependent on market demand, VPD estimates that full build out would occur within 3 to 5 years after project approval. Project implementation will be phased such that a maximum of 500 acres per year of growing area will be installed, provided that the project meets certain identified thresholds and standards established by regulatory agencies as part of their approval of project permits and monitoring plans.

### 2.2.5 Seeding, Cultivation, and Harvesting

Juvenile seed mussels, commonly referred to as spat, will be purchased from onshore hatcheries certified by the California Department of Fish and Wildlife (CDFW). At the hatcheries, mussels adhere directly to the special textured fuzzy ropes that promote mussel attachment. When the spat are settled to nursery ropes, the ropes are covered with cotton socking material to protect them from shaking off the ropes during transport to the offshore growing site and deployment on the backbone longlines. After the nursery ropes are attached to the backbone lines, the socking holds the spat next to the rope until the mussels firmly attach with their byssal threads, by which time the cotton socking material has naturally degraded. Seed grow on nursery ropes until they reach a size (> 10mm typically), whereby they can be stripped from the ropes and reapplied to grow-out ropes at densities that support optimal growth to market. The mussels grow by filtering naturally occurring phytoplankton from the ocean.

Juvenile mussels will grow on lines until an intermediate size where the density of mussels on the fuzzy rope becomes limiting. At this point, a servicing vessel will lift the backbone line in order to access the fuzzy rope with juvenile mussels and pull the fuzzy rope through vessel-based equipment designed to strip the mussels from the fuzzy rope and then clean, separate, and grade the juvenile mussels by size. Juvenile mussels then will be restocked to clean fuzzy rope at a reduced density for their second stage of grow out to reach market size. All of these activities take place on the servicing vessel. The mussel grow-out ropes themselves are typically planted with seed to an overall diameter of three inches. Over time the grow ropes may become stiff with byssus and, by mussel growth, develop total diameters of 10-inches or more at harvest, thus making the grow ropes very unlikely sources of entanglement.

When the mussels reach market size, which is expected to occur after about 1 year of time in the water, the submerged backbone lines again will be lifted to access the fuzzy cultivation ropes, and mussels again will be stripped from the line, cleaned, and separated, and this time size-graded and bagged for landing at the Ventura Harbor as market-ready product. Again, all these activities will take place shipboard.

Per terms of the Growers' agreements with VPD, all mussels must be landed at the Ventura Harbor. From Ventura Harbor, the bagged mussels will be transported for distribution and sale. Distribution of the product will be

independently managed by individual Growers. All husbandry activities related to harvesting, grading, and restocking of mussels to cultivation lines will occur onboard the servicing/harvesting vessel using specialized equipment for that purpose. Watercraft used for planting, inspections, and harvesting would likely be home ported at Ventura Harbor.

### 2.2.6 Sanitary Testing

The National Shellfish Sanitation Program (NSSP) is the federal/state cooperative program recognized by the U.S. Food and Drug Administration (FDA) and the Interstate Shellfish Sanitation Conference (ISSC) for the sanitary control of shellfish produced and sold for human consumption. The NSSP Guide for the Control of Molluscan Shellfish (FDA and ISSC 2017) consists of a Model Ordinance that specifies guidelines to ensure that shellfish destined for commerce are safe and sanitary. In accordance with the Model Ordinance, the VSE project is in the process of developing Marine Biotoxin Management and Contingency Plans, which will be subject to FDA review and approval. These plans specify the administrative and control procedures that Growers will implement to manage public health threats posed by known or anticipated biotoxins.

Under the best-case scenario, the Marine Biotoxin Management and Contingency plans will apply to the entire 2,000-acre project site and will streamline the contractual agreements Growers must establish with the NOAA Seafood Inspection Program before harvested product enters intra- and interstate commerce. Data dissemination and compliance with these sanitation plans is expected to be managed, in part, through an electronic platform.

Upon initiating mussel farming operations in accordance with recently approved revisions to the NSSP Model Ordinance, Growers will be required to use one of several biotoxin management strategies (e.g., Pre-Harvest Shellfish Toxicity Testing, Shellfish Lot Testing, or Pre-Harvest Shellfish Toxicity Screening Combined with Lot Testing). They will also be required to comply with administrative and control procedures specified in the Biotoxin Monitoring and Contingency Plans and any additional regulations specified by the California Department of Public Health.

### 2.2.7 Decommissioning

Prior to beginning activities within the project site, each Grower will be required to prepare a decommissioning plan to be implemented when a Grower's authorized use of the area is terminated or otherwise expires. The decommissioning plan will include details for removal of all shellfish operation equipment, including, but not limited to, growing ropes and structures, anchoring devices, equipment, and materials associated with the shellfish cultivation activity and process for the documentation of completion of removal activities. The plan will only allow anchors or other gear (e.g., longlines, buoys, mussels, etc.) to remain in place only if another Grower will immediately take over the vacated farm and all responsibilities and liability associated with the farm. In addition, the plan will include an estimated cost of decommissioning based on third party implementation. Financial assurance to guarantee implementation of the plan will be required of each Grower and reviewed periodically by VPD to ensure the financial assurances remain current and in effect.

Growers interested in discontinuing operations shall submit a non-renewal notice to VPD no less than 180 days prior to the expiration date. Growers interested in continuing operations beyond an individual VPD authorization expiration date will apply to renew and submit a renewal application to VPD no less than 180 days prior to the expiration date. During VPD review of the renewal application Grower operation activities may continue until VPD has notified the Grower of the renewal application decision.

Upon expiration of the overall permits for the VSE project, or expiration, termination, or denial of a renewal application for an individual VPD authorization held by a Grower, the Grower will commence removal of all aquaculture gear and structures within 30 days of permit expiration or termination. If a portion of the farm site is

not ready to be harvested at the time of permit expiration/termination, the Grower will have a total of 90 days after permit expiration/termination to harvest any and all remaining shellfish, remove all aquaculture gear and structures, remove any significant shell accumulation or marine debris from the seafloor under its farm site as well as any known debris from its farm site that is located beyond the farm boundaries, and return the site to its original condition.

### 2.2.8 Operational Flexibility

Individual Grower management choices related to reducing stocking density and reducing number and total length of grow rope droppers could reduce total load requirements. Growers require operational flexibility to respond to dynamic environmental and growing conditions. Therefore, among other things, the scope of the anchoring system, buoy placement and number of buoys, the specific configuration of grow ropes, and final design specifications may vary depending on the specific farm requirements and Grower preferences; however, the equipment used must be consistent with the engineering analysis and maximum design features identified in Table 1 to ensure proper gear maintenance and to minimize gear loss.

# 2.3 Project Design Approval

The project description provided above has been engineered to withstand a 100-year storm (<del>Dewhurst</del> <del>2019</del><u>Appendix A</u>). Individual Growers may choose to employ lower loading conditions (e.g., lighter stocking rates, shorter droppers, or less equivalent continuous loop grow ropes) than those described above. However, higher loading conditions will require a proper engineering study that supports the modified design stability in a 100-year storm and approval by VPD and other regulatory agencies as further described in Section 11.

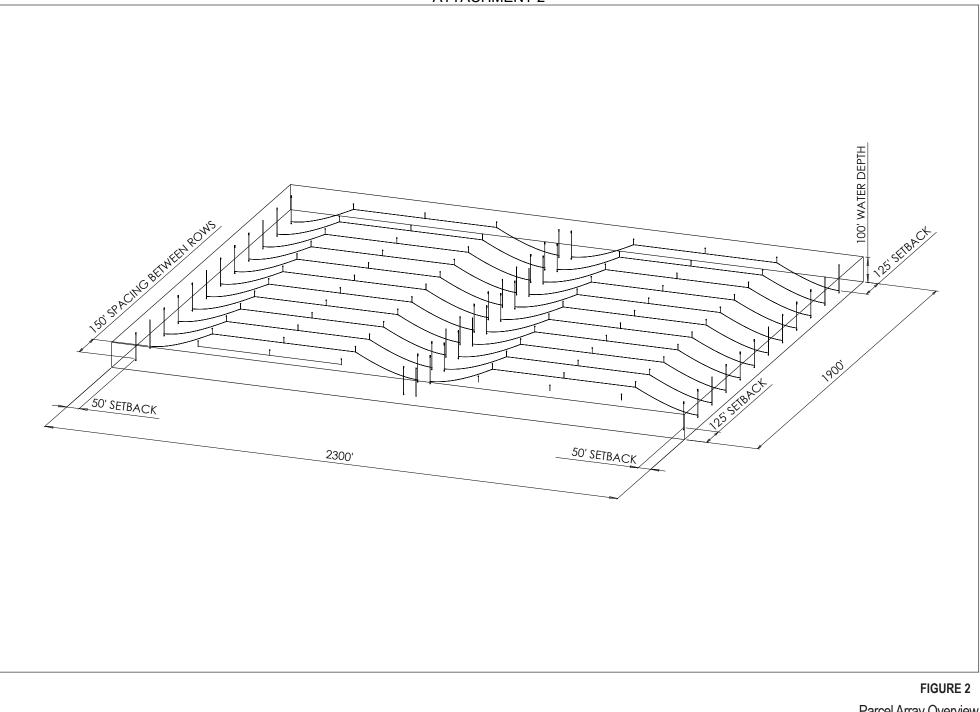
# 2.4 Project Objectives

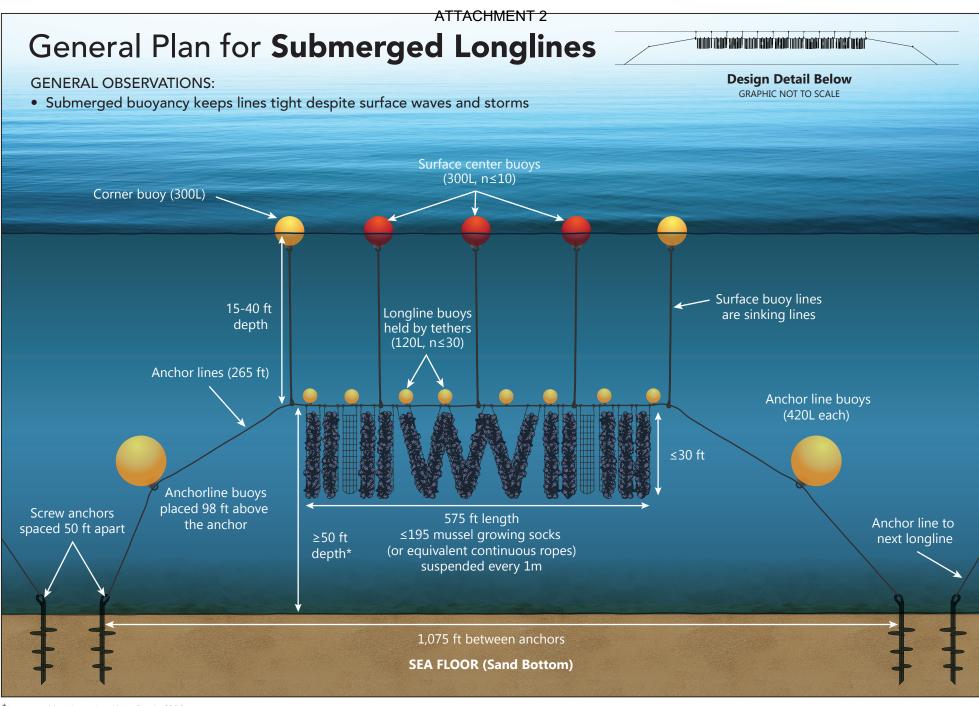
The VSE project objectives are:

- Increase the supply of safe, sustainably produced, and locally grown shellfish while minimizing potential negative environmental impacts.
- Enhance and sustain Ventura Harbor as a major west coast fishing port to support the local economy.
- Provide economies of scale, a pre-approved permit area, and technical support to include small local Growers who would not otherwise be able to participate in shellfish aquaculture.
- Provide an entitlement and permitting template for aquaculture projects statewide.
- Enhance public knowledge and understanding of sustainable shellfish farming practices and promote community collaboration in achieving VSE objectives.
- Advance scientific knowledge and state-of-the-art aquaculture practices through research and innovation.

Project goals and objectives further several of VPD's fundamental mission and objectives, as summarized below:

- Maintain a safe and navigable harbor.
- Diversify commercial fishing opportunities to benefit the fishing industry and local and regional economies.
- Continued priority (as a commercial fishing harbor) for federal funding appropriations for annual dredging of the federal harbor entrance.





**DUDEK** 

6,250 12,500

0

Project Location Ventura Shellfish Enterprise Project





#### \*Assumes a Mean Lower-Low Water Depth of 90 ft

**DUDEK** 

# 3 Grower Selection Process

VPD is the project applicant for federal permits through the U.S. Army Corps of Engineers (Corps). VPD will manage the project through a public/private partnership with Growers under individual sub-permits or other agreements with VPD that incorporate all project permit conditions and best management practices (BMPs; see Section 6 below for additional details). As such, the VSE project is designed to minimize constraints and barriers for entrepreneurs and existing seafood Growers seeking to enter the aquaculture industry or expand current mussel farming operations by obtaining permits for the project as a whole. After VPD secures all required project permits, VPD will engage in a public process to solicit applications and to sub-permit the farms to Growers.

Prospective Growers will be selected according to a public bid selection process. A Request for Qualifications/Proposals will be issued by VPD which will detail all requirements for the public bid selection process. Potential Growers will be required to submit an application to VPD which includes a project description of their proposed farm, the requested charted location within the permitted area, a summary of their relative experience and expertise (including representative projects), insurance information, and financial data to establish sufficient capital to conduct the proposed operations. Growers will be responsible for purchasing, transporting, installing, maintaining and harvesting the Mediterranean mussels. The Growers will be responsible for: providing any gear needed to implement the project, maintenance of all equipment, landing all mussel product at Ventura Harbor, and following the commercial landing procedures required by Ventura Harbor.

The application will be reviewed by VPD staff, who will also conduct an interview with the applicant and grade the application based upon a qualitative and quantitative rating system. <u>Growers selected for the early phases of operations will be required to include personnel with expertise in aquaculture as part of its operating team.</u> VPD will evaluate the application materials and project descriptions to determine if they are substantially similar to the operational design approved by the Corps and California Coastal Commission (CCC). Each Grower's operation will also be reviewed by the Corps for consistency with the project permit and conditions. If the Corps determines that a proposed operation is substantially different from the design approved by the Corps and CCC, the applicant can either modify its project description and design or seek approval of a modification from VPD, CCC, and the Corps, as further described in Section 11 below. Under no circumstances will such an inconsistent operation be allowed to commence until necessary amendments are approved by the applicable agencies.

VPD staff will recommend applications that it believes meet the project permit conditions and VPD selection criteria to VPD Board of Commissioners for consideration and approval at public meetings. VPD will notify the Corps, U.S. Coast Guard (USCG), CCC, California Department of Public Health, and FDA of any approved applications and forward approved project descriptions and site locations for their review.

# 4 Summary of Agreements: VPD and Growers

This section identifies the terms and conditions of agreement between VPD and selected Growers. As mentioned above, through its application to the Corps VPD seeks to permit twenty 100-acre farms in federal waters off the coast of Ventura for longline mussel aquaculture. Upon acquiring a Corps permit and all other necessary governmental approvals, VPD proposes to then engage in a public process to solicit applications and authorize Growers to operate within the permitted area pursuant to sub-permits and/or an operating agreement.

VPD is proposing this unique approach to aquaculture for several reasons. The primary reason is the cost of obtaining the necessary permits and authorizations for an aquaculture farm in California is extraordinarily high compared to other states, even for projects located in federal waters. With support from grants from the NOAA Sea Grant program, VPD is able to substantially reduce these costs for the Growers and provide economies of scale that individual Growers could not achieve on their own. A key goal of the project is to establish a project site that can include a diverse group of Growers, including smaller Growers that may otherwise be precluded from entering the industry due to the upfront regulatory permitting and other costs incurred prior to establishing a working farm. VPD enthusiastically supports expansion of shellfish aquaculture to provide a stable and consistent fishery for its port, providing revenue necessary to maintain the Port's harbor dredging program, which is essential for an open channel between the harbor and the ocean. Thus, the project benefits all harbor users, including VPD's commercial fishing industry.

VPD also seeks to establish a partnership with NOAA and the Corps to share the responsibilities associated with monitoring, oversight, enforcement, and overall management of the project site. VPD will provide local, on-ground oversight of the project to co-manage compliance of the operation with the Corps. VPD's expectation is that this will ease the Corps' management and oversight workload, while allowing more consistent and frequent supervision of project operations by VPD staff and Harbor Patrol, given VPD's proximity to the project site and more limited regulatory focus.

The ultimate goal of VPD's proposal is for VPD to retain partial oversight and control over the VSE project, while delegating responsibility for compliance with the operational conditions associated with the project to individual Growers. As noted below, the proposed framework will still provide for the Corps' approval of the individual Growers. The Corps would approve the proposal if the Grower's proposed operation: (1) complies with all terms and conditions of the project permit, (2) is substantially similar to the overall VSE project approved by the Corps, and (3) is consistent with the CCC's project consistency certification.

This is similar to the framework utilized by the Corps under some habitat conservation plans. For example, in 2019 the Corps approved a programmatic general permit for the South Sacramento Habitat Conservation Plan, which was the first in the nation to include a Clean Water Act permit from the Corps and Endangered Species Act permits from the U.S. Fish and Wildlife Service (USFWS) as part of its approval. Pursuant to the programmatic general permit (SPK-1995-00386), many activities can be permitted by local county agencies, with a more streamlined review process or no additional review by the Corps if the project complies with the habitat conservation plan. While the framework proposed below is different in some significant ways, it uses many of the same concepts to establish a partnership between the Corps and VPD.

#### Proposal

1. <u>Project Permits.</u> VPD will prepare all applications and obtain all necessary permits and authorizations for the project, including the Corps permit and a CCC consistency certification. Further, VPD will assure preparation of associated documents necessary for compliance with the National Environmental Policy Act, including an Environmental Assessment and/or Environmental Impact Statement. VPD will be the named permittee on the permits and will remain the named permittee on such permits during the permit term.

2. <u>VPD Public Bid Process.</u> Upon receiving permit approval, VPD will solicit applications for Growers to operate within a designated portion of the permitted area. Prior to consideration of such applications, VPD will undertake public outreach to identify prospective Growers and develop qualitative and quantitative criteria to evaluate the applications (see Section 3). The criteria will be focused on ensuring that Growers will be responsible and successful operators of aquaculture farms within the permitted area.

Each Grower applicant must submit to VPD an application with (1) a chart that identifies the proposed area that it seeks to farm within the overall project area, (2) a project description, (3) the proposed timing associated with installation of structures and commencement of operations, and (4) any additional information required by VPD that is responsive to the qualitative and quantitative criteria listed in the solicitation for applications, including financial information.

- 3. <u>VPD Public Hearings.</u> VPD's Port Commission will hold public hearings to approve Grower applicants based on VPD staff's evaluation of the application materials. As a condition of each authorization issued by VPD, the Grower will be required to comply with all applicable conditions of the project entitlements, as well as any additional conditions imposed by VPD (provided that such additional conditions are consistent with, and no less stringent than, the conditions imposed by the Corps and CCC).
- 4. VPD Approval and Corps Review/Approval. Upon approval by VPD's Port Commission, each Grower application and any VPD conditions of approval will be provided by the VPD to the Corps for its review and approval. Within 45 days of VPD submittal, the Corps will review the Grower's application for consistency with the project design and all approved permit terms, conditions, and mitigation measures. The Corps will approve each authorized Grower within 45 days of VPD submittal-pursuant to a Letter of Permission (LOP) if the proposed operation complies with all master permit conditions, <u>and-mitigation measures</u>, and is substantially similar to the overall project approved by the Corps and CCC. The LOP will describe the specific terms, responsibilities, and obligations assigned solely to the Grower.
- 4.<u>1.Grower Agreement.</u> A Grower's operation must be consistent with the project approved by CCC and the Corps. In the event that a Grower's proposed operation is materially different than the approved project, the Grower must first obtain VPD authorization to seek any required permit amendments. VPD, as the master permit holder, reserves the right to dony any such proposed amendments. After VPD approval, the Grower will need to seek approval from the Corps and CCC. Under no circumstances will such an operation be allowed to commence until such required amendments are approved by the applicable agencies.
- <u>Upon approval by VPD's Port Commission, each Grower application and any VPD conditions of approval will</u> be provided to the Corps for its review and approval. The Corps will approve each authorized Grower within 45 days of VPD submittal pursuant to a Letter of Permission (LOP) if the proposed operation complies with all master permit conditions and mitigation measures and is substantially similar to the overall project approved by the Corps and CCC. The Corps and CCC retain full discretionary authority to review any proposed permit amendments. A Grower's operation must be consistent with the project approved by CCC and the Corps. In the event that a Grower's proposed operation is materially different than the approved project, the Grower must first obtain VPD authorization to seek any required permit amendments. VPD, as the master permit holder, reserves the right to deny any such proposed amendments. After VPD approval, the Grower will need to seek approval from the Corps and CCC. Under no circumstances will such an operation be allowed to commence until such required amendments are approved by the applicable agencies.

5.

6.5. Upon Corps issuance of an LOP, the Grower shall sign VPD authorization, agreeing to comply with all applicable terms and conditions of the permit as well as any additional requirements imposed by VPD (provided that such additional conditions are consistent with, and no less stringent than, the conditions imposed by the Corps and CCC). Upon such Grower agreement, the Grower assumes full and exclusive responsibility for compliance with all permit terms and conditions identified in the authorization.

- 6. VPD Oversight. VPD shall collect information required by any project monitoring plans and transmit such information to the Corps for review as specified in the monitoring plans (see Section 7 below). VPD shall also cooperate with the Corps to supervise the site and coordinate any enforcement action with the Corps if any Growers are determined to be out of compliance with permit conditions (see Section 8 below).
- 7. Permit Amendments. The Corps and CCC retain full discretionary authority to review any proposed permit amendments. A Grower's operation must be consistent with the project approved by CCC and the Corps. In the event that a Grower's proposed operation is materially different than the approved project, the Grower must first obtain VPD authorization to seek any required permit amendments. VPD, as the master permit holder, reserves the right to deny any such proposed amendments. After VPD approval, the Grower will need to seek approval from the Corps and CCC. Under no circumstances will such an operation be allowed to commence until such required amendments are approved by the applicable agencies. See Section 11 for additional details on Permit Amendments.

The Corps retains full authority regarding any enforcement actions; however, as a public agency with a vested interest in the project, VPD proposes to work closely with the Corps to quickly address and cure any potential violations and/or terminate VPD authorizations when warranted. Any Grower who installs gear or operates in a manner not authorized by VPD, CCC, or the Corps will be subject to revocation of their VPD authorization and/or LOP, and eviction from the project site. Although specific enforcement protocols remain to be fully delineated with the Corps, VPD anticipates that its specific enforcement authority and protocols will be described in VPD authorizations and/or LOPs issued to individual Growers. See Section 8 for more details on enforcement.

# 5 Grower Trainings

To prepare Growers for the comprehensive approach of the VSE project and to facilitate Growers' success, VPD and partners will provide the appropriate training opportunities prior to the start of installation activities to ensure that Growers understand aspects of mussel farming activities and permitting requirements. Training will be divided into two categories: voluntary operational training and mandatory compliance training. An overview of each is provided below.

Voluntary Operational Trainingtraining is training that is mandatory for Growers who have not previously participated in mussel farming production and operations; and training that is voluntary for other Growers who have prior experience. This training will be provided not mandatory or required prior to the start of installation/construction and operation activities. Voluntary training and is targeted for the new mussel Growers who have not previously participated in mussel aquaculture production and cultivation. This training will cover a variety of introductory topics to assist new Growers with being successful in this industry, such as (1) biology of mussels as it relates to production methods, (2) overview of the rigging and equipment needs, (3) mussel seeding, cultivating, and harvesting techniques, (4) gear installation and maintenance, (5) product transportation and sale, and (6) basic financial budgeting and revenue projections.

Mandatory Compliance tTraining is training that is required for all Growers (new and veteran alike) prior to the start of installation/construction and operation activities. Mandatory Compliance training will cover regulatory permitting and permit/authorization requirements for each Grower. These trainings include topics such as (1) VPD authorization requirements; (2) mussel sanitation and biotoxin testing requirements; (3) agencies' compliance, recording, and reporting procedures; (4) Best Management Practices (BMPs) and Mitigation, Monitoring and Reporting Program (MMRP) requirements; and (5) using the database management system, including mobile devices and tracking systems. The BMPs and MMRP requirements are described in further detail in this Plan and cover topics such as spill prevention and procedures, gear checks and repair methods, invasive species removal, marine wildlife entanglement reporting and procedures, predator control, etc. Mandatory Compliance training will be required of each Grower once a year to provide a regular refresher of the permitting requirements. The final details of the emandatory training materials and content will include a review of all agency permitting requirements and be developed in collaboration with NOAA Sea Grant colleagues. Maintaining a close relationship with NOAA in the development of the project, including the development of training materials, will ensure that the efforts of VSE partners and collaborators in the development of the VSE project are shared with the greater aquaculture community, and especially other efforts to develop aquaculture along the West Coast.

For both voluntary operational and mandatory compliance trainings, VPD will prepare a set of manuals to serve as reference materials. Both voluntary operational and mandatory compliance training will ensure that new entrants and industry veterans alike have access to information necessary to establish and manage a successful mussel farming operation in compliance with all VSE permit conditions. In order to ensure all Grower employees are adequately trained, training resources will be digitized and deployed through a learning management system that enables training resources to be easily accessed, independent of time and location. The virtual classroom will be designed to provide instructors, facilitators, and participants access to a cost-effective platform that lends the ability to centralize learning materials, streamline communication and feedback mechanisms, and provide opportunities for blended learning and instruction that includes both online and in-person elements.

Overall, the training provided will supplement and support VPD's permitting efforts to ensure that both new and veteran Growers have access to proper training, mussel farm management protocols, logistical support, and technology transfers to maximize their opportunities to develop a successful and compliant aquaculture operation.

# 6 Overview of Project Permits and Conditions

This section provides an overview of the applicant-proposed BMPs, project permit conditions, and mitigation measures that will be carried out before construction, during construction, throughout project operations, and during project decommissioning. Necessary permits and approvals associated with the project are in process. As such, any additional requirements that may be imposed by regulatory agencies as a condition of permit approval will be incorporated when they become available. Specifically, VPD is in the process of acquiring the following project permits/approvals:

- Section 10 Permit from the Corps, pursuant to the Rivers and Harbors Act of 1899
- Consistency Certification from CCC pursuant to 15 CFR Section 930.57

In addition, the Corps has initiated consultations with NOAA National Marine Fisheries Service (NOAA Fisheries) regarding Essential Fish Habitat pursuant to the Magnuson-Stevens Fishery Conservation and Management Act of 1996, and informal Section 7 consultations with NOAA Fisheries and the U.S. Fish & Wildlife Service pursuant to the Endangered Species Act.

Product sanitary control is in the process of being established through the FDA in collaboration with NOAA's Seafood Inspection Program. These agencies are developing an NSSP compliance pathway for entities seeking to grow and harvest shellfish in federal waters that can be utilized for this project and other shellfish aquaculture projects in federal waters. Part of this effort is development of a Biotoxin Monitoring and Contingency Plan that articulates Grower testing requirements. Upon agency approvals, agency permit conditions and measures will be incorporated into this section.

VPD will also seek a Private Aid to Navigation (PATON) approval from USCG for the location and type of navigational buoys deployed for the project.

Overall, the project was designed with the consideration of minimizing impacts on the marine environment. In addition to the project features, the project will incorporate a number of other resource protection measures in the form of BMPs to avoid and minimize impacts on the aquatic environment. Table 2 (Summary of the Mitigation, Monitoring, and Reporting Program), provides a summary of measures recommended for this project and identifies the responsible party required to carry out the action(s), the agency that will enforce the action(s), implementation timing, and reporting timing. The MMRP measures are detailed in the following documents/management plans:

- Biological Assessment for the Ventura Shellfish Enterprise Project (Appendix A<u>C</u>)
- Predator Control Management Plan for the Ventura Shellfish Enterprise Project (Appendix <u>BD</u>)
- Sediment and Water Quality Management Plan for the Ventura Shellfish Enterprise Project (Appendix <u>GE</u>)
- Spill Prevention and Response Plan for the Ventura Shellfish Enterprise Project (Appendix <u>DF</u>)
- Aquaculture Gear Monitoring & Marine Debris, and Wildlife Entanglement Plan for the Ventura Shellfish Enterprise Project (Appendix <u>EG</u>)
- Gear Removal Management Plan for the Ventura Shellfish Enterprise Project (Appendix FH)
- Additional mitigation requirements as a result of correspondence with regulatory agencies (*e.g.*, biofouling, training measures)

Users of this Plan will notice project measures and conditions are described in several formats. The primary sources detailing required mitigation are the management plans (Appendices A-C through FH) summarized in Section 6, Table 2 (Summary of the MMRP). Although the MMRP (Table 2) provides a summary of mitigation requirements, this Plan provides several additional formats in order to assist the users in more fully understanding process, roles, and responsibilities. The flowcharts and tables in Section 7 provide various illustrative visuals and organizational structures depicting the responsibilities associated with Growers, VPD, and relevant regulatory agencies. The flowcharts are intended to show the process whereas the tables are intended to explain the responsibilities of each party for a given mitigation measure.

### Table 2. Summary of the Mitigation, Monitoring, and Reporting Program

|                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                                                                                                                                           | Implementa | tion Tim     | ing  |                                                |        | Reporting Timing                                                                                                                                                                                                                                                          |                                              |         |          |               |
|--------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------|------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------|----------|---------------|
| Source                   | Mitigation<br>Measure<br>No. | Measure (Including Plan Summary Text)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Responsible<br>Party                                                                                                                                                                          | Enforcing<br>Agency                                                                                                                                                                       | Details    | Pre-<br>Con. | Con. | Oper.                                          | Decom. | Reporting Details                                                                                                                                                                                                                                                         | Immediately                                  | Monthly | Annually | ≥ 180<br>Days |
| Biological<br>Assessment | BIO-1                        | Marine Wildlife Entanglement Plan. No less than twice per month, each<br>Grower operating on a VPD lease shall visually inspect all ropes, cables,<br>and equipment via depth/fish finders, ROV or SCUBA-divers to determine<br>if any entanglement of a marine mammal has occurred and to ensure<br>that (a) no lines have been broken, lost or removed; (b) all longlines,<br>anchor lines, and buoy lines remain taught and in good working<br>condition; and (c) any derelict fishing gear or marine debris that collects<br>in the growing gear is removed and disposed of at an identified onshore<br>facility. All equipment and materials accidentally released or found to be<br>missing from the facility during monthly inspections, including buoys,<br>floats, lines, ropes, chains, cultivation lines, wires, fasteners, and clasps,<br>shall be searched for, collected, properly disposed of onshore, and<br>documented in the annual inspection report. Monitoring shall occur<br>monthly for the first two years following deployment and, in the event<br>that there are no marine wildlife entanglements within the first two years,<br>may be reduced to quarterly inspections thereafter. Reports of these<br>inspections shall include recordings by depth/fish finder or ROV surveys<br>of lines and/or monitoring performed by SCUBA-divers. Recorded video<br>shall be provided along with the annual report described above. Any<br>maintenance issues including wear, loosening, or fatigue of materials<br>shall be remedied as soon as possible. All incidents of observed whale<br>entanglement shall be immediately reported to SOS WHALe. Any other<br>marine mammals and turtles observed to be entangled will be<br>immediately reported to NOAA Fisheries Marine Mammal Stranding<br>Network Coordinator, West Coast Region, Long Beach Office. Only<br>personnel who have been authorized by NOAA Fisheries and who have<br>training, experience, equipment, and support will attempt to disentangle<br>living marine wildlife. If possible, the Grower shall document and<br>photograph entangled wildlife and the entangling gear material to inform | Growers                                                                                                                                                                                       | VPD, Corps,<br>and NOAA<br>Fisheries<br>VPD Harbor<br>Patrol will<br>routinely<br>assess the<br>project site for<br>gear<br>compliance                                                    | None       |              |      | X                                              |        | Growers to submit<br>monthly reports<br>documenting<br>compliance by the<br>5th of the month to<br>VPD.<br>VPD compiles<br>monthly reports and<br>submits with an<br>annual report to the<br>Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year. | X<br>for marine<br>wildlife<br>entanglements | X       | X        | Dajo          |
| Biological<br>Assessment | BIO-2                        | Entanglement Prevention. Grow-ropes will be attached to the head rope with a low-breaking-strength twine (4-millimeter (0.16-inch) diameter; <1,000 pounds), which will facilitate rapid detachment in the unlikely event of any marine mammal interaction with the longline. A 1,4 <u>7</u> 00-pound breakaway link will be installed between surface marking buoys and the vertical lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Growers                                                                                                                                                                                       | VPD Harbor<br>Patrol to<br>provide a<br>visual<br>inspection of<br>equipment<br>prior to<br>installation<br>and will<br>routinely<br>assess the<br>project site for<br>gear<br>compliance | None       |              | x    | X<br>(ongoing<br>project<br>design<br>feature) |        | <ul> <li>VPD Harbor Patrol to<br/>retain a record of<br/>Grower compliance<br/>and include in annual<br/>report.</li> <li>VPD compiles annual<br/>reports and sends to<br/>the Corps, CCC, and<br/>NOAA Fisheries<br/>annually by January<br/>31 of each year.</li> </ul> |                                              |         | х        |               |
| Biological<br>Assessment | BIO-3                        | Marine Wildlife Observer. An approved Marine Wildlife Observer (MWO) shall be present on each project construction vessel during all construction activities, including the installation of anchor lines and anchoring systems. The MWO shall monitor and record the presence of all marine mammals and sea turtles within 100 yards of the work area. The MWO shall have the authority to halt operations if marine wildlife are observed or anticipated to be near a work area and construction activities have the potential to result in injury or entanglement of marine wildlife. In addition, all work (including vessel motors) will be halted if a cetacean is observed within 50 yards of the work area. Work may recommence after the observed individuals have moved out of the monitoring area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Growers to<br>identify and hire<br>qualified MWOs<br>Growers ensure a<br>qualified MWO is<br>present during<br>construction<br>activities and that<br>observers'<br>directives are<br>heeded. | VPD and NOAA<br>Fisheries                                                                                                                                                                 | None       |              | x    |                                                |        | MWOs submit<br>monthly reports to<br>VPD by the 5th of the<br>month.<br>VPD reviews,<br>compiles, and<br>submits monthly<br>MWO observation<br>reports to the Corps,<br>CCC, and NOAA<br>Fisheries by the 15th<br>of the month.                                           |                                              | х       |          |               |

DUDEK

|                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                  | Implementa                                | ation Tim    | ing  |       |        | Reporting Timing                                                                                                                                                                                                                                                        |             |         |          |               |
|------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|--------------|------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|----------|---------------|
| Source                 | Mitigation<br>Measure<br>No. | Measure (Including Plan Summary Text)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Responsible<br>Party                                                                                                                                                                                                              | Enforcing<br>Agency              | Details                                   | Pre-<br>Con. | Con. | Oper. | Decom. | Reporting Details                                                                                                                                                                                                                                                       | Immediately | Monthly | Annually | ≥ 180<br>Days |
|                        |                              | MWOs' reports on marine mammal monitoring during construction<br>activities shall be prepared and submitted to NOAA Fisheries on a<br>monthly basis. Reports shall include such information as the (1) number,<br>type, and location of marine mammals observed; (2) the behavior of<br>marine mammals in the area of potential sound effects during<br>construction; (3) dates and times when observations and in-water project<br>construction activities were conducted; and (4) dates and times when in-<br>water construction activities were suspended because of marine<br>mammals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VPD to review<br>resumes and<br>approve qualified<br>MWOs. VPD will<br>retain a list of<br>approved<br>qualified MWOs.                                                                                                            |                                  |                                           |              |      |       |        |                                                                                                                                                                                                                                                                         |             |         |          |               |
|                        |                              | VPD shall prepare a list of qualified MWOs who meet the following<br>minimum qualifications: (1) visual acuity in both eyes (correction is<br>permissible) sufficient to discern moving targets at the water's surface<br>with ability to estimate target size and distance; (2) use of binoculars or<br>spotting scope as necessary to correctly identify the target; (3) advanced<br>education in biological science, wildlife management, mammalogy, or<br>related fields (bachelor's degree or higher is preferred); (4) experience<br>and ability to conduct field observations and collect data according to<br>assigned protocols (this may include academic experience); (5)<br>experience or training in the field identification of marine mammals<br>(cetaceans and pinnipeds) and sea turtles; and (6) ability to<br>communicate orally, by radio or in person, with project personnel to<br>provide real time information on marine wildlife observed in the area, as<br>needed.                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                  |                                           |              |      |       |        |                                                                                                                                                                                                                                                                         |             |         |          |               |
| iological<br>ssessment | BIO-4                        | Cultivation of Spat Offsite. Only hatchery-reared mussel spat grown at a CDFW-certified facility will be used in order to ensure that spat are free of introduced invasive species, parasites, and pathogens of concern; however, natural mussel spat naturally settling on farm grow-out lines may also be harvested and cultivated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Growers                                                                                                                                                                                                                           | VPD and<br>CDFW                  | None                                      |              |      | Х     |        | Growers retain<br>records of purchases<br>from CDFW certified<br>facility and submit<br>documentation in an<br>annual report to VPD.<br>VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year. |             |         | X        |               |
| iological<br>ssessment | BIO-5                        | Marine Wildlife Education. Each Grower will be required to provide<br>annual marine wildlife education to its employees regarding proper<br>procedures relating to marine wildlife. The training curriculum will include<br>identifying the presence of specified marine wildlife and procedures for<br>avoiding impacts to marine wildlife during operations. These procedures<br>will include: (1) reducing speed and observing the distances from marine<br>life specified in MM BIO-6; (2) providing a safe path of travel for marine<br>mammals that avoids encirclement or entrapment of the animal(s)<br>between the vessel and growing apparatus; (3) if approached by a<br>marine mammal, reducing speed, placing the vessel in neutral and<br>waiting until the animal is observed clear of the vessel before making<br>way; (4) avoiding sudden direction or speed changes when near marine<br>mammals; (5) refraining from approaching, touching or feeding a marine<br>mammal; and (6) immediately contacting their supervisor and other<br>identified parties/agencies identified in MM BIO-1 should an employee<br>observe an injured marine mammal. | VPD to include<br>this topic in the<br><u>mandatory</u> annual<br><u>compliance</u><br>training<br>curriculum<br>Growers must<br>attend training<br>provided by VPD<br>or a third-party<br>consultant<br>regarding this<br>topic. | VPD and NOAA<br>Fisheries        | Annual<br>marine<br>wildlife<br>education |              |      | X     |        | Growers submit<br>evidence of training<br>to VPD as part of the<br>annual report<br>VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year.                                                     |             |         | x        |               |
| ological<br>ssessment  | BIO-6                        | Vessel Management. Vessels in transit to and from the growing area shall maintain a distance of 100 yards from any observed cetacean and 50 yards between any observed pinniped or sea turtle. If cetaceans are observed within 100 yards or pinnipeds or sea turtles observed within 50 yards, the vessel shall reduce speeds to 12 knots or less until it is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Grower                                                                                                                                                                                                                            | VPD Harbor<br>Patrol and<br>USCG | None                                      |              | x    | x     |        | Growers report to<br>VPD sightings of<br>federally listed<br>whales or turtles as<br>part of annual report.                                                                                                                                                             |             |         | x        |               |



|                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                                                                                                                      | Implementa                                                                                                                                           | ation Timi           | ng   |       |        | Reporting Timing                                                                                                                                                                                                                                                                                                                                                               |             |         |          |              |
|--------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|----------|--------------|
| Source                   | Mitigation<br>Measure<br>No. | Measure (Including Plan Summary Text)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Responsible<br>Party                                                                                                                                                                                                                                                                            | Enforcing<br>Agency                                                                                                  | Details                                                                                                                                              | Pre-<br>Con.         | Con. | Oper. | Decom. | Reporting Details                                                                                                                                                                                                                                                                                                                                                              | Immediately | Monthly | Annually | ≥180<br>Days |
|                          |                              | <ul> <li>appropriate distance (as required by this condition) from the particular marine life. If a cetacean is heading into the direct path of the vessel (i.e., approaching a moving vessel directly into the bow), the vessel shall shut off the engine until the cetacean is no longer approaching the bow and until a greater separation distance is observed. If small cetaceans are observed bow-riding, and the vessel is operating at speeds of 12 knots or less, the vessel shall remain parallel to the animal's course and avoid abrupt changes in direction until the cetaceans have left the area.</li> <li>Each sighting of a federally listed threatened or endangered whale or turtle shall be recorded and the following information shall be included in the operation log: <ul> <li>a. Date, time, coordinates of vessel</li> <li>b. Visibility, weather, sea state</li> <li>c. Vector of sighting (distance, bearing)</li> <li>d. Duration of sighting</li> <li>e. Species and number of animals</li> <li>f. Observed behaviors (feeding, diving, breaching, etc.)</li> <li>g. Description of interaction with aquaculture facility</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                      |                      |      |       |        | VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year.                                                                                                                                                                                                                                                |             |         |          |              |
| Biological<br>Assessment | BIO-7                        | <b>Spill Prevention and Response.</b> Discharges of feed, pesticides, or chemicals (including antibiotics and hormones) in ocean waters are prohibited. Fuel, lubricants and chemicals must be labeled, stored and disposed of in a safe and responsible manner, and marked with appropriate warning signs per Occupational Health & Safety Administration requirements. Precautions shall be taken to prevent spills, fires, and explosions, and procedures and supplies shall be readily available to manage chemical and fuel spills or leaks. Each Grower shall comply with the Spill Prevention and Response Plan (SPRP) for vessels and work barges that will be used during project construction and operations. Each Grower operating in the project area shall be trained in, and adhere to, the emergency procedures and spill prevention and response measures specified in the SPRP during all project operations. The SPRP shall provide for emergency response and spill control procedures to be taken to stop or control the source of the spill and to contain and clean up the spill. The SPRP shall include, at a minimum: (a) identification of potential spills and to protect marine and shoreline resources in the event of a spill; (c) a listing of minimum spill prevention and response equipment to be kept onboard project vessels at all times; (d) a prohibition on at-sea vessel or equipment fueling/refueling activities; and (e) emergency response and notification procedures, including a list of contacts to call in the event of a spill; and (f) specification that all hydraulic fluid used for installation, maintenance, planting, and harvesting activities shall be vegetable based. | VPD to prepare<br>SPRP and include<br>this topic in the<br>mandatory annual<br><u>compliance</u><br>training<br>curriculum<br>Growers to<br>implement VPD-<br>prepared SPRP<br>Growers must<br>attend training<br>provided by VPD<br>or a third-party<br>consultant<br>regarding this<br>topic. | VPD Harbor<br>Patrol, Corps,<br>USCG,<br>California<br>Office of<br>Emergency<br>Services, CCC,<br>NOAA<br>Fisheries | Plan<br>submitted<br>for approval<br>Approved<br>Plan<br>provided to<br>Growers<br>Growers to<br>provide<br>required<br>onboard<br>SPRP<br>equipment | X<br>(plan<br>prep.) | x    | X     | X      | Growers immediately<br>report spills to the<br>USCG, California<br>Office of Emergency<br>Services, and VPD.<br>Growers submit<br>description of<br>compliance with the<br>SRPR and evidence<br>of training as part of<br>the annual report<br>VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year. | X           |         | X        |              |

|                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |                                                                                                                                | Implementa                         | tion Timi            | ng   |       | Reporting Timing                                                                                                                                                                                                                                                                                                                                                         |             |         |                                   |               |
|--------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-----------------------------------|---------------|
| Source                   | Mitigation<br>Measure<br>No. | Measure (Including Plan Summary Text)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Responsible<br>Party                                                                                                                                                                                                            | Enforcing<br>Agency                                                                                                            | Details                            | Pre-<br>Con.         | Con. | Oper. | Decom. Reporting Details                                                                                                                                                                                                                                                                                                                                                 | Immediately | Monthly | Annually                          | ≥ 180<br>Days |
| Biological<br>Assessment | BIO-8                        | <b>Invasive Species.</b> Grower employees operating in the project area shall be required to receive annual training from NOAA Fisheries or a third-party consultant to identify potential invasive species and properly dispose of such invasive species if discovered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VPD to prepare<br>and include topic<br>in mandatory the<br>annual<br>compliance<br>training<br>curriculum<br>Growers must<br>attend training<br>provided by VPD<br>or a third-party<br>consultant<br>regarding this<br>topic.   | NOAA<br>Fisheries or<br>qualified entity<br>delegated by<br>VPD to<br>conduct<br>training                                      | None                               |                      |      | X     | Growers submit<br>evidence of training<br>to VPD as part of the<br>annual report<br>VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year.                                                                                                                                                      |             |         | x                                 |               |
| Biological<br>Assessment | BIO-9                        | Sediment Quality Monitoring Plan. A Sediment Quality Monitoring Plan<br>shall be developed requiring monitoring of sediment conditions within<br>the project area, including monitoring the quantity, type, and distribution<br>of biological materials (such as shellfish, shell material, and fouling<br>organisms) that accumulate on the seafloor. Monitoring will also include<br>an evaluation of any changes to oxygen demand of benthic infaunal and<br>epifaunal communities, and changes to the chemical and biochemical<br>conditions of seafloor sediments along with a description of performance<br>standards to meet.<br>If performance standards are not met, corrective actions will be outlined.<br>The Plan will include reporting requirements, including annual report<br>submittals to NOAA Fisheries for review. If performance standards are<br>met for a period of time, the plan will provide for appropriately scaling<br>down monitoring and intervals over time.                                                                                                                                                          | VPD to prepare<br>plan<br>Third-party<br>consultant hired<br>by VPD to conduct<br>monitoring<br>Growers are<br>responsible for<br>payment of<br>benthic<br>monitoring                                                           | VPD, Corps,<br>NOAA<br>Fisheries                                                                                               | Plan<br>submitted<br>for approval  | X<br>(plan<br>prep.) |      | x     | Third-party consultant<br>will provide VPD with<br>the results of benthic<br>sampling occurring<br>up to twice per year.<br>VPD will review and<br>compile annual<br>reports and send to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year.                                                                                             |             |         | X<br>(up to<br>twice per<br>year) |               |
| Biological<br>Assessment | BIO-10                       | <ul> <li>Aquaculture Gear Monitoring and Escapement Plan. Include in overall management plan an aquaculture gear monitoring and escapement plan. Any farm gear that has broken loose from the farm location shall be retrieved. Growers shall inspect their farm site at least twice per month to examine the aquaculture gear for potential loss or non-compliant deployment, including inspections for fouling organisms. Any organisms that have a potential to cover the sea floor will be removed and disposed of at an identified upland facility.</li> <li>Marine Debris Management Plan. The overall management plan shall also include (a) a plan for feasibly marking floating equipment with an identifying number of the Grower; (b) a description of the extent and frequency of maintenance operations necessary to minimize the loss of materials and equipment to the marine environment resulting from breakages and structural failures; and (c) a description of the search and cleanup measures that would be implemented if loss of shellfish cultivation facility materials, equipment, and/or infrastructure occurs.</li> </ul> | VPD to include<br>these topics in<br>mandatory the<br>annual<br><u>compliance</u><br>training<br>curriculum<br>Growers must<br>attend training<br>provided by VPD<br>or a third-party<br>consultant<br>regarding this<br>topic. | VPD, VPD<br>Harbor Patrol,<br>and the Corps<br>VPD to<br>prepare plan<br>VPD Harbor<br>Patrol to<br>routinely<br>inspect sites | Plans<br>submitted<br>for approval | X<br>(plan<br>prep.) |      | x     | Growers document<br>gear inspections<br>twice per month and<br>submit to VPD by the<br>5th of the month.<br>Growers submit<br>evidence of training<br>to VPD as part of the<br>annual report<br>VPD to review and<br>compile inspection<br>results into the<br>annual report send to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year. |             | x       | X                                 |               |
| Biological<br>Assessment | BIO-11                       | <b>Decommissioning Plan.</b> A decommissioning plan for the timely removal of<br>all shellfish, structures, anchoring devices, equipment, and materials<br>associated with the shellfish cultivation facility, including debris, and<br>documentation of completion of removal activities will be a requirement<br>of each permit or authorization. Financial assurance (bond or letter of<br>credit) to guarantee implementation of the plan will be in place and<br>reviewed periodically.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Growers to<br>prepare and<br>implement<br>approved plan<br>VPD to approve<br>plan                                                                                                                                               | VPD Harbor<br>Patrol and the<br>Corps                                                                                          | None                               | x                    |      |       | Growers submit<br>proposed plan to VPD<br>for approval.XVPD to compile<br>approved plans and<br>submit to the Corps<br>prior to construction.                                                                                                                                                                                                                            |             |         | x                                 |               |



|                          |                              |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        | Implementa                        | tion Timi            | ng   |       |        | Reporting Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |          |              |
|--------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|----------|--------------|
| Source                   | Mitigation<br>Measure<br>No. | Measure (Including Plan Summary Text)                                                                                                                                                                                                                                                                                               | Responsible<br>Party                                                                                                                                                                                                                                                                                                                                                                                                             | Enforcing<br>Agency                                                                                                                    | Details                           | Pre-<br>Con.         | Con. | Oper. | Decom. | Reporting Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Immediately | Monthly | Annually | ≥180<br>Days |
|                          |                              |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                                   |                      |      |       |        | VPD to report on<br>compliance with<br>decommissioning<br>plan after gear<br>removal in a report<br>and send to the<br>Corps, CCC, and<br>NOAA Fisheries within<br>30 days of notice of<br>completion.                                                                                                                                                                                                                                                                                                                                          |             |         |          |              |
| Biological<br>Assessment | BI0-12                       | Lighting. All growing area operations shall be completed during daylight<br>hours. No growing area operations can be conducted at night and no<br>permanent artificial lighting of the shellfish cultivation facility shall occur,<br>except for that associated with the use of navigational safety buoys<br>required by the USCG. | Growers                                                                                                                                                                                                                                                                                                                                                                                                                          | VPD Harbor<br>Patrol, USCG,<br>Corps<br>VPD Harbor<br>Patrol will<br>routinely visit<br>the project site<br>and document<br>compliance | None                              |                      |      | x     |        | VPD to report on<br>compliance with this<br>measure in an<br>annual report and<br>send to the Corps,<br>CCC, and NOAA<br>Fisheries annually by<br>January 31 of each<br>year.                                                                                                                                                                                                                                                                                                                                                                   |             |         | x        |              |
| Biological<br>Assessment | BIO-13                       | Predator Control. Potential predator species will be identified. Specified<br>humane methods of predator deterrence will be utilized, favoring non-<br>lethal methods. No controls, other than non-lethal exclusion, shall be<br>applied to species that are listed as threatened or endangered.<br>Also see MM PC-1.               | VPD to prepare a<br>Predator Control<br>Plan, which<br>identifies<br>potential predator<br>species and<br>deterrence<br>methods<br>Grower to<br>implement<br>identified<br>methods as<br>necessary<br>VPD to include<br>this topic in the<br>mandatory-annual<br><u>compliance</u><br>training<br>curriculum<br>Growers must<br>attend training<br>provided by VPD<br>or a third-party<br>consultant<br>regarding this<br>topic. | Any methods<br>of predator<br>control are<br>subject to<br>prior approval<br>of VPD,<br>USFWS, and<br>NOAA<br>Fisheries                | Plan<br>submitted<br>for approval | X<br>(plan<br>prep.) |      | X     |        | Any deviations from<br>approved predator<br>control methods<br>must also be<br>requested and<br>approved VPD prior<br>to implementation.<br>VPD review and<br>forward Growers<br>request for deviation<br>from approved<br>methods to Corps,<br>USFWS, and NOAA<br>Fisheries. A copy will<br>also be sent to the<br>CCC.<br>Growers submit<br>evidence of training<br>to VPD as part of the<br>annual report<br>VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year. | X           |         | X        |              |

|                                                                                                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                        | Implementa                      | tion Tim     | ing  |       |        | Reporting Timing                                                                                                                                                                                                                                                                                    |                                        |         |          |               |
|--------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|----------|---------------|
| Source                                                                                           | Mitigation<br>Measure<br>No. | Measure (Including Plan Summary Text)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Responsible<br>Party                                                     | Enforcing<br>Agency                                                                                                                    | Details                         | Pre-<br>Con. | Con. | Oper. | Decom. | Reporting Details                                                                                                                                                                                                                                                                                   | Immediately                            | Monthly | Annually | ≥ 180<br>Days |
| Aquaculture<br>Gear<br>Monitoring &<br>Marine<br>Debris, and<br>Wildlife<br>Entanglement<br>Plan | GDEP-1                       | <b>Equipment Identification.</b> Prior to installation, floating equipment will have permanent markers or an attached metal or plastic tag with the identifying number of the Grower. Markings shall be securely attached and robust enough to remain attached and legible after an extended period in the marine environment (e.g., heat transfer, hot stamp, etching, painted on, etc.).                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Growers                                                                  | VPD Harbor<br>Patrol and the<br>Corps                                                                                                  | None                            |              | x    |       |        | VPD Harbor Patrol to<br>inspect all<br>underwater<br>equipment prior to<br>deploymentretain a<br>record of Grower<br>compliance, and<br>include in annual<br>report.VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year. |                                        |         | X        |               |
| Aquaculture<br>Gear<br>Monitoring &<br>Marine<br>Debris, and<br>Wildlife<br>Entanglement<br>Plan | GDEP-2                       | Visual Inspections of Equipment. Growers will utilize a remote operated vehicle (ROV), certified SCUBA-divers, and/or fish/depth finders for equipment inspection and the detection of derelict gear. ROVs, if utilized, will be equipped with a video camera for all deployments, and a manipulator skid, grabber arm, and rotary disc cutter or other cutting device for gear removal deployments. Alternatively, removal of derelict gear can be performed by certified SCUBA-divers equipped with cameras to document removal efforts. All equipment and materials accidentally released or found to be missing from the aquaculture facility shall be searched for, collected, and either repaired or properly disposed of onshore, and documented in the annual inspection report. Additional details and requirements are provided in the GDEP. | Growers are<br>responsible for<br>conducting<br>equipment<br>inspection. | VPD, the<br>Corps, and<br>USCG<br>VPD Harbor<br>Patrol will also<br>routinely visit<br>the project site<br>and document<br>compliance. | None                            |              |      | x     |        | Monthly reporting by<br>Growers to VPD.<br>VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year.                                                                                                                          | X<br>(marine wildlife<br>entanglement) | x       | x        |               |
| Aquaculture<br>Gear<br>Monitoring &<br>Marine<br>Debris, and<br>Wildlife<br>Entanglement<br>Plan | GDEP-3                       | <b>Cleanup Events.</b> Each Grower will carry out quarterly cleanup events on<br>nearby beaches between Ventura and Santa Barbara which may be in<br>coordination with other interested parties or organizations. Cleanup<br>events shall include, but not be limited to, walking different beaches to<br>pick up escaped shellfish gear and other trash (regardless of whether it<br>is generated by the project). Cleanup events may also be organized to<br>remove floating debris in areas where circulation patterns result in<br>accumulation. The volume and type of shellfish gear collected, the<br>cleanup location (marked on a chart or described with GPS coordinates),<br>and duration of cleanup activity shall be recorded and documented in the<br>annual report.                                                                     | Growers                                                                  | VPD                                                                                                                                    | Quarterly<br>clean up<br>events |              |      | x     |        | Growers document<br>compliance with<br>measure in an<br>annual report<br>VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year                                                                                             |                                        |         | x        |               |
| Gear<br>Removal<br>Management<br>Plan                                                            | GRMP-1                       | <b>Bond Requirement.</b> Prior to starting construction within the project site, the Grower must provide a surety bond or letter of credit to VPD for \$65,000. VPD may revise the required bond amount as necessary based upon additional information regarding the actual costs of gear removal and site cleanup.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Growers                                                                  | VPD                                                                                                                                    | None                            | x            |      |       |        | VPD to retain a record of surety bond                                                                                                                                                                                                                                                               | x                                      |         |          |               |

|                                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                                                                | Implementa                                                                                                                                                                                                                  | ition Tim    | ing  |       |        | Reporting Timing                                                                                                                                                                                                                                                                                                                                              |                                                                                              |         |          |                                           |
|-------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------|----------|-------------------------------------------|
| Source                                    | Mitigation<br>Measure<br>No. | Measure (Including Plan Summary Text)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Responsible<br>Party | Enforcing<br>Agency                                                            | Details                                                                                                                                                                                                                     | Pre-<br>Con. | Con. | Oper. | Decom. | Reporting Details                                                                                                                                                                                                                                                                                                                                             | Immediately                                                                                  | Monthly | Annually | ≥180<br>Days                              |
| Gear<br>Removal<br>Management<br>Plan     | GRMP-2                       | <ul> <li>Permit or Authorization Renewal and Expiration. No less than 180 days of an individual VPD permit or authorization expiration date, Growers shall notify VPD of their operational intent. Growers seeking to discontinue operations shall submit a non-renewal notice. Growers interested in continuing operations shall submit a renewal application to VPD. During VPD review of the renewal application Grower operation activities may continue until VPD has notified the Grower of the renewal application has not been approved:</li> <li>Upon expiration of the overall permits for the VSE project, or individual VPD authorization held by a Grower, the Grower shall commence removal of all aquaculture gear and structures within 30 days of permit expiration. If a portion of the Grower shall have a total of 90 days after permit expiration to harvest any and all remaining shellfish, remove all aquaculture gear and structures, remove any significant shell accumulation or marine debris from the seafloor under its farm site as well as any known debris from its farm site that is located beyond the farm boundaries, and return the site to its original condition.</li> </ul> | Growers              | VPD, VPD<br>Harbor Patrol,<br>and the Corps                                    | Growers<br>notify VPD<br>no less than<br>180 days of<br>permit<br>expiration;<br>gear<br>removal up<br>to 90 days<br>after notice<br>of permit<br>expiration if<br>a portion of<br>the farm is<br>not ready<br>for harvest. |              |      |       | x      | For renewal<br>applications, VPD<br>reviews and notifies<br>Growers of renewal<br>decision.<br>Growers report to<br>VPD upon removal of<br>gear, structures, and<br>any debris.<br>VPD reviews and<br>compiles reports<br>documenting<br>compliance and<br>forwards to the<br>Corps, CCC, and<br>NOAA Fisheries within<br>30 days of notice of<br>completion. | X<br>(gear removal<br>within 30 or 90<br>days, as<br>applicable)                             |         |          | X<br>(Notify no<br>less than<br>180 days) |
| Biological<br>Assessment                  | NAV-1                        | <b>Update NOAA Charts.</b> VPD to submit to the NOAA Office of Coast Survey:<br>(a) the geographical coordinates of the facility boundaries obtained using<br>a different geographic position unit or comparable navigational<br>equipment; (b) as-built plans of the facility and associated buoys and<br>anchors; (c) each Grower's point of contact and telephone number; and<br>(d) any other information required by the NOAA Office of Coast Survey to<br>accurately portray the location of the shellfish cultivation facility on<br>navigational charts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Growers              | VPD, NOAA<br>Office of Coast<br>Survey                                         | None                                                                                                                                                                                                                        |              | x    |       |        | Growers submit as-<br>built plans and<br>required information<br>to VPD immediately<br>after the completion<br>of construction.<br>VPD compiles as-built<br>plans and submits to<br>the NOAA Office<br>within 7 days of<br>completion of<br>construction.                                                                                                     | X                                                                                            |         |          |                                           |
| Biological<br>Assessment                  | NAV-2                        | <b>Notice to Mariners.</b> No less than 15-days prior to the start of in-water activities associated with the installation phase of the project, VPD shall submit to USCG (for publication in a Notice to Mariners) and the harbormasters from Point Conception to Long Beach (for posting in their offices or public noticeboards), notices containing the anticipated start date of installation, the anticipated installation schedule, and the coordinates of the installation sites. During installation, VPD shall also make radio broadcast announcements to the local fishers' emergency radio frequency that provide the current installation location and a phone number that can be called for additional information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VPD                  | USCG                                                                           | None                                                                                                                                                                                                                        | x            | x    |       |        | Within 15 days of in-<br>water installation<br>activities - report to<br>U.S. Coast Guard and<br>harbormasters; and<br>VPD weekly radio<br>announcements<br>during construction<br>activities                                                                                                                                                                 | X<br>Within 15 days<br>of installation<br>and weekly<br>broadcasts<br>during<br>construction |         |          |                                           |
| Predator<br>Control<br>Management<br>Plan | PC-1                         | <b>Predator Control Procedures.</b> The following predator control actions are allowed to reduce diving duck and seabird predation: lower headrope to 40 feet or lower; be active on the farm; and use protective socking around spat lines. If these predator control measures are unsuccessful, a less preferred method is the addition of buoys to the arrays. No further predator control methods are allowed without prior review and approval by VPD, Corps, and USFWS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Growers              | VPD<br>For approval<br>of other<br>control<br>methods:<br>Corps, USFWS,<br>VPD | None                                                                                                                                                                                                                        |              |      | x     |        | Any deviations from<br>approved predator<br>control methods<br>must also be<br>requested and<br>approved VPD prior<br>to implementation.<br>VPD reviews and<br>forwards Grower's<br>request for deviation                                                                                                                                                     | х                                                                                            |         | x        |                                           |



|                                                |                              |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |                                                                                                                                                                                         | Implementa | ation Timi   | ng   |       |        | Reporting Timing                                                                                                                                                                                                                                                                                                                                                                               |             |         |          |              |
|------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|----------|--------------|
| Source                                         | Mitigation<br>Measure<br>No. | Measure (Including Plan Summary Text)                                                                                                                                                                                                                         | Responsible<br>Party                                                                                                                                                                                                                                | Enforcing<br>Agency                                                                                                                                                                     | Details    | Pre-<br>Con. | Con. | Oper. | Decom. | Reporting Details                                                                                                                                                                                                                                                                                                                                                                              | Immediately | Monthly | Annually | ≥180<br>Days |
| Spill                                          | SPRP-1                       | Spill Compliance and Training. Each Grower operating in the project area                                                                                                                                                                                      | VPD to include                                                                                                                                                                                                                                      | VPD, Corps,                                                                                                                                                                             | None       |              |      |       |        | from approved<br>methods to Corps,<br>USFWS, and NOAA<br>Fisheries. An<br>informational copy<br>will also be sent to<br>CCC.<br>VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year.                                                                                                                                |             |         |          |              |
| Prevention<br>and<br>Response<br>Plan          |                              | shall be trained in, and adhere to, the emergency procedures and spill<br>prevention and response measures specified in the SPRP during all<br>project operations.                                                                                            | this topic in the<br>mandatory-annual<br>compliance<br>training<br>curriculum<br>Growers to comply<br>with measures<br>and plan<br>Growers must<br>attend training<br>provided by VPD<br>or a third-party<br>consultant<br>regarding this<br>topic. | U.S. Coast<br>Guard,<br>California<br>Office of<br>Emergency<br>Services<br>VPD Harbor<br>Patrol to<br>routinely visit<br>the project site<br>and document<br>compliance                |            |              | x    | x     | x      | evidence of training<br>to VPD as part of the<br>annual report<br>VPD compiles annual<br>reports and sends to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year.                                                                                                                                                                                              |             |         | x        |              |
| Spill<br>Prevention<br>and<br>Response<br>Plan | SPRP-2                       | Emergency Response Procedures. All significant releases or threatened<br>releases of a hazardous material, including oil and radioactive materials,<br>requires emergency notification to applicable government agencies.<br>See SPRP for additional details. | Growers                                                                                                                                                                                                                                             | VPD,<br>Corps, U.S.<br>Coast Guard,<br>California<br>Office of<br>Emergency<br>Services<br>VPD Harbor<br>Patrol to<br>routinely visit<br>the project site<br>and document<br>compliance | None       |              | x    | X     | x      | Growers immediately<br>report spills, as<br>applicable, to USCG,<br>California Office of<br>Emergency Services,<br>and VPD.<br>Growers describe<br>compliance with the<br>SPRP in the annual<br>report submitted to<br>VPD.<br>VPD will include<br>reported spills and<br>details in annual<br>reports submitted to<br>the Corps, CCC, and<br>NOAA Fisheries by<br>January 31 of each<br>year. | X           |         |          |              |

### Table 2. Summary of the Mitigation, Monitoring, and Reporting Program

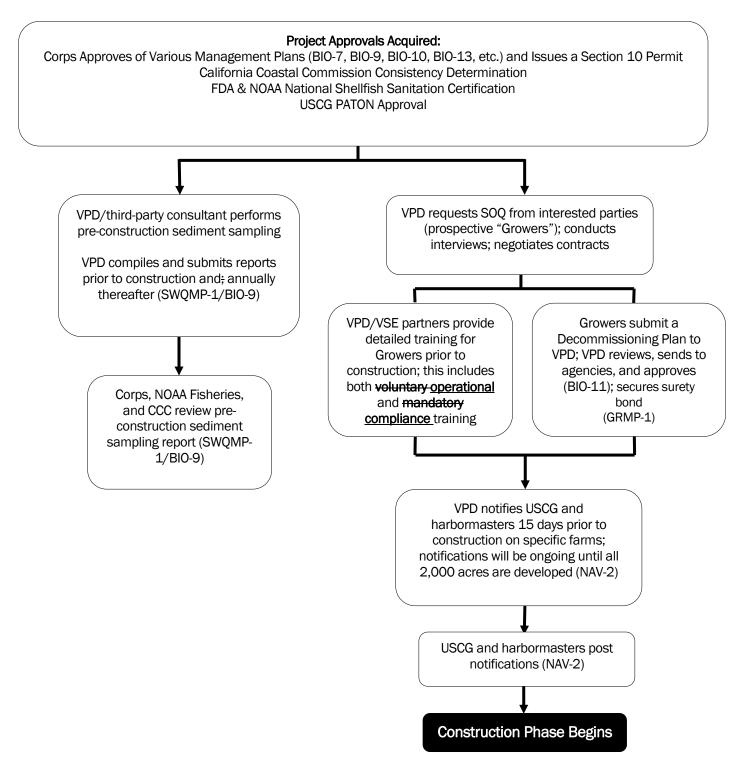
|                                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |                           | Implement | ation Tim    | ing  |       |        | Reporting Timing                                                                                                                                                                                                                                                                                                                     |             |         |          |               |
|----------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|--------------|------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|----------|---------------|
| Source                                                         | Mitigation<br>Measure<br>No. | Measure (Including Plan Summary Text)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Responsible<br>Party                                                                                                                                                                    | Enforcing<br>Agency       | Details   | Pre-<br>Con. | Con. | Oper. | Decom. | Reporting Details                                                                                                                                                                                                                                                                                                                    | Immediately | Monthly | Annually | ≥ 180<br>Days |
| Sediment and<br>Water Quality<br>Management<br>Plan<br>(SWQMP) | SWQMP-1                      | Substrate Sampling. Third-party surveys will be conducted prior to<br>construction to determine if rocky reef or other Essential Fish Habitat<br>(EFH) or Habitat Areas of Particular Concern are present in the growing<br>areas. EFH will be charted and completely avoided.<br>Sediment, benthic habitat, and water quality sampling and analysis will<br>be conducted by a third-party consultant prior to construction to establish<br>baseline conditions and, once aquaculture gear has been installed, up to<br>twice annually thereafter. The sampling methodology and analytical<br>parameters are detailed in the SWQMP. Each aquaculture farm will be<br>evaluated based on the benthic monitoring and a sub-permit assessment<br>will be provided indicating any biological effects of the Grower's<br>operation on the environment as determined by toxicity, chemistry, water<br>quality and benthic community condition. | Third-party<br>consultant hired<br>by VPD to conduct<br>surveys,<br>evaluation, and<br>monitoring<br>Growers are<br>responsible for<br>costs of benthic<br>monitoring and<br>evaluation | VPD and NOAA<br>Fisheries | None      | X            |      | x     |        | Third-party consultant<br>will provide VPD with<br>the results of benthic<br>surveys and sampling<br>prior to construction<br>and up to twice per<br>year after<br>construction.<br>VPD will review and<br>compile annual<br>reports and send to<br>the Corps, CCC, and<br>NOAA Fisheries<br>annually by January<br>31 of each year. |             |         | x        |               |

Notes: Upon permit approval, and based on agency conditions, measures may be revised, removed, or added throughout this Plan.





# 7 Monitoring and Reporting Responsibilities


As a public agency and the permittee for the project, it is important to VPD that all shellfish Growers comply with all project requirements and conditions. This section provides a clear delineation of responsibility for the required permit conditions, measures, and BMPs that were discussed in Section 6, Overview of Project Permits and Conditions, to assist all responsible parties in complying with all measures required for project compliance. Flowcharts 1 through 4 are intended to show the process for pre-construction, construction, operations, and decommissioning activities, respectively. Tables 3 through 6 are intended to explain the responsibilities for each entity for those measures required during pre-construction, construction, and decommissioning activities, respectively.

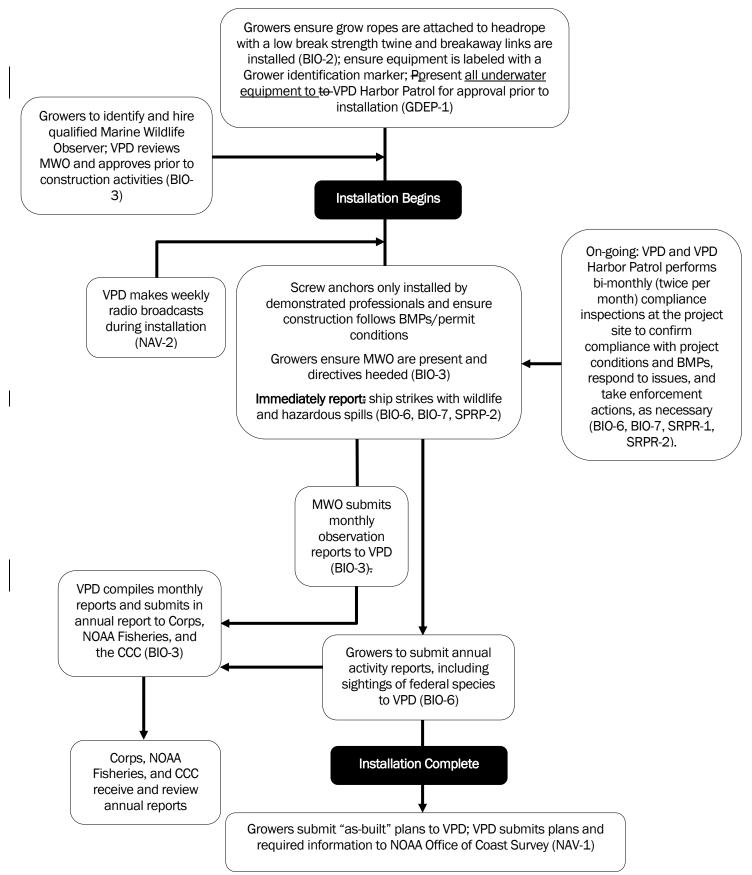
## 7.1 Monitoring

VPD seeks to establish a partnership with NOAA, the Corps, and USCG to share responsibilities associated with monitoring, oversight, enforcement, and overall management of the project. <u>The agencies will retain full monitoring</u> and enforcement responsibilities pursuant to their regulatory authorities. VPD's role will be to assist with monitoring. <u>reporting</u>, and enforcement efforts. As such, VPD proposes to retain partial oversight and control over the project, while delegating responsibility for compliance with the operational conditions associated with the project to individual Growers through Letters of Permissions (LOPs) issued by the Corps (see Section 4). VPD, as master permit holder, will require Growers to adhere to all permit obligations and to ensure ongoing compliance with regulatory agency requirements, memorialized in agreements between the Growers and VPD.

Table 2, above, provides a summary of the project conditions required for this project. Refer to Appendices A-<u>C</u> through F-<u>H</u> for complete details for each measure summarized in Table 2. In addition to those actions described in Flowcharts 1 through 4 and Tables 3 through 6, VPD also plans to conduct regular site visits and inspections using VPD Harbor Patrol to confirm that each growing area is being operated properly and consistent with all regulatory requirements and conditions.

### Flowchart 1. Overview of Pre-Construction Activities




### Table 3. Summary of Pre-Construction Requirements Organized by Mitigation Measure Number and Responsible Entity\*

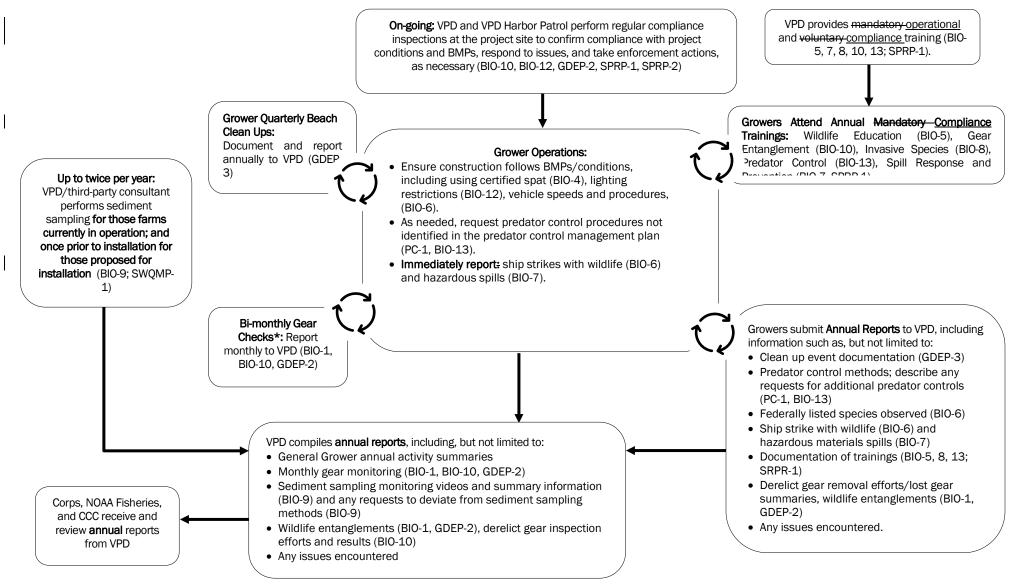
| Responsible<br>Entity | Spill Prevention and Response                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SWQMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gear Monitoring and<br>Escapement Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Decommissioning Plan                                                                                                                                                                                                                                                                       | Predator Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Financial Assurance<br>Requirement                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  | Substrate Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Construc          | BIO-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BIO-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BIO-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BIO-11                                                                                                                                                                                                                                                                                     | BIO-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GRMP-1                                                                                                                                                                                                                                                                                                                                                      | NAV-2                                                                                                                                                                                                            | SWQMP-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Jawou                 | <ul> <li>Growers must attend training provided by VPD or a third-party consultant regarding this topic.</li> <li>Reporting: <ul> <li>Growers submit evidence of training to VPD as part of the annual report.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                      | - Growers are responsible for the cost of benthic monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Growers must attend<br/>training provided by VPD or<br/>a third-party consultant<br/>regarding this topic.</li> <li>Reporting: <ul> <li>Growers submit evidence<br/>of training to VPD as part of<br/>the annual report.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                     | Reporting:<br>- Prepare a decommissioning plan<br>for the timely removal of all<br>equipment and debris associated<br>with the aquaculture farm; submit<br>the plan to VPD for approval<br>- Submit financial assurances<br>(bond or letter of credit) to<br>guarantee plan implementation | <ul> <li>Growers must attend<br/>training provided by<br/>VPD or a third-party<br/>consultant regarding<br/>this topic.</li> <li>Reporting: <ul> <li>Growers submit</li> <li>evidence of training to</li> </ul> </li> <li>VPD as part of the<br/>annual report.</li> </ul>                                                                                                                                                                                                                         | <ul> <li>Prior to starting construction<br/>within the project site, the<br/>grower must provide a surety<br/>bond or letter of credit to VPD<br/>for \$65,000.</li> <li>VPD may revise the required<br/>bond amount as necessary<br/>based upon additional<br/>information regarding the actual<br/>costs of gear removal and site<br/>cleanup.</li> </ul> |                                                                                                                                                                                                                  | - Growers are responsible for the cost of benthic monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ventura Port District | <ul> <li>VPD or third-party consultant<br/>prepares a Spill Prevention and<br/>Response Plan (SPRP).</li> <li>Note: This Plan has been produced<br/>and submitted to the Corps and<br/>CCC for approval.</li> <li>VPD or third-party consultant to<br/>provide for this topic in the annual<br/>training curriculum.</li> <li>Reporting:</li> <li>VPD compiles annual reports and<br/>sends to the Corps, CCC, and NOAA<br/>Fisheries annually by January 31 of<br/>each year.</li> </ul> | <ul> <li>VPD or third- party consultant prepares a<br/>Sediment Water Quality Management Plan<br/>(SWQMP).</li> <li>Note: This Plan has been produced and<br/>submitted to the Corps and CCC for<br/>approval.</li> <li>VPD hires third-party consultant to<br/>conduct benthic monitoring.</li> <li>Prior to construction, third-party consultant<br/>performs benthic sampling and coordinate<br/>with approved laboratories for analysis.</li> <li>Reporting:</li> <li>All benthic sampling and laboratory data<br/>will be sent to VPD by third-party consultant<br/>in a report for review and compilation into<br/>an annual report.</li> <li>VPD will review benthic monitoring reports,<br/>compile annual reports, and send to the<br/>Corps, CCC, and NOAA Fisheries annually by<br/>January 31 of each year.</li> </ul> | <ul> <li>VPD or third-party<br/>consultant prepares an<br/>Aquaculture Gear<br/>Monitoring &amp; Marine<br/>Debris, and Wildlife<br/>Entanglement Plan (GDEP).<br/>Note: This Plan has been<br/>produced and submitted to<br/>the Corps and CCC for<br/>approval.</li> <li>VPD or third-party<br/>consultant to provide for<br/>this topic in the annual<br/>training curriculum.<br/><b>Reporting:</b></li> <li>VPD compiles annual<br/>reports and sends to the<br/>Corps, CCC, and NOAA<br/>Fisheries annually by<br/>January 31 of each year.</li> </ul> | - VPD review and approve of<br>Grower submitted plan or request<br>additional information or revisions<br>- Periodically review financial<br>assurances to guarantee<br>implementation of the<br>decommissioning plan.                                                                     | <ul> <li>VPD or third-party<br/>consultant prepares a<br/>Predator Control<br/>Management Plan<br/>Note: This Plan has<br/>been produced and<br/>submitted to the Corps<br/>and CCC for approval.</li> <li>VPD or third-party<br/>consultant to provide<br/>for this topic in the<br/>annual training<br/>curriculum.</li> <li>Reporting:</li> <li>VPD compiles annual<br/>reports and sends to<br/>the Corps, CCC, and<br/>NOAA Fisheries annually<br/>by January 31 of each<br/>year.</li> </ul> | <ul> <li>At construction and annually<br/>thereafter ensure financial<br/>assurance has been received<br/>and approved</li> <li>Retain record of financial<br/>assurance</li> </ul>                                                                                                                                                                         | Reporting:<br>- Within 15 days of<br>in-water installation<br>activities - report to<br>USCG and<br>harbormasters with<br>required information<br>- USCG and<br>harbormasters<br>receive and post<br>information | <ul> <li>VPD retains third-party<br/>consultant to conduct benthic<br/>monitoring and coordinate with<br/>approved laboratories for analysis.</li> <li>Reporting: <ul> <li>All benthic sampling and<br/>laboratory data will be sent to VPD<br/>by third-party consultant in a<br/>report for review and compilation<br/>into an annual report</li> <li>VPD compiles annual reports and<br/>sends to the Corps, CCC, and<br/>NOAA Fisheries annually by<br/>January 31 of each year.</li> </ul> </li> </ul> |
| Corps                 | <ul> <li>Corps is currently reviewing the SPRP.</li> <li>Receive and review annual reports submitted by VPD.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Corps is currently reviewing the SWQMP.</li> <li>Receive and review annual reports<br/>submitted by VPD.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Corps is currently<br/>reviewing the GDEP.</li> <li>Receive and review<br/>annual reports submitted<br/>by VPD.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          | - Receive and review<br>decommissioning plans; request<br>information, deny, or approve.                                                                                                                                                                                                   | - Corps is currently<br>reviewing the PCMP.<br>- Receive and review<br>annual reports<br>submitted by VPD.                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                  | - Receive and review annual reports submitted by VPD.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30<br>30              | - CCC is currently reviewing the<br>SPRP.<br>- Receive and review annual<br>reports submitted by VPD.                                                                                                                                                                                                                                                                                                                                                                                     | - CCC is currently reviewing the submitted<br>SWQMP.<br>- Receive and review annual reports from<br>VPD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>- CCC is currently reviewing<br/>the GDEP.</li> <li>- Receive and review<br/>annual reports submitted<br/>by VPD.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                            | - CCC is currently<br>reviewing the PCMP.<br>- Receive and review<br>annual reports<br>submitted by VPD.                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                  | - Receive and review annual reports from VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NOAA<br>Fisheries     | - Receive and review annual reports submitted by VPD.                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Receive and review<br>annual reports submitted<br>by VPD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            | - Receive and review<br>annual reports<br>submitted by VPD.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                  | - Receive and review annual reports from VPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| US Coast<br>Guard     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                             | - Receive and post<br>information                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

\* See Table 2 and associated management plans (Appendices A-C through FH) for complete requirement details. See Section 7.2, Reporting, for reporting requirements.



### Flowchart 2. Overview of Construction Activities




### Table 4. Summary of Construction Requirements Organized by Mitigation Measure Number and Responsible Entity\*

| Responsible                                      | Entanglement<br>Prevention                                                                                                                                                                                                                                                                                                                                                                                      | Marine Wildlife Observer                                                                                                                                                                                                                                                                                                                                                                        | Vessel Management                                                                                                                                                                                                                                                                                                                                                                                         | Spill Prevention and<br>Response                                                                                                                                                                                                                                                                                                                               | Equipment<br>Identification                                                                                                                                                                                                                                                                                              | Update NOAA Charts                                                                                                                                                                 | Notice to Mariners                                                                                                                                                                                                                                              | Spill Compliance and Training                                                                                                                                                                                                                                                                                                               | Emergency<br>Response<br>Procedures                                                                                                                                                                                   |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entity                                           | BIO-2                                                                                                                                                                                                                                                                                                                                                                                                           | BIO-3                                                                                                                                                                                                                                                                                                                                                                                           | BIO-6                                                                                                                                                                                                                                                                                                                                                                                                     | BIO-7                                                                                                                                                                                                                                                                                                                                                          | GDEP-1                                                                                                                                                                                                                                                                                                                   | NAV-1                                                                                                                                                                              | NAV-2                                                                                                                                                                                                                                                           | SPRP-1                                                                                                                                                                                                                                                                                                                                      | SPRP-2                                                                                                                                                                                                                |
| Construction                                     |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |
| Grower                                           | <ul> <li>Prior to installation,<br/>present gear to VPD<br/>Harbor Patrol for<br/>inspection.</li> <li>Attach grow ropes to<br/>the head rope with a<br/>low-breaking-strength<br/>twine. Install a 1,4<u>7</u>00-<br/>pound breakaway link<br/>between surface<br/>marking buoys and the<br/>vertical lines.</li> </ul>                                                                                        | <ul> <li>Identify and hire qualified<br/>Marine Wildlife Observers<br/>(MWOs) and submit their<br/>resumes to VPD for approval.</li> <li>Ensure a qualified MWO is<br/>present during construction<br/>activities and that observers'<br/>directives are heeded.</li> <li><b>Reporting:</b></li> <li>MWOs submit monthly<br/>observation reports to VPD by<br/>the 5th of the month.</li> </ul> | <ul> <li>Ensure vessels maintain<br/>specified distances, speeds,<br/>and other specifics of BIO-6<br/>from cetaceans, pinnipeds,<br/>and sea turtles.</li> <li>Reporting: <ul> <li>Report to VPD sightings of<br/>federally-listed whales or<br/>turtles in an annual report.</li> <li>Immediately report ship<br/>strikes or adverse interactions<br/>to NOAA Fisheries and VPD.</li> </ul> </li> </ul> | <ul> <li>Ensure any vessels traveling<br/>to and from the project site<br/>adhere to the requirements<br/>outlined in the SPRP.</li> <li>Reporting:</li> <li>Immediately report spills to<br/>the USCG, California Office of<br/>Emergency Services, and VPD.</li> <li>In annual report submitted to<br/>VPD describe compliance with<br/>the SPRP.</li> </ul> | - Prior to installation,<br>present <u>all underwater</u><br><u>equipment gear</u> to Harbor<br>Patrol for inspection.<br>Ensure floating<br>equipment will have<br>permanent markers or an<br>attached metal or plastic<br>tag with the identifying<br>number of the Grower.<br>Attach information<br>securely to gear. | Reporting:<br>- Growers are responsible<br>for the submission of as-<br>built plans to VPD<br>immediately after the<br>completion of<br>construction.                              |                                                                                                                                                                                                                                                                 | <ul> <li>Growers must attend training provided by VPD or a third-party consultant regarding this topic.</li> <li>Ensure employees comply with measures and plan.</li> <li>Reporting:</li> <li>Growers submit evidence of training to VPD as part of the annual report</li> </ul>                                                            | Reporting:<br>- Growers<br>immediately report<br>spills to the USCG,<br>California Office of<br>Emergency<br>Services, and VPD.<br>- In annual report<br>submitted to VPD<br>describe<br>compliance with the<br>SPRP. |
| Ventura Port<br>District                         | <ul> <li>VPD Harbor Patrol to<br/>provide a visual<br/>inspection of<br/>equipment prior to<br/>installation.</li> <li>Reporting:</li> <li>VPD Harbor Patrol to<br/>retain a record of<br/>Grower compliance<br/>and include in the<br/>annual report.</li> <li>VPD compiles annual<br/>reports and sends to<br/>the Corps, CCC, and<br/>NOAA Fisheries<br/>annually by January 31<br/>of each year.</li> </ul> | <ul> <li>Review resumes and approve of MWOs. Retain a list of qualified MWOs.</li> <li>Receive, review, and compile all monthly reports from MWOs.</li> <li>Reporting: <ul> <li>Submits monthly compiled reports to the Corps, CCC, and NOAA Fisheries by 15th of the month.</li> </ul> </li> </ul>                                                                                             | <ul> <li>VPD Harbor Patrol enforces<br/>vessel management measures.</li> <li>Reporting: <ul> <li>VPD compiles annual reports<br/>and sends to the Corps, CCC,<br/>and NOAA Fisheries annually by<br/>January 31 of each year.</li> </ul> </li> </ul>                                                                                                                                                      | <ul> <li>VPD Harbor Patrol routinely<br/>visits project site and<br/>documents compliance with<br/>the SRPR.</li> <li>Reporting:</li> <li>VPD compiles annual reports<br/>and sends to the Corps, CCC,<br/>and NOAA Fisheries annually<br/>by January 31 of each year.</li> </ul>                                                                              | Reporting:<br>- VPD Harbor Patrol to<br>document inspections<br>and retain a record of<br>Grower compliance to<br>include in the annual<br>report.<br>- VPD compiles annual<br>reports and sends to the<br>Corps, CCC, and NOAA<br>Fisheries annually by<br>January 31 of each year.                                     | Reporting:<br>- VPD compiles as-built<br>plans and required<br>information and submits<br>to the NOAA Office of<br>Coast Survey within 7<br>days of completion of<br>construction. | - Weekly during<br>installation, make radio<br>broadcast<br>announcements to the<br>local fishers' emergency<br>radio frequency that<br>provide the current<br>installation location and<br>a phone number that<br>can be called for<br>additional information. | Reporting:<br>- Documents notifications of spills<br>and Grower reporting pathway in<br>annual report.<br>- VPD or third-party consultant to<br>provide for this topic in the<br>annual training curriculum.<br>- VPD compiles annual reports<br>and sends to the Corps, CCC, and<br>NOAA Fisheries annually by<br>January 31 of each year. | Reporting:<br>- VPD compiles<br>annual reports and<br>sends to the Corps,<br>CCC, and NOAA<br>Fisheries annually<br>by January 31 of<br>each year.                                                                    |
| Corps                                            | - Receive and review<br>annual reports from<br>VPD.                                                                                                                                                                                                                                                                                                                                                             | - Receive and review monthly<br>compiled MWO reports from<br>VPD.                                                                                                                                                                                                                                                                                                                               | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                                                                             | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                                  | - Receive and review<br>annual reports from VPD.                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                               | - Receive and<br>review annual<br>reports from VPD.                                                                                                                                                                   |
| CCC                                              | - Receive and review<br>annual reports from<br>VPD.                                                                                                                                                                                                                                                                                                                                                             | - Receive and review monthly<br>compiled MWO reports from<br>VPD.                                                                                                                                                                                                                                                                                                                               | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                                                                             | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                                  | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                               | - Receive and<br>review annual<br>reports from VPD.                                                                                                                                                                   |
| NOAA<br>Fisheries                                | - Receive and review<br>annual reports from<br>VPD.                                                                                                                                                                                                                                                                                                                                                             | - Receive and review monthly<br>compiled MWO reports from<br>VPD.                                                                                                                                                                                                                                                                                                                               | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                                                                             | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                                  | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                               | - Receive and<br>review annual<br>reports from VPD.                                                                                                                                                                   |
| US Coast<br>Guard                                |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 | - Enforces vessel management measures.                                                                                                                                                                                                                                                                                                                                                                    | - Respond to any immediate reporting of spills                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 | - Respond to any immediate reporting of spills                                                                                                                                                                                                                                                                                              | - Respond to any<br>immediate reporting<br>of spills                                                                                                                                                                  |
| NOAA Office<br>of Coast<br>Survey                |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          | - Receive and review<br>compiled as-built plans<br>from VPD.                                                                                                                       |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |
| State and<br>Fed. Govt.                          |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 | - Respond to any immediate reporting of spills                                                                                                                                                                                                                                                                                              | <ul> <li>Respond to any<br/>immediate reporting<br/>of spills</li> </ul>                                                                                                                                              |
| California<br>Office of<br>Emergency<br>Services |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                           | - Respond to any immediate reporting of spills                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 | - Respond to any immediate reporting of spills                                                                                                                                                                                                                                                                                              | - Respond to any<br>immediate reporting<br>of spills                                                                                                                                                                  |

\* See Table 2 and associated Management Plans (Appendices A-<u>C</u> through <u>F</u><u>H</u>) for complete requirement details. See Section 7.2, Reporting, for reporting requirements.



### Flowchart 3. Overview of Operations Activities



\* Gear checks may be reduced to quarterly checks if no marine wildlife entanglements occur within the first 2 years. Gear checks are also required after significant swell events, defined as when wave heights reach greater than 8.0 feet (2.44 meters) at NOAA Station 46217- Anacapa Passage, CA (111), located approximately 6.5 miles southwest from the project site.

### Table 5. Summary of Operation Requirements Organized by Mitigation Measure Number and Responsible Entity\*

| Responsible | Entanglement<br>Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cultivation of<br>Spat Off site                                                                                                                                                                                                                                                                                                                                                         | Marine<br>Wildlife<br>Education                                                                                                                                                                                                                         | Vessel<br>Management                                                                                                                                                                                                                                                                                                                                                                                | Spill<br>Prevention<br>and Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Invasive<br>Species                                                                                                                                                                                                                                       | SWQMP                                                                                                                                   | Gear<br>Monitoring<br>and<br>Escapement<br>Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lighting                                                                                                                                                                                                                                              | Predator<br>Control                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inspecting<br>Equipment                                                                                                                                                                                                                                                                                                                                                                    | Clean Up<br>Events                                                                                                                                                                                  | Predator<br>Control<br>Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spill<br>Compliance<br>and<br>Training                                                                                                                                                                                                                                                                                     | Emergency<br>Response<br>Procedures                                                                                                                                                                                                  | Substrate<br>Sampling                                                                                                                    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Entity      | BIO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BIO-4                                                                                                                                                                                                                                                                                                                                                                                   | BIO-5                                                                                                                                                                                                                                                   | BIO-6                                                                                                                                                                                                                                                                                                                                                                                               | BIO-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BIO-8                                                                                                                                                                                                                                                     | BIO-9                                                                                                                                   | BIO-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BIO-12                                                                                                                                                                                                                                                | BIO-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GDEP-2                                                                                                                                                                                                                                                                                                                                                                                     | GDEP-3                                                                                                                                                                                              | PC-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPRP-1                                                                                                                                                                                                                                                                                                                     | SPRP-2                                                                                                                                                                                                                               | SWQMP-1                                                                                                                                  |
| Operations  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |                                                                                                                                          |
| Grower      | <ul> <li>At least twice<br/>per month<br/>conduct visual<br/>inspections<br/>(first two<br/>years); if no<br/>issues, may be<br/>reduced to<br/>quarterly<br/>thereafter.</li> <li>Reporting:</li> <li>Submit<br/>documentation<br/>of gear<br/>inspections to<br/>VPD by the 5th<br/>of each month.</li> <li>Provide a<br/>monthly report<br/>to VPD by the<br/>5th of each<br/>month.</li> <li>Report all<br/>incidences of<br/>entanglement<br/>immediately to<br/>SOS WHALe<br/>(whales) or<br/>NOAA Fisheries<br/>Marine<br/>Mammal<br/>Stranding<br/>Network<br/>Coordinator,<br/>West Coast<br/>Region (any<br/>other marine<br/>wildlife).</li> </ul> | - Only hatchery-<br>reared mussel<br>spat grown at a<br>facility certified by<br>CDFW will be<br>used; however,<br>mussel spat<br>naturally adhering<br>to farm grow-out<br>lines may also be<br>cultivated.<br>- Retain records<br>of purchases<br>from CDFW<br>certified facilities.<br><b>Reporting:</b><br>- Submit<br>documentation of<br>purchases in<br>annual report to<br>VPD. | - Growers<br>must attend<br>annual<br>training<br>provided by<br>VPD or a<br>third-party<br>consultant<br>regarding this<br>topic.<br><b>Reporting:</b><br>- Growers<br>submit<br>evidence of<br>training to<br>VPD as part<br>of the annual<br>report. | - Ensure<br>vessels<br>maintain<br>specified<br>distances,<br>speeds, and<br>other specifics<br>of BIO-6 from<br>cetaceans,<br>pinnipeds, and<br>sea turtles.<br><b>Reporting:</b><br>- Report to VPD<br>sightings of<br>federally-listed<br>whales or<br>turtles in an<br>annual report.<br>- Immediately<br>report ship<br>strikes or<br>adverse<br>interactions to<br>NOAA Fisheries<br>and VPD. | <ul> <li>Ensure any<br/>vessels traveling<br/>to and from the<br/>project site<br/>adhere to the<br/>requirements<br/>outlined in the<br/>SPRP. Report<br/>releases of<br/>hazardous<br/>material to<br/>appropriate<br/>state and<br/>federal<br/>government<br/>agencies and<br/>VPD. See SPRP<br/>for additional<br/>details,<br/>including<br/>reporting<br/>requirements.</li> <li>Growers must<br/>attend annual<br/>training<br/>provided by VPD<br/>or a third-party<br/>consultant<br/>regarding this<br/>topic.</li> <li><b>Reporting:</b></li> <li>Immediately<br/>report spills to<br/>USCG (ocean-<br/>based spills),<br/>California Office<br/>of Emergency<br/>Services, and<br/>VPD.</li> <li>In annual<br/>report<br/>submitted to<br/>VPD describe<br/>compliance with<br/>the SPRP and<br/>evidence of<br/>training.</li> </ul> | - Growers<br>must attend<br>annual<br>training<br>provided by<br>VPD or a<br>third-party<br>consultant<br>regarding<br>this topic.<br><b>Reporting:</b><br>- Growers<br>submit<br>evidence of<br>training to<br>VPD as part<br>of the<br>annual<br>report | - Growers<br>are<br>responsible<br>for cost of<br>benthic<br>monitoring.<br>Benthic<br>sampling to<br>occur up to<br>twice per<br>year. | Growers to<br>implement<br>plan<br>procedures,<br>including<br>conducting and<br>documenting<br>gear<br>inspections<br>twice per<br>month.<br>- Growers must<br>attend annual<br>training<br>provided by<br>VPD or a third-<br>party<br>consultant<br>regarding this<br>topic.<br><b>Reporting:</b><br>- Submit<br>documentation<br>of gear<br>inspections to<br>VPD by the 5th<br>of each month.<br>- Growers<br>submit<br>evidence of<br>training to VPD<br>as part of the<br>annual report. | - Ensure all<br>operations<br>are<br>completed<br>during<br>daylight<br>hours. No<br>night<br>operations<br>are allowed.<br>- No<br>permanent<br>artificial<br>lighting shall<br>occur except<br>navigational<br>safety buoys<br>required by<br>USCG. | <ul> <li>Implement<br/>identified<br/>predator<br/>control<br/>methods, as<br/>necessary.<br/>Request<br/>VPD<br/>approval for<br/>deviations<br/>from<br/>predator<br/>control plan.</li> <li>Growers<br/>must attend<br/>annual<br/>training<br/>provided by<br/>VPD or a<br/>third-party<br/>consultant<br/>regarding<br/>this topic.</li> <li>Reporting:<br/>- Submit<br/>evidence of<br/>training to<br/>VPD as part<br/>of the<br/>annual<br/>report</li> </ul> | Growers to<br>implement<br>plan<br>procedures,<br>including<br>documenting<br>gear<br>inspections<br>twice per<br>month.<br>- Growers are<br>responsible for<br>payment of<br>equipment<br>inspections.<br><b>Reporting:</b><br>- Submit<br>documentation<br>of gear<br>inspections to<br>VPD by the 5th<br>of each month.<br>- Immediately<br>report marine<br>wildlife<br>entanglements. | - Carry out<br>quarterly<br>clean up<br>events on<br>nearby<br>beaches in<br>Ventura<br>and Santa<br>Barbara.<br><b>Reporting:</b><br>- Record<br>and<br>document<br>in annual<br>report to<br>VPD. | <ul> <li>If needed,<br/>implement<br/>identified<br/>procedures<br/>in the PCMP:<br/>lower<br/>backbone to<br/>40 feet, be<br/>active, no<br/>additional<br/>buoys, use<br/>protective<br/>socking<br/>around lines.</li> <li><b>Reporting:</b></li> <li>If active<br/>predator<br/>management<br/>is required,<br/>seek<br/>approval<br/>from VPD<br/>and other<br/>regulatory<br/>agencies. If<br/>approved,<br/>describe<br/>actions taken<br/>to control<br/>predator<br/>control<br/>activities and<br/>details in<br/>annual report<br/>to VPD.</li> </ul> | - Growers<br>must attend<br>annual<br>training<br>provided by<br>VPD or a<br>third-party<br>consultant<br>regarding<br>this topic.<br>- Ensure<br>employees<br>comply with<br>measures<br>and plan.<br><b>Reporting:</b><br>- Growers<br>submit<br>evidence of<br>training to<br>VPD as part<br>of the<br>annual<br>report | Reporting:<br>- Growers<br>immediately<br>report spills<br>to the USCG,<br>California<br>Office of<br>Emergency<br>Services, and<br>VPD.<br>- In annual<br>report<br>submitted to<br>VPD describe<br>compliance<br>with the<br>SPRP. | - Growers are<br>responsible<br>for the cost of<br>benthic<br>monitoring.<br>Benthic<br>sampling to<br>occur up to<br>twice per<br>year. |

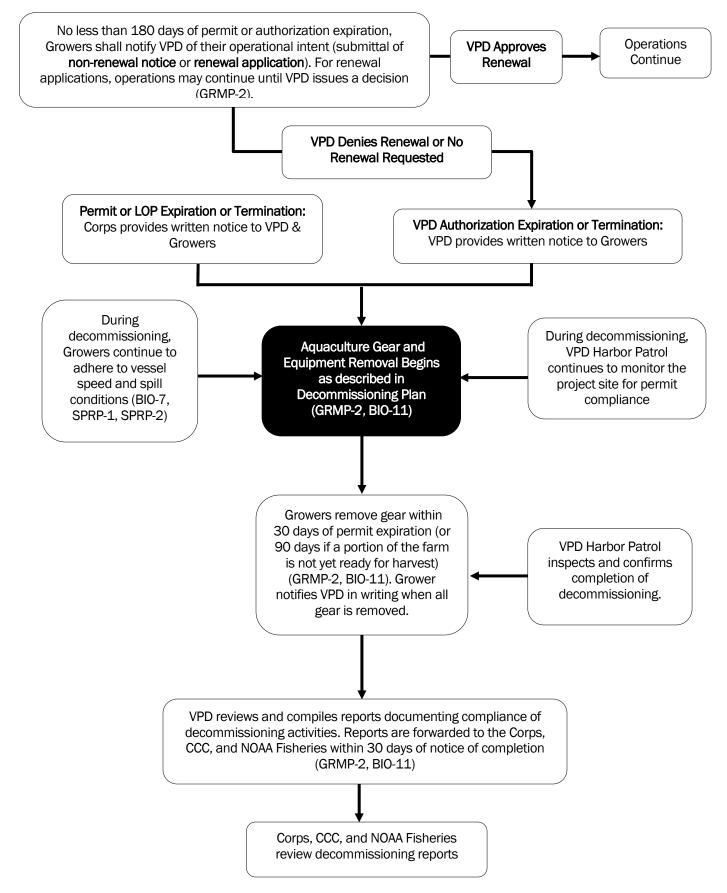
### Table 5. Summary of Operation Requirements Organized by Mitigation Measure Number and Responsible Entity\*

| Responsible              | Entanglement<br>Plan                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cultivation of<br>Spat Off site                                                                                                                       | Marine<br>Wildlife<br>Education                                                                                                                                                                                                                                                                                                              | Vessel<br>Management                                                                                                                                                                                                                                                                                                                                                                                                                  | Spill<br>Prevention<br>and Response                                                                                                                                                                                                                                                                                                            | Invasive<br>Species                                                                                                                                                                                                                                                                        | SWQMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gear<br>Monitoring<br>and<br>Escapement<br>Plan                                                                                                                                                                                                                                                                                                                                                                                                                         | Lighting                                                                                                                                                                                                                                                                                                             | Predator<br>Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inspecting<br>Equipment                                                                                                                                                                                                                                                                                       | Clean Up<br>Events                                                                                                                                                      | Predator<br>Control<br>Procedures                                                                                                                                                                                                                                                          | Spill<br>Compliance<br>and<br>Training                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Emergency<br>Response<br>Procedures                                                                                                                                                                                                                                                               | Substrate<br>Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entity                   | BIO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BIO-4                                                                                                                                                 | BIO-5                                                                                                                                                                                                                                                                                                                                        | BIO-6                                                                                                                                                                                                                                                                                                                                                                                                                                 | BIO-7                                                                                                                                                                                                                                                                                                                                          | BIO-8                                                                                                                                                                                                                                                                                      | BIO-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BIO-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BIO-12                                                                                                                                                                                                                                                                                                               | BIO-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GDEP-2                                                                                                                                                                                                                                                                                                        | GDEP-3                                                                                                                                                                  | PC-1                                                                                                                                                                                                                                                                                       | SPRP-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPRP-2                                                                                                                                                                                                                                                                                            | SWQMP-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Operations               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ventura Port<br>District | <ul> <li>VPD Harbor<br/>Patrol will<br/>routinely<br/>assess the<br/>project site for<br/>gear<br/>compliance.</li> <li>VPD reviews<br/>and compiles<br/>monthly<br/>reports and<br/>submits with<br/>an annual<br/>report to the<br/>agencies.</li> <li>Reporting:</li> <li>Compile<br/>monthly<br/>reports into an<br/>annual report.</li> <li>Send annual<br/>report to Corps,<br/>CCC, and NOAA<br/>Fisheries by<br/>Jan. 31 of each<br/>year.</li> </ul> | Reporting:<br>- VPD compiles<br>annual reports<br>and sends to the<br>Corps, CCC, and<br>NOAA Fisheries<br>annually by<br>January 31 of<br>each year. | - VPD or third-<br>party<br>consultant to<br>provide for<br>this topic in<br>the annual<br>training<br>curriculum.<br><b>Reporting:</b><br>- VPD<br>compiles<br>evidence of<br>Grower<br>training to<br>include in<br>annual<br>reports sent<br>to the Corps,<br>CCC, and<br>NOAA<br>Fisheries<br>annually by<br>January 31 of<br>each year. | <ul> <li>VPD Harbor<br/>Patrol enforces<br/>vessel<br/>management<br/>measures.</li> <li>VPD or third-<br/>party<br/>consultant to<br/>provide for this<br/>topic in the<br/>annual training<br/>curriculum.</li> <li><b>Reporting:</b></li> <li>VPD compiles<br/>annual reports<br/>from Growers<br/>and submits<br/>annual reports<br/>to the Corps,<br/>CCC, and NOAA<br/>Fisheries by<br/>January 31 of<br/>each year.</li> </ul> | <ul> <li>- VPD Harbor<br/>Patrol routinely<br/>visits project<br/>site and<br/>documents<br/>compliance with<br/>the SRPR.</li> <li>Reporting:</li> <li>- VPD compiles<br/>annual reports<br/>from Growers<br/>and submits<br/>annual reports<br/>to the Corps,<br/>CCC, and NOAA<br/>Fisheries by<br/>January 31 of<br/>each year.</li> </ul> | - VPD or<br>third-party<br>consultant to<br>provide for<br>this topic in<br>the annual<br>training<br>curriculum.<br><b>Reporting:</b><br>- VPD<br>compiles<br>annual<br>reports and<br>sends to the<br>Corps, CCC,<br>and NOAA<br>Fisheries<br>annually by<br>January 31<br>of each year. | <ul> <li>- VPD</li> <li>retains third-<br/>party</li> <li>consultant to</li> <li>conduct</li> <li>benthic</li> <li>monitoring</li> <li>up to twice</li> <li>per year and</li> <li>coordinate</li> <li>with</li> <li>approved</li> <li>laboratories</li> <li>for analysis.</li> <li>Reporting:</li> <li>- All benthic</li> <li>sampling</li> <li>and</li> <li>laboratory</li> <li>data will be</li> <li>sent to VPD</li> <li>by third-party</li> <li>consultant in</li> <li>a report for</li> <li>review and</li> <li>compilation</li> <li>into an</li> <li>annual</li> <li>report.</li> <li>- VPD</li> <li>reviews</li> <li>benthic</li> <li>sampling</li> <li>reports,</li> <li>compiles</li> <li>with annual</li> <li>reports, and</li> <li>sends to the</li> <li>Corps, CCC,</li> <li>and NOAA</li> <li>Fisheries</li> <li>annually by</li> <li>January 31</li> <li>of each year.</li> </ul> | <ul> <li>VPD Harbor<br/>Patrol routinely<br/>visits project<br/>site and<br/>documents<br/>compliance.</li> <li>VPD or third-<br/>party<br/>consultant to<br/>provide for this<br/>topic in the<br/>annual training<br/>curriculum.</li> <li><b>Reporting:</b></li> <li>VPD to review<br/>and compile<br/>results into the<br/>annual report<br/>and send to<br/>the Corps,<br/>CCC, and NOAA<br/>Fisheries<br/>annually by<br/>January 31 of<br/>each year.</li> </ul> | - VPD Harbor<br>Patrol<br>routinely<br>visits project<br>site and<br>documents<br>compliance.<br><b>Reporting:</b><br>- VPD to<br>report on<br>compliance<br>with this<br>measure in<br>an annual<br>report and<br>send to the<br>Corps, CCC,<br>and NOAA<br>Fisheries<br>annually by<br>January 31 of<br>each year. | <ul> <li>VPD or<br/>third-party<br/>consultant<br/>to provide<br/>for this topic<br/>in the<br/>annual<br/>training<br/>curriculum.</li> <li><b>Reporting:</b></li> <li>VPD<br/>compiles<br/>annual<br/>reports and<br/>sends to the<br/>Corps, CCC,<br/>and NOAA<br/>Fisheries<br/>annually by<br/>January 31<br/>of each year.</li> <li>As needed,<br/>review and<br/>forward<br/>Growers<br/>request for<br/>deviation<br/>from<br/>approved<br/>methods to<br/>Corps,<br/>USFWS, and<br/>NOAA<br/>Fisheries. A<br/>copy will<br/>also be sent<br/>to the CCC.</li> </ul> | - VPD Harbor<br>Patrol routinely<br>visits project<br>site and<br>documents<br>compliance.<br><b>Reporting:</b><br>- VPD to review<br>and compile<br>inspection<br>results into the<br>annual report<br>and send to<br>the Corps, CCC,<br>and NOAA<br>Fisheries<br>annually by<br>January 31 of<br>each year. | Reporting:<br>- VPD<br>compiles<br>annual<br>reports<br>and sends<br>to the<br>Corps,<br>CCC, and<br>NOAA<br>Fisheries<br>annually by<br>January 31<br>of each<br>year. | - VPD or<br>third-party<br>consultant to<br>provide for<br>this topic in<br>the annual<br>training<br>curriculum.<br><b>Reporting:</b><br>- VPD<br>compiles<br>annual<br>reports and<br>sends to the<br>Corps, CCC,<br>and NOAA<br>Fisheries<br>annually by<br>January 31 of<br>each year. | <ul> <li>VPD Harbor<br/>Patrol<br/>routinely<br/>visits project<br/>site and<br/>documents<br/>compliance.</li> <li>VPD to<br/>prepare<br/>training<br/>curriculum.</li> <li>Reporting:</li> <li>Documents<br/>notifications<br/>of spills and<br/>Grower<br/>reporting<br/>pathway in<br/>annual<br/>report.</li> <li>VPD<br/>compiles<br/>annual<br/>reports and<br/>sends to the<br/>Corps, CCC,<br/>and NOAA<br/>Fisheries<br/>annually by<br/>January 31<br/>of each year.</li> </ul> | - VPD Harbor<br>Patrol<br>routinely<br>visits project<br>site and<br>documents<br>compliance.<br><b>Reporting:</b><br>- VPD<br>compiles<br>annual<br>reports from<br>Growers and<br>submits<br>annual<br>reports to the<br>Corps, CCC,<br>and NOAA<br>Fisheries by<br>January 31 of<br>each year. | - VPD<br>retains third-<br>party<br>consultant to<br>conduct<br>benthic<br>monitoring up<br>to twice per<br>year and<br>coordinate<br>with<br>approved<br>laboratories<br>for analysis.<br><b>Reporting:</b><br>- All benthic<br>sampling and<br>laboratory<br>data will be<br>sent to VPD<br>by third-party<br>consultant in<br>a report for<br>review and<br>compilation<br>into an<br>annual report<br>- VPD<br>compiles<br>annual<br>reports and<br>sends to the<br>Corps, CCC,<br>and NOAA<br>Fisheries<br>annually by<br>January 31 of<br>each year. |

### Table 5. Summary of Operation Requirements Organized by Mitigation Measure Number and Responsible Entity\*

| Responsible                         | Entanglement<br>Plan                                                                                                                                                                                      | Cultivation of<br>Spat Off site                     | Marine<br>Wildlife<br>Education                        | Vessel<br>Management                                   | Spill<br>Prevention<br>and Response                     | Invasive<br>Species                                       | SWQMP                                                     | Gear<br>Monitoring<br>and<br>Escapement<br>Plan        | Lighting                                                                         | Predator<br>Control                                                                                                                                                                                                                                    | Inspecting<br>Equipment                                                                    | Clean Up<br>Events                                        | Predator<br>Control<br>Procedures                         | Spill<br>Compliance<br>and<br>Training                     | Emergency<br>Response<br>Procedures                        | Substrate<br>Sampling                                     |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| Entity                              | BIO-1                                                                                                                                                                                                     | BIO-4                                               | BIO-5                                                  | BIO-6                                                  | BIO-7                                                   | BIO-8                                                     | BIO-9                                                     | BIO-10                                                 | BIO-12                                                                           | BIO-13                                                                                                                                                                                                                                                 | GDEP-2                                                                                     | GDEP-3                                                    | PC-1                                                      | SPRP-1                                                     | SPRP-2                                                     | SWQMP-1                                                   |
| Operations                          |                                                                                                                                                                                                           |                                                     | 1                                                      |                                                        |                                                         |                                                           |                                                           |                                                        |                                                                                  |                                                                                                                                                                                                                                                        |                                                                                            | 1                                                         |                                                           |                                                            |                                                            |                                                           |
| Corps                               | - Receive and<br>review annual<br>reports from<br>VPD.                                                                                                                                                    | - Receive and<br>review annual<br>reports from VPD. | - Receive and<br>review annual<br>reports from<br>VPD. | - Receive and<br>review annual<br>reports from<br>VPD. | - Receive and<br>review annual<br>reports from<br>VPD.  | - Receive<br>and review<br>annual<br>reports from<br>VPD. | - Receive<br>and review<br>annual<br>reports from<br>VPD. | - Receive and<br>review annual<br>reports from<br>VPD. | - Receive and<br>review<br>annual<br>reports from<br>VPD.                        | <ul> <li>Receive<br/>and review<br/>annual<br/>reports from<br/>VPD.</li> <li>Receive<br/>and approve<br/>of proposed<br/>deviations<br/>from<br/>predator<br/>control plan<br/>methods.</li> </ul>                                                    | - Receive and<br>review annual<br>reports from<br>VPD.                                     | - Receive<br>and review<br>annual<br>reports<br>from VPD. | - Receive and<br>review<br>annual<br>reports from<br>VPD. | - Receive<br>and review<br>annual<br>reports from<br>VPD.  | - Receive and<br>review<br>annual<br>reports from<br>VPD.  | - Receive and<br>review<br>annual<br>reports from<br>VPD. |
| CCC                                 | - Receive and<br>review annual<br>reports from<br>VPD.                                                                                                                                                    | - Receive and<br>review annual<br>reports from VPD. | - Receive and<br>review annual<br>reports from<br>VPD. | - Receive and<br>review annual<br>reports from<br>VPD. | - Receive and<br>review annual<br>reports from<br>VPD.  | - Receive<br>and review<br>annual<br>reports from<br>VPD. | - Receive<br>and review<br>annual<br>reports from<br>VPD. | - Receive and<br>review annual<br>reports from<br>VPD. | - Receive and<br>review<br>annual<br>reports from<br>VPD.                        | <ul> <li>Receive</li> <li>and review</li> <li>annual</li> <li>reports from</li> <li>VPD.</li> <li>Receive</li> <li>and review</li> <li>proposed</li> <li>deviations</li> <li>from</li> <li>predator</li> <li>control plan</li> <li>methods.</li> </ul> | - Receive and<br>review annual<br>reports from<br>VPD.                                     | - Receive<br>and review<br>annual<br>reports<br>from VPD. | - Receive and<br>review<br>annual<br>reports from<br>VPD. | - Receive<br>and review<br>annual<br>reports from<br>VPD.  | - Receive and<br>review<br>annual<br>reports from<br>VPD.  | - Receive and<br>review<br>annual<br>reports from<br>VPD. |
| NOAA<br>Fisheries                   | - Receive and<br>review annual<br>reports from<br>VPD.     - NOAA<br>Fisheries<br>Marine<br>Mammal<br>Stranding<br>Network<br>Coordinator: to<br>immediately<br>address any<br>reported<br>entanglements. | - Receive and<br>review annual<br>reports from VPD. | - Receive and<br>review annual<br>reports from<br>VPD. | - Receive and<br>review annual<br>reports from<br>VPD. | - Receive and<br>review annual<br>reports from<br>VPD.  | - Receive<br>and review<br>annual<br>reports from<br>VPD. | - Receive<br>and review<br>annual<br>reports from<br>VPD. | - Receive and<br>review annual<br>reports from<br>VPD. | - Receive and<br>review<br>annual<br>reports from<br>VPD.                        | <ul> <li>Receive<br/>and review<br/>annual<br/>reports from<br/>VPD.</li> <li>Receive<br/>and approve<br/>of proposed<br/>deviations<br/>from<br/>predator<br/>control plan<br/>methods.</li> </ul>                                                    | - Receive and<br>review annual<br>reports from<br>VPD.                                     | - Receive<br>and review<br>annual<br>reports<br>from VPD. | - Receive and<br>review<br>annual<br>reports from<br>VPD. |                                                            |                                                            | - Receive and<br>review<br>annual<br>reports from<br>VPD. |
| US Coast<br>Guard                   |                                                                                                                                                                                                           |                                                     |                                                        | - Enforce vessel<br>management<br>measures.            | - Respond to<br>any immediate<br>reporting of<br>spills |                                                           |                                                           |                                                        | - Monitor<br>project site<br>for<br>compliance<br>with lighting<br>restrictions. |                                                                                                                                                                                                                                                        | - Monitor<br>project site for<br>compliance<br>with gear and<br>equipment<br>restrictions. |                                                           |                                                           | - Respond to<br>any<br>immediate<br>reporting of<br>spills | - Respond to<br>any<br>immediate<br>reporting of<br>spills |                                                           |
| State and<br>Federal<br>Governments |                                                                                                                                                                                                           |                                                     |                                                        |                                                        |                                                         |                                                           |                                                           |                                                        |                                                                                  |                                                                                                                                                                                                                                                        |                                                                                            |                                                           |                                                           | - Respond to<br>any<br>immediate<br>reporting of<br>spills | - Respond to<br>any<br>immediate<br>reporting of<br>spills |                                                           |




### Table 5. Summary of Operation Requirements Organized by Mitigation Measure Number and Responsible Entity\*

| Responsible<br>Entity                            | Entanglement<br>Plan<br>BIO-1 | Cultivation of<br>Spat Off site<br>BIO-4 | Marine<br>Wildlife<br>Education<br>BIO-5 | Vessel<br>Management<br>BIO-6 | Spill<br>Prevention<br>and Response<br>BIO-7            | Invasive<br>Species<br>BIO-8 | SWQMP<br>BIO-9 | Gear<br>Monitoring<br>and<br>Escapement<br>Plan<br>BIO-10 | Lighting<br>BIO-12 | Predator<br>Control<br>BIO-13                                                                         | Inspecting<br>Equipment<br>GDEP-2 | Clean Up<br>Events<br>GDEP-3 | Predator<br>Control<br>Procedures<br>PC-1 | Spill<br>Compliance<br>and<br>Training<br>SPRP-1           | Response                                                   | Substrate<br>Sampling<br>SWQMP-1 |
|--------------------------------------------------|-------------------------------|------------------------------------------|------------------------------------------|-------------------------------|---------------------------------------------------------|------------------------------|----------------|-----------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|-------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------|
|                                                  | BIO ±                         | Bio 4                                    | Biolo                                    |                               |                                                         | Biele                        |                |                                                           | BIO 12             |                                                                                                       |                                   |                              | 1.01                                      |                                                            |                                                            |                                  |
| Operations                                       |                               |                                          | _                                        | _                             |                                                         | -                            | -              | _                                                         |                    |                                                                                                       | _                                 |                              | -                                         |                                                            |                                                            |                                  |
| California<br>Office of<br>Emergency<br>Services |                               |                                          |                                          |                               | - Respond to<br>any immediate<br>reporting of<br>spills |                              |                |                                                           |                    |                                                                                                       |                                   |                              |                                           | - Respond to<br>any<br>immediate<br>reporting of<br>spills | - Respond to<br>any<br>immediate<br>reporting of<br>spills |                                  |
| USFWS                                            |                               |                                          |                                          |                               |                                                         |                              |                |                                                           |                    | - Receive<br>and approve<br>of proposed<br>deviations<br>from<br>predator<br>control plan<br>methods. |                                   |                              |                                           |                                                            |                                                            |                                  |

\* See Table 2 and associated Management Plans (Appendices A <u>C</u> through <u>H</u>F) for complete requirement details. See Section 7.2, Reporting, for reporting requirements.



### Flowchart 4. Overview of Decommissioning Activities



### Table 6. Summary of Decommissioning Requirements Organized by Mitigation Measure Number and Responsible Entity\*

| Responsible                                   | Spill Prevention and Response                                                                                                                                                                                                                                                                                                               | Decommissioning Plan                                                                                                                                                                                                                                                                                                                               | Permit /LOP/VPD Authorization Expiration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spill Compliance and Training                                                                                                                                                                                                       | Emergency Response Procedures                                                                                                                                                                  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entity                                        | BIO-7                                                                                                                                                                                                                                                                                                                                       | BIO-11                                                                                                                                                                                                                                                                                                                                             | GRMP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPRP-1                                                                                                                                                                                                                              | SPRP-2                                                                                                                                                                                         |
| Decommissioning                               |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                |
| Grower                                        | <ul> <li>Ensure any vessels traveling to and from the project site adhere to the requirements outlined in the SPRP</li> <li>Reporting: <ul> <li>Immediately report spills to the USCG, California Office of Emergency Services, and VPD</li> <li>In annual report submitted to VPD describe compliance with the SPRP</li> </ul> </li> </ul> | - Adhere to the conditions of the approved plan                                                                                                                                                                                                                                                                                                    | <ul> <li>No less than 180 days, Growers shall notify VPD of their operational intent (non-renewal notice or renewal application).</li> <li>Upon expiration of permit, authorization, or LOP, remove all aquaculture gear and structures within 30 days of permit expiration (or 90 days if a portion of the farm is not yet ready for harvest).</li> <li>Reporting: <ul> <li>No less than 180 days, submittal of a non-renewal notice or renewal application.</li> <li>Report to VPD upon completion of decommissioning plan.</li> </ul> </li> </ul> | <ul> <li>Growers ensure employees attend annual trainings</li> <li>Ensure employees comply with measures and plan</li> <li>Reporting:</li> <li>Growers submit evidence of training to VPD as part of the annual report</li> </ul>   | Reporting:<br>- Growers immediately report spills to the USCG,<br>California Office of Emergency Services, and VPD<br>- In annual report submitted to VPD describe<br>compliance with the SPRP |
| Ventura Port<br>District                      | <ul> <li>VPD Harbor Patrol routinely visits project site and documents compliance with the SPRP</li> <li>Reporting: <ul> <li>VPD compiles annual reports from Growers and submits annual reports to the Corps, CCC, and NOAA Fisheries by January 31 of each year.</li> </ul> </li> </ul>                                                   | <ul> <li>VPD Harbor Patrol monitors implementation of decommissioning in accordance with approved plans.</li> <li>Reporting: <ul> <li>VPD reports on compliance with decommissioning plan after gear, etc. removal in an annual report and sends to the Corps, CCC, and NOAA Fisheries annually by January 31 of each year.</li> </ul> </li> </ul> | <ul> <li>VPD considers renewal applications and issues a decision.</li> <li>VPD Harbor Patrol verifies compliance with decommissioning plan.</li> <li>Reporting: <ul> <li>VPD reviews and compiles reports documenting decommissioning compliance and forwards to the Corps, CCC, and NOAA Fisheries within 30 days of notice of completion.</li> </ul> </li> </ul>                                                                                                                                                                                  | Reporting:<br>- VPD documents notifications of spills and Grower<br>reporting pathway in annual report.<br>- VPD compiles annual reports and sends to the<br>Corps, CCC, and NOAA Fisheries annually by<br>January 31 of each year. | Reporting:<br>- VPD compiles annual reports from Growers and<br>submits annual reports to the Corps, CCC, and<br>NOAA Fisheries by January 31 of each year.                                    |
|                                               | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                               | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                      | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Receive and review annual reports from VPD.                                                                                                                                                                                       | - Receive and review annual reports from VPD.                                                                                                                                                  |
| Corps                                         |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                |
|                                               | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                               | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                      | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Receive and review annual reports from VPD.                                                                                                                                                                                       | - Receive and review annual reports from VPD.                                                                                                                                                  |
| CCC                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                |
|                                               | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                               | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                      | - Receive and review annual reports from VPD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Receive and review annual reports from VPD.                                                                                                                                                                                       | - Receive and review annual reports from VPD.                                                                                                                                                  |
| NOAA Fisheries                                |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                |
|                                               | - Respond to any immediate reporting of spills                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Respond to any immediate reporting of spills                                                                                                                                                                                      | - Respond to any immediate reporting of spills                                                                                                                                                 |
| US Coast Guard                                |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                |
| State and<br>Federal<br>Governments           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Respond to any immediate reporting of spills                                                                                                                                                                                      | - Respond to any immediate reporting of spills                                                                                                                                                 |
| California Office<br>of Emergency<br>Services | - Respond to any immediate reporting of spills                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Respond to any immediate reporting of spills                                                                                                                                                                                      | - Respond to any immediate reporting of spills                                                                                                                                                 |

\* See Table 2 and associated Management Plans (Appendices A <u>C</u> through F<u>H</u>) for complete requirement details. See Section 7.2, Reporting, for reporting requirements.



## 7.2 Reporting

For all mitigation measures described in the MMRP (Table 2) documentation of compliance is required. Table 7 provides a summary of reporting requirements for mitigation measures organized by project phase (e.g., pre-construction, construction, operation, decommissioning). For most measures, Growers will be required to submit monthly monitoring results to VPD. VPD will in turn develop and file an annual report to the Corps, NOAA Fisheries, and CCC describing the monitoring results during the previous calendar year. This will include a summary of monthly gear monitoring results; any derelict gear removal effort and lost gear; wildlife entanglement, if any; beach cleanup efforts; and any issues or concerns identified in the previous year. VPD will also conduct regular site visits and inspections to confirm that sites are being operated properly and consistent with all regulatory requirements and conditions.

In order to efficiently and effectively track and ensure compliance with all permit requirements, VPD will develop an electronic database interface to effectively track and demonstrate compliance with BMPs and regulatory agency permitting conditions, and to efficiently report results. In addition, this data management system will coordinate communication between Growers, VPD, and regulatory agencies by offering safeguard measures to validate that no permitting requirements, enforcement requirements, or monitoring requirements slip through the cracks; additionally, the data management system will be flexible enough to accommodate future datasets pertaining to operations analysis, business intelligence, and secure data integrations with other systems.



The mobile data collection systems that will be developed will integrate the intelligence of a GIS database and data models to provide tools (e.g., dropdown lists, date pickers, and photo and document attachments) to eliminate mistakes associated with free-form data entry. This database system will incorporate the latest Web GIS application technology, such as custom digital dashboards, for data interaction, management, planning, analysis, and work tracking. In addition, the integrated toolsets will include a user-friendly mobile field forms that Growers can easily use to upload monitoring and survey results which will assist them in quickly documenting compliance with permit requirements, ultimately spending less time on compliance documentation and more on farming.

The plans for this database system are in discussion; however potential features include mobile field forms, mobile mapping, desktop mapping, automated dataflows, alters and notification, custom dashboards, and custom reports that are quickly integrated into a pre-formatted template in word, excel, and PDF formats for easy documentation.

### Table 7. Summary of Reporting Requirements Organized by Project Phase and Mitigation Measure Number\*

| Mitigation Measure                             | Party to Prepare<br>Report          | Initial Recipient of Report                                     | Specific Due Date /<br>Timing                                                             | Reporting Detail Summary                                                                                                                                                                                                                                  | Reporting Frequency                                                                                                              | Additional Deliverables to Subsequent<br>Enforcing Agencies                                                                                                                                      |
|------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Construction                               |                                     |                                                                 |                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                  |                                                                                                                                                                                                  |
| BIO-7: Spill Prevention and Response<br>Plan** | VPD                                 | Corps and CCC                                                   | -                                                                                         | Plan details the measures that will be required to prevent and report spills.                                                                                                                                                                             | One final plan will be produced and include agency requested revisions.                                                          | -                                                                                                                                                                                                |
| BIO-9: Sediment Quality Monitoring<br>Plan**   | VPD                                 | Corps and CCC                                                   | _                                                                                         | Plan details monitoring of benthic communities, water quality, and aquatic life within the vicinity of the farms.                                                                                                                                         | One final plan will be produced and include agency requested revisions.                                                          | The Corps reviews and provides plan to NOAA Fisheries for review.                                                                                                                                |
| BIO-10: Aquaculture Gear/Escapement<br>Plan**  | VPD                                 | Corps and CCC                                                   | _                                                                                         | Plan details the measures that will be required to addresses<br>potential species entanglement issues, set protocols for<br>aquaculture gear checks, provide clear notification pathways<br>for personnel with gear issues, and define action thresholds. | One final plan will be produced and include agency requested revisions.                                                          | _                                                                                                                                                                                                |
| BIO-11: Decommissioning Plan                   | Grower                              | VPD                                                             | _                                                                                         | A plan for the timely removal of equipment and debris associated with the aquaculture farm.                                                                                                                                                               | Once, with periodic financial reviews by VPD. One plan will be produced and include VPD requested revisions.                     | VPD reviews and sends to the Corps.                                                                                                                                                              |
| BIO-13: Predator Control**                     | VPD                                 | Corps and CCC                                                   | _                                                                                         | Plan details potential predator species and deterrence methods.                                                                                                                                                                                           | One final plan will be produced and include agency requested revisions.                                                          | The Corps reviews and provides Plan to the USFWS and NOAA Fisheries for review.                                                                                                                  |
| GRMP-1: Bond Requirement                       | Grower                              | VPD                                                             | _                                                                                         | Surety bond or letter of credit.                                                                                                                                                                                                                          | Prior to construction and annually thereafter for updated amount.                                                                | -                                                                                                                                                                                                |
| NAV-2: Notice to Mariners                      | VPD                                 | U.S. Coast Guard and Harbormasters                              | $\leq$ 15 days before installation                                                        | Notices containing anticipated installation start date,<br>installation schedule, and coordinates of installation site.                                                                                                                                   | As needed.<br>Reporting will occur prior to installation. Reporting will<br>continue until the entire 2,000 acres are installed. | -                                                                                                                                                                                                |
| SWQMP-1: Substrate Sampling                    | Third-Party<br>Consultant           | VPD                                                             | VPD will submit this annual<br>report to NOAA Fisheries, the<br>Corps, CCC by January 31. | Appropriate datasheets and data associated with the SWQMP.                                                                                                                                                                                                | As determined by phased development. Needed to<br>establish baseline for farms prior to installation of gear.                    | Results will be included in an annual report submitted<br>by VPD to the Corps, CCC, and NOAA Fisheries<br>annually by January 31 of each year.                                                   |
| Construction                                   |                                     |                                                                 |                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                  |                                                                                                                                                                                                  |
| BIO-2: Entanglement Prevention                 | VPD Harbor Patrol                   | VPD                                                             | -                                                                                         | Prior to installation, VPD Harbor Patrol will document compliance/non-compliance during routine visual inspections of equipment.                                                                                                                          | VPD Harbor Patrol to retain a record of Grower compliance.                                                                       | _                                                                                                                                                                                                |
| BIO-3: Marine Wildlife Observer                | Grower/ Marine<br>Wildlife Observer | VPD                                                             | 5 <sup>th</sup> of each month for<br>activities in the preceding<br>month                 | Observation reports.                                                                                                                                                                                                                                      | Each month until construction is complete.                                                                                       | VPD compiles monthly reports and submits with an annual report to the Corps, CCC, and NOAA Fisheries annually by January 31 of each year.                                                        |
| BIO-6: Vessel Management                       | Grower                              | VPD                                                             | Annually<br>Due to VPD January 15 for<br>activities in the preceding<br>year              | In annual report, include sightings of federally listed whales<br>and turtles. See BIO-6 for details.                                                                                                                                                     | Each year until construction is complete.                                                                                        | VPD compiles annual reports and sends to the Corps, CCC, and NOAA Fisheries annually by January 31 of each year.                                                                                 |
| BIO-6: Vessel Management                       | Grower                              | NOAA Fisheries                                                  | Immediately upon ship strike<br>or adverse wildlife interaction                           | Ship strikes or adverse wildlife interactions.                                                                                                                                                                                                            | Immediately after occurrence.                                                                                                    | After contacting NOAA Fisheries, Grower informs VPD<br>of occurrence. VPD documents occurrence in annual<br>report and sends to the Corps, CCC, and NOAA<br>annually by January 31 of each year. |
| BIO: 7 – Spill Prevention and Response         | Grower                              | USCG, California Office<br>of Emergency Services,<br>VPD        | Immediately and annual report                                                             | Immediately report spills to the USCG, California Office of<br>Emergency Services, and VPD. In annual report submitted to<br>VPD describe compliance with the SPRP.                                                                                       | Immediately after occurrence; and document in an annual report to VPD.                                                           | VPD compiles annual reports and sends to the Corps, CCC, and NOAA annually by January 31 of each year.                                                                                           |
| GDEP-1: Equipment Identification               | VPD Harbor Patrol                   | Corps, CCC, and NOAA<br>Fisheries                               | _                                                                                         | VPD Harbor Patrol to document inspections and retain a record of Grower compliance.                                                                                                                                                                       | Monthly                                                                                                                          | VPD includes in annual reports. VPD compiles annual reports and sends to the Corps, CCC, and NOAA annually by January 31 of each year.                                                           |
| NAV-1: Update NOAA Charts                      | VPD                                 | NOAA Office of Coast<br>Survey                                  | Within 7 days after<br>construction is completed                                          | Short notification will include (1) as-built plans, (2) coordinates of the facility boundary, (3) Grower's contact, (4) any supplemental information necessary.                                                                                           | As needed.<br>Reporting will continue as needed until the entire 2,000<br>acres are built out.                                   | -                                                                                                                                                                                                |
| NAV-2: Notice to Mariners                      | VPD                                 | Local Fishers'<br>Emergency Radio<br>Frequency                  | During construction                                                                       | Broadcast will include the current installation location and a phone number to call for more information                                                                                                                                                  | Continuous during installation activities                                                                                        | -                                                                                                                                                                                                |
| SPRP-1 and -2: Spill Prevention and Response   | Grower                              | Appropriate State and<br>Federal Government<br>agencies and VPD | Immediately upon spill                                                                    | See Spill Prevention and Response Plan (SPRP) for details.                                                                                                                                                                                                | Immediately upon spills.                                                                                                         | VPD includes any reporting in compiled annual reports<br>and sends to the Corps, CCC, and NOAA Fisheries<br>annually by January 31 of each year.                                                 |
| Operations                                     |                                     |                                                                 |                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                  |                                                                                                                                                                                                  |
| BIO-1: Entanglement                            | Grower                              | VPD                                                             | 5th of each month for<br>activities in the preceding<br>month                             | See GDEP for details.                                                                                                                                                                                                                                     | Monthly                                                                                                                          | VPD compiles annual reports and sends to the Corps, CCC, and NOAA Fisheries annually by January 31 of each year.                                                                                 |

### Table 7. Summary of Reporting Requirements Organized by Project Phase and Mitigation Measure Number\*

| Mitigation Measure                                                                                                                                                                                                | Party to Prepare<br>Report                                                                                                                                                                 | Initial Recipient of<br>Report                                  | Specific Due Date /<br>Timing                                                                                          | Reporting Detail Summary                                                                                                                                                                                                                                                       | Reporting Frequency                            | Additional Deliverables to Subsequent<br>Enforcing Agencies                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIO-4: Cultivation of Spat Off site                                                                                                                                                                               | Grower                                                                                                                                                                                     | VPD                                                             | Annually                                                                                                               | Submit documentation of purchases in an annual report to VPD                                                                                                                                                                                                                   | Annually                                       | VPD compiles annual reports and sends to the Corps,<br>CCC, and NOAA Fisheries annually by January 31 of<br>each year.                                                                              |
| BIO-5: Wildlife Education/BIO-7: Spill<br>Prevention and Response/BIO-8:<br>Invasive Species/BIO-10: Gear<br>Monitoring and Escapement Plan/BIO-<br>13: Predator Control/SPRP-1: Spill<br>Compliance and Training | d Response/BIO-8:<br>ies/BIO-10: Gear<br>d Escapement Plan/BIO-<br>Control/SPRP-1: Spill                                                                                                   |                                                                 | Annually                                                                                                               | Evidence of annual training.                                                                                                                                                                                                                                                   | Annually.                                      | VPD compiles annual reports and sends to the Corps,<br>CCC, and NOAA Fisheries annually by January 31 of<br>each year.                                                                              |
| BIO-6: Vessel Management                                                                                                                                                                                          | Grower                                                                                                                                                                                     | VPD                                                             | Annually<br>Due to VPD January 15 for<br>activities in the preceding<br>year                                           | In annual report, include sightings of federally listed whales and turtles.                                                                                                                                                                                                    | Every year until construction is completed.    | VPD compiles annual reports and sends to the Corps,<br>CCC, and NOAA Fisheries annually by January 31 of<br>each year.                                                                              |
| BIO-6: Vessel Management                                                                                                                                                                                          | Grower       NOAA Fisheries       Immediately upon ship strike<br>or adverse wildlife interaction       Ship strikes or adverse wildlife interactions.       Immediately after occurrence. |                                                                 | Immediately after occurrence.                                                                                          | After contacting NOAA, Grower informs VPD of<br>occurrence. VPD includes any reporting in annual<br>reports and sends to the Corps, CCC, and NOAA<br>Fisheries annually by January 31 of each year.                                                                            |                                                |                                                                                                                                                                                                     |
| BIO-7: Spill Prevention and Response                                                                                                                                                                              | Grower                                                                                                                                                                                     | Appropriate State and<br>Federal Government<br>agencies and VPD | Immediately upon spill                                                                                                 | See Spill Prevention and Response Plan (SPRP) for details.                                                                                                                                                                                                                     | Immediately upon spills.                       | VPD document reporting in annual report submitted to the Corps.                                                                                                                                     |
| BIO-9: SWQMP/SWQMP-1: Substrate<br>Sampling                                                                                                                                                                       | Third-Party<br>Consultant                                                                                                                                                                  | VPD                                                             | Annually<br>(sampling occurs up to twice<br>per year)                                                                  | Appropriate datasheets and data associated with the SWQMP.                                                                                                                                                                                                                     | Annually.                                      | VPD includes information in compiled annual reports<br>and sends to the Corps, CCC, and NOAA annually by<br>January 31 of each year.                                                                |
| BIO-10: Aquaculture Gear/Escapement<br>Plan; GDEP-2 Inspecting Equipment                                                                                                                                          | Grower                                                                                                                                                                                     | VPD                                                             | Monthly (Gear Inspections);<br>Immediately (Entanglements)                                                             | Submit documentation of gear inspections to VPD by the 5th<br>of each month.<br>Report all incidences of entanglement immediately to SOS<br>WHALe (whales) or NOAA Fisheries Marine Mammal<br>Stranding Network Coordinator, West Coast Region (any<br>other marine wildlife). | Monthly (Gear Inspections) and Annual Report   | VPD staff or contractor will analyze sampling results<br>and produce an annual report. VPD compiles annual<br>reports and sends to the Corps, CCC, and NOAA<br>annually by January 31 of each year. |
| BIO-12: Lighting                                                                                                                                                                                                  | VPD                                                                                                                                                                                        | Corps, NOAA, CCC                                                | Annually                                                                                                               | VPD to report on compliance with this measure.                                                                                                                                                                                                                                 | Annually.                                      | VPD compiles annual reports and sends to the Corps,<br>CCC, and NOAA annually by January 31 of each year.                                                                                           |
| BIO-13 & PC-1: Predator Control<br>Procedures                                                                                                                                                                     | Grower                                                                                                                                                                                     | VPD                                                             | As needed (if requesting<br>control procedures not<br>authorized by the Predator<br>Control Management Plan<br>[PCMP]) | Report should describe justification for utilizing control<br>methods not described in the PCMP and describe actions<br>taken to control predation and the numbers and types of<br>predators controlled (if additional measures are approved).                                 | Annually (if additional measures are approved) | VPD reviews request and forwards to the Corps, NOAA,<br>and USFWS. VPD reviews and compiles annual reports<br>and sends to the Corps, CCC, and NOAA annually by<br>January 31 of each year.         |
| GDEP-3: Cleanup Events                                                                                                                                                                                            | Grower                                                                                                                                                                                     | VPD                                                             | Annually                                                                                                               | Annual report will document quarterly clean up events.                                                                                                                                                                                                                         | Annually.                                      | VPD compiles annual reports and sends to the Corps, CCC, and NOAA annually by January 31 of each year.                                                                                              |
| SPRP-1 and 2: Spill Prevention and Response                                                                                                                                                                       | Grower                                                                                                                                                                                     | Appropriate state and federal government agencies and VPD       | Immediately upon spill                                                                                                 | See SPRP for details.                                                                                                                                                                                                                                                          | Immediately upon spills.                       | VPD includes documentation in compiled annual reports and sends to the Corps, CCC, and NOAA annually by January 31 of each year.                                                                    |
| BIO-1 and GDEP-2: Entanglement                                                                                                                                                                                    | Grower                                                                                                                                                                                     | NOAA and VPD                                                    | Immediately upon report of entanglement, injury, etc.                                                                  | See GDEP for details.                                                                                                                                                                                                                                                          | -                                              | VPD includes documentation in compiled annual reports and sends to the Corps, CCC, and NOAA annually by January 31 of each year.                                                                    |
| Decommissioning                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                                                                     |
| BIO-7, SPRP-1, and SPRP-2: Spill<br>Prevention and Response                                                                                                                                                       | Grower                                                                                                                                                                                     | Appropriate state and federal government agencies and VPD       | Immediately upon spill                                                                                                 | See SPRP for details.                                                                                                                                                                                                                                                          | Immediately upon spills.                       | VPD includes documentation in compiled annual reports and sends to the Corps, CCC, and NOAA annually by January 31 of each year.                                                                    |
| GRMP-2: Permit or Authorization<br>Renewal and Expiration                                                                                                                                                         | Grower                                                                                                                                                                                     | VPD                                                             | No less than 180 days of<br>VPD Permit or Approval<br>Expiration Date                                                  | Growers submit a non-renewal notice or renewal application.                                                                                                                                                                                                                    | As needed                                      | -                                                                                                                                                                                                   |
| BIO-11 and GRMP-2: Decommissioning<br>Plan                                                                                                                                                                        | Grower                                                                                                                                                                                     | VPD                                                             | Within 30 days of completion                                                                                           | Compliance with decommissioning plan after gear removal.<br>See Appendix F- <u>G</u> for details                                                                                                                                                                               | Once                                           | VPD reviews and compiles reports documenting<br>compliance in an annual report and sends to the<br>Corps, CCC, and NOAA within 30 days of notice of<br>completion.                                  |

See Table 2 and associated Management Plans (Appendices A-<u>C</u> through F<u>H</u>) for complete requirement details.
 \*\* This Plan has been produced and submitted to the Corps and CCC for approval.

# 8 Compliance Monitoring and Enforcement Protocol

This section is intended to establish the general framework for compliance monitoring and enforcement. Any Grower who installs gear or operates in a manner not authorized by VPD, CCC, or the Corps will be subject to revocation of their VPD authorization and/or LOP, and eviction from the project site.

Although specific enforcement protocols remain to be fully delineated with the Corps, VPD anticipates that its specific enforcement authority and protocols will be described in VPD authorizations and/or LOPs issued to individual Growers which will contain specific provisions concerning violations, default, cure, and enforcement. <u>AAny Grower who installs gear or operates in a manner not authorized by VPD, CCC, or the Corps will be subject to revocation of their VPD authorization and/or LOP, and eviction from the project site.</u>

The appropriate response will depend on the severity of the violation and non-compliance; however, generally, VPD will follow the following enforcement protocol:

- 1. Send notice to the Grower of the violation and request immediate cure of the violation. VPD will also notify appropriate state and federal regulatory agencies of the violation.
- 2. Depending on the nature of the violation, VPD may request third-party monitoring through an independent consultant selected by VPD, the cost of which would be paid by the violating Grower.
- 3. In the case of severe or frequent violations or issues of non-compliance, VPD may terminate its authorization, provide notice to the Corps, and seek to evict the Grower from the project site.

All of the above enforcement options are in addition to the Corps' enforcement authority (pursuant to Section 10 of the Rivers and Harbors Act), the USCG, FDA (pursuant to the NSSP), which they would retain regardless of any additional enforcement authority held by VPD.

VPD Harbor Patrol can support the VSE project by inspecting, patrolling, and responding to issues. The Harbormaster and staff can assist with pre-deployment inspections, site inspections, compliance patrols, and responses to issues and emergencies. VPD authority for compliance monitoring and enforcement will be established through authorizations and/or operating agreements between VPD and Growers.

## 8.1 Pre-Deployment Inspections

VPD Harbor Patrol will help with required pre-deployment inspections to ensure compliance with project permit specifications. These inspections can be done within the harbor or off-site staging areas. The Harbormaster would require some training on the equipment concerned, but could otherwise include this into her/his normal duties.

## 8.2 Offshore Site Inspections

VPD Harbor Patrol can transport the appropriate level of underwater inspection teams for offshore equipment and deployment inspections. This would also require minimal training and could be done with existing staff.

## 8.3 Routine Site Patrols

VPD Harbor Patrol can routinely patrol offshore sites. VPD proposes patrols be conducted twice monthly to ensure compliance with project conditions and BMPs. <u>The routine patrols will include unannounced routine compliance visits as part of the inspections/routine patrolling activities.</u> The existing fleet of VPD Harbor Patrol vessels could be used effectively, and this would only incur some increases in annual fuel budgets. There would be some training that would be required, but otherwise the duties are within the normal scope of operations. Any discrepancies or violations of permit conditions discovered by VPD Harbor Patrol will be immediately reported to VPD and other appropriate regulatory agencies.

## 8.4 Emergency Responses

The Harbormaster and Harbor Patrol staff are well suited to respond to emergencies. The Harbormaster and staff have extensive training in many areas, and will be able to facilitate the coordination and mitigation of emergency events. Any emergency responses would be handled in compliance with the Standardized Emergency Management System and the National Incident Management System. When appropriate, VPD would incorporate a unified command that could include local, state, and federal agencies. These processes would ensure that the appropriate notifications would be made to regulatory agencies. Mitigation and/or clean-up of any emergency would be done with the use of contractors as described in the SPRP.

# 9 Ventura Port District Project Administration and Management

As described in the previous sections, VPD has many responsibilities to ensure compliance with and adherence to all VSE project permit conditions and measures. To determine the quantity of labor hours that will be required by VPD to sufficiently address VSE project responsibilities, this section provides a summary of VPD responsibilities and anticipated labor hours associated with the project. VPD responsibilities may be divided into several project administration categories, as follows:

- Administrative management
- Enforcement management
- Contract Management
- Accounting management
- Dockside management

The subsections below discuss the anticipated responsibilities and tasks associated with each staff project administration category. Although the VSE project will be phased (e.g., development of all 2,000 acres in several stages or phases), the estimated labor hours below provide a range for anticipated hours associated with initial project implementation to full build out. The estimated labor hours described below may assist VPD in determining the level of effort needed associated with the project. To meet the obligations of the categories, it may be appropriate to use existing staff, new staff, outside consultants, or any combination thereof.

The categories identified above and detailed below provide a preliminary range of weekly hours necessary for project administration and management as currently contemplated by the scope of the project. It is highly likely that the hours needed to accomplish each category of project administration and management will vary during different phases of the project start-up, implementation, and at full build-out.

## 9.1 Administrative Management

The VSE project will require staff to manage the various tasks associated with administrative activities. The anticipated significant administrative duties (and estimated hourly range per week) includes, but is not limited to:

- Coordination/Scheduling (8–24 hours per week). This task includes the coordination of various project components with multiple entities including: coordinating and scheduling initial interviews with Growers; coordinating the substrate sampling efforts with third-party consultants; coordinating and scheduling training for Growers; reviewing, approving, and providing Growers with a list of marine wildlife observers; internal coordination with VPD staff, including the Harbormaster, Contract Manager, etc.; corresponding with appropriate permitting agency representatives; addressing grower requests and coordinating with grower/agencies for deviation from approved permit conditions (e.g., predator control procedures); etc.
- Reporting (8–32 hours per week). This task includes acquiring, compiling, and delivering any required
  reporting commitments to the appropriate agencies. This task includes tracking growers reporting
  requirements; contacting growers to ensure the timely submittal of reports during all phases of the project;
  establishing and maintaining an electronic mobile platform that growers and their employees will use to
  submit data requirements, if desired; compiling the documentation from growers, summarizing compliance
  and project activities, and submitting to regulating agencies on an annual basis; reporting, as needed,
  during VPD public meetings; etc.

• Notifications/Distributions (0-4 hour per week). This task includes distributing and updating Operations Plans, as revisions are determined necessary by VPD and in coordination with regulatory agencies; notifying the Harbormaster/U.S. Coast Guard of any new construction activities occurring; addressing grower violations and appeals; etc.

In addition to the list above there may be other administrative tasks associated with this project not identified above that may add some additional time to this task. Overall, it is estimated that between **16 to 60 hours** per week may be required for VSE project administrative duties.

## 9.2 Enforcement Management

The VSE project will require staff to manage the various tasks associated with enforcement activities, including providing pre-installation inspections; providing monthly (initially twice per month) offshore site inspections; providing routine site patrols; providing emergency responses; ensuring compliance with decommissioning plans; addressing non-compliance issues; and managing violation appeals and coordination with VPD General Manager or designated representative; etc. As discussed in Section 8, Enforcement Protocol, VPD Harbor Patrol can assist the VSE project by inspecting, patrolling, and responding to issues. The Harbormaster and staff can assist with pre-installation inspections, site inspections, compliance patrols, and responses to issues and emergencies. Overall, it is estimated that between **8 to 24** hours per week may be required for enforcement management duties, with a significant portion of this time incorporated into the existing duties currently within the existing Harbormaster duties.

## 9.3 Contract Management

The VSE project will require staff to manage the various tasks associated with Grower contracts, including receiving and reviewing contract requests; issuing and negotiating contract agreements; collecting surety bonds or letters of credit; sending notices of fee delinquency; sending notices of violation and requests for immediate cure of the violation; coordinating with the General Manager to ensure violations are adequately addressed; terminating contracts and issuing credit; and maintaining records associated with contracts. Overall, it is estimated that between **8 to 10 hours** per week may be required for VSE project contract management duties.

## 9.4 Accounting Management

The VSE project will require staff to manage the various tasks associated with accounting with Growers, including issuing monthly fee and landing invoices; collecting monthly fees; notifying the contract manager on any delinquent payments; maintaining invoice and payment records; and issuing payment receipts. Overall, it is estimated that between **1 to 4 hours** per week may be required for VSE project accounting management duties.

## 9.5 Dockside Management

The VSE project will require staff to manage the various tasks associated with dockside activities, including providing landing services, maintaining tonnage records, and ensuring products landed have passed public health and sanitation requirements. Overall, it is estimated that between **8 to 24 hours** per week may be required for VSE project dockside management duties.

# 10 Refinement and Adaptive Management

The VSE project is an innovative approach to providing economies of scale, pre-approved permitted areas, and technical support for local Growers who might otherwise be unable to participate in shellfish aquaculture. As described in the previous sections, implementation of this Plan requires the participation of several agencies and parties to ensure that all project permit conditions are adhered to, carried out, addressed, and reported on in a timely manner. This Plan is intended to be a living document that is updated as the project site is developed, additional permit terms and conditions are imposed, and additional details become known during project implementation and operation. During implementation of the project, unforeseen issues may arise or new techniques to reduce impacts may be developed. To efficiently address unforeseen issues, this Plan incorporates an adaptive management approach to ensure the safety of all Growers and their employees, and the protection of the marine environment.

As unforeseen issues arise, VPD will consult with the appropriate agencies (e.g., the Corps, NOAA Fisheries, CCC, and USCG) to identify and implement adaptive measures. This Plan will be updated with the refined methods developed during agency consultations, and all Growers will be informed of any updates to the Plan. In addition, during implementation, technical issues may arise, and data interpretation associated with gear, debris, and wildlife entanglement monitoring may change or evolve. In these instances, Growers and VPD will consult with the appropriate agencies to consider the results of monitoring efforts and subsequent adjustments to monitoring methods.

Adaptive management and adjustments to the Aquaculture Gear Monitoring & Marine Debris, and Wildlife Entanglement Plan (GDEP) (Appendix  $\in G$ ) will occur following the triggers and subsequent actions below. Additional details are provided in Appendix  $\in G$ .

**GDEP Adaptive Management Trigger 1:** If monitoring shows that derelict gear has become ensnared or collected on any Project structure but there was no wildlife entanglement, Growers will remove the derelict gear as soon as feasible and notify VPD within one week. If monitoring shows that aquaculture gear is lost, seek to collect the lost gear as soon as feasible in compliance with Section 4.3 [of the GDEP] and notify VPD within one week. In the event that derelict gear is a persistent issue for a certain Grower, or a certain type of gear is frequently lost, affected Grower and VPD will consult with NOAA Fisheries and Corps in order to modify the Project and/or monitoring plan as necessary.

**GDEP Adaptive Management Trigger 2:** If monitoring shows non-listed species found entangled or otherwise impinged at the project site, Grower will remove the derelict gear as soon as feasible, provide photographic or video documentation of the entanglement, notify VPD within one week, and provide a report to VPD. VPD and the Grower will consult with NOAA Fisheries and Corps in order to modify the Project and/or monitoring plan if necessary.

**GDEP Adaptive Management Trigger 3:** If monitoring shows marine mammals that are alive, but appearing debilitated, the Grower will record the sighting as part of their monitoring report as highlighted in the Reporting Protocol for Injured or Stranded Marine Mammals. VPD and the Grower will consult with NOAA Fisheries and Corps in order to modify the Project and/or monitoring plan if necessary.

**GDEP Adaptive Management Trigger 4:** If monitoring shows live marine mammals/protected species observed entangled in fishing gear or marine debris, the Grower will immediately contact NOAA Fisheries by calling the 24-hour hotline: 877-SOS-WHALe as highlighted below in the Reporting Protocol for Injured or Stranded Marine Mammals, and contact VPD, giving all available information on the case as highlighted below. The Grower and VPD will consult with NOAA Fisheries and Corps in order to modify the Project and/or monitoring plan.

In addition, the Sediment and Water Quality Management Plan (SWQMP) (Appendix <u>CE</u>), and monitoring described in the SWQMP, will commence upon installation of the first 100-acre farm and require 3 years of monitoring at 80%

capacity for the aquaculture site. The SWQMP is dependent on the length of time it takes to attain full occupancy of all of the farms. Hence, if the project site takes 2 years to develop to 80% capacity, and along with the 3-year monitoring requirement at that capacity, then the SWQMP will have a duration of 5 years total.

As described in Section 7.2, Reporting, VPD will compile Growers annual reports and provide all reports and a summary to the appropriate agencies. The annual report will evaluate methods, interpret data, provide an aquaculture impact assessment, and include recommendations for adaptive management, as necessary.

# 11 Process for Permit Amendments

As mentioned above, VPD will process all entitlement permit applications for the project, including its Corps permit application, associated Environmental Assessment and/or Environmental Impact Statement, CCC consistency certification, and USCG PATON application. VPD will be the named permittee on such permits, and will remain the named permittee on such permits during the permit term.

A Grower's operation must be consistent with the project approved by CCC and the Corps. In the event that a Grower's proposed operation is materially different than the approved project, the Grower must first obtain VPD authorization to seek any required permit amendments prior to seeking approval from the Corps and CCC. VPD, as the master permit holder, reserves the right to deny any such proposed amendments. Under no circumstances will such an operation be allowed to commence until such required amendments are reviewed and approved by the CCC and Corps.

Examples of design modifications that would require an amendment include:

- Modifications to species cultivated
- Significant differences in cultivation technique
- Modifications to reduce spacing or increase the density and/or weight of longlines
- Modifications of permit conditions

Examples of design modifications that would not require an amendment include:

- Increasing or decreasing the number of buoys
- Changing brands
- Changing the depth of the backbone (provided that it is not shallower than 15 feet)

Additional detail concerning what types of modifications would require a permit amendment will be finalized in discussions with the Corps and this Plan will be updated accordingly.

Upon approval by VPD, each VPD authorization will be provided to the Corps for its review and approval. The Corps will approve each authorized Grower within 45 days pursuant to a LOP if the proposed operation complies with all master permit conditions and mitigation measures and is substantially similar to the overall project approved by the Corps and the CCC. The Corps and CCC retain full discretionary authority to review any proposed permit amendments.

Upon Corps review and approval of an LOP, the Grower shall sign the VPD authorization, agreeing to comply with all terms and conditions of the permit. <u>The LOP will describe the specific terms, responsibilities, and obligations</u> <u>assigned solely to the Grower.</u> Upon such approval, VPD shall not be responsible for compliance with any permit terms and conditions identified in the authorization <del>as those shall be which are</del> exclusively the responsibility of the Grower.

### INTENTIONALLY LEFT BLANK

# 12 References

Dewhurst, T. 2019. Evaluation of Mussel Backbone System in Extreme Storms. Phase II Report: Design Modifications. Prepared for the Ventura Port District. Prepared by Maine Marine Composites. August 15, 2019.

Dewhurst, T. 2020. Engineering Evaluation of Break-away Links and Cascading Failure Risk for a Mussel Backbone System. Prepared by Kelson Marine Co. November 2, 2020.

- FDA and ISSC (U.S. Food and Drug Administration and Interstate Shellfish Sanitation Conference). 2017. National Shellfish Sanitation Program (NNSP): Guide for the Control of Molluscan Shellfish, 2017 Revision. https://www.fda.gov/food/federalstate-food-programs/national-shellfish-sanitation-program-nssp.
- Gentry, R.R., S.E. Lester, C.V. Kappel, C. White, T.W. Bell, J. Stevens, and S.D. Gaines. 2017. "Offshore Aquaculture: Spatial Planning Principles for Sustainable Development." *Ecology and Evolution* 7:733– 743. doi: 10.1002/ece3.2637.
- Johnson, A., G. Salvador, J. Kenney, J. Robbins, S. Kraus, S. Landry, and P. Clapham. 2005. "Fishing Gear Involved in Entanglements of Right and Humpback Whales." *Marine Mammal Science* 21:635–645.
- Knowlton, A.R., P.K. Hamilton, M.K. Marx, H.M. Pettis, and S.D. Kraus. 2012. Monitoring North Atlantic Right Whale Eubalaena glacialis Entanglement Rates: A 30 yr Retrospective." Marine Ecology Progress Series 455:293–302.
- Ludwig, L., P. McCarron, K. McClellan, H. McKenna, and R. Allen. 2014. Project 2 Final Report: Review of Sinking Groundline Performance in the Maine Lobster Fishery, with Recommendations for Improving its Fishability. Consortium for Wildlife Bycatch Reduction. Final Report No. NA10NMF4520343.
- NOAA (National Oceanic and Atmospheric Administration). 2017. United States West Coast, California. Port Hueneme to Santa Barbara. Mercator Projection. Nautical Chart. Washington, DC. U.S. Department of Commerce, NOAA, National Ocean Science, Coast Survey. 30th ed. June 2013. Last correction July 3, 2017.
- Price, C.S. and J.A. Morris. 2013. *Marine Cage Culture and the Environment: Twenty-first Century Science Informing a Sustainable Industry*. NOAA Technical Memorandum NOS NCCOS 164. December.
- Theuerkauf, S.J., V. Crothers, and J. Morris. 2018. *Coastal Aquaculture Siting and Sustainability Technical Report.* Ventura Shellfish Enterprise: Aquaculture Siting Analysis Results. Revised September 19, 2018.

### INTENTIONALLY LEFT BLANK

# <u>Appendix A</u>

Evaluation of Mussel Backbone System in Extreme Storms

PROJECT TITLE:

# **Evaluation of Mussel Backbone System in Extreme Storms**

| Client/Client Ref:           | Document Title:                       |
|------------------------------|---------------------------------------|
| Ventura Shellfish Enterprise | Phase II Report: Design Modifications |
| Project No:                  | Project Document No:                  |
|                              |                                       |
|                              |                                       |

The contents of this document are the intellectual property of Maine Marine Composites and shall be treated as confidential information. This document shall not be shown nor given to any 3<sup>rd</sup> party without written approval by Maine Marine Composites.

| Effective Date | Description  | Made by  |
|----------------|--------------|----------|
| 8/15/2019      | Final Report | Dewhurst |



# 1 Executive Summary

In Phase I of this project, MMC evaluated the performance of a New Zealand (NZ)-type mussel backbone system at maximum shellfish cultivation density under both 20-year and 100-year storm conditions. The dynamic behavior of the system under extreme storm conditions was quantified and minimum required capacities of lines and anchors were reported. During that analysis, some weaknesses of the as-specified NZ system (*Design 1*) were identified, including the tendency of parts of the backbone to drift to the surface during storms. This results in a potential navigational hazard and exposes the mussel droppers to extreme wave forcing, which can result in mussel drop-off. Methods for handling slack in the mooring lines when the backbone is lowered to 40 feet (to mitigate duck predation) were also required.

Two new designs are proposed and evaluated in the present report. *Design 2* is an improved design using the same concept. *Design 3* is a novel backbone design which uses submerged buoyancy on each mooring line at a distance from the anchor such that the buoy cannot reach the surface. For both new designs, the distance between anchors was kept constant at 1075 feet.

Furthermore, in conversations with VSE after the initial Phase I report, the length of the mussel droppers was increased from 16 feet to 30 feet, substantially increasing the maximum biomass on a single backbone.

After increasing the mussel dropper length, Design 2 was adjusted to accomplish the following:

- Eliminate the tendency of the backbone to lift to the surface under high current speeds.
- Reduce the tendency of the down-current mooring line drifting to the surface when the current is aligned with the backbone. (This was reduced, not successfully eliminated.)
- Maximize the usable backbone length. The total length of the backbone was increased from 175m to 205 m by reducing the scope of the mooring lines. This increased the usable portion (allowing 15m of unusable length on each end) from 145 m in Design 1 to 175 m. This corresponds to a 20% increase in maximum mussel harvest (from 18,950 kg dry weight to 22,869 kg dry weight).

The motivation for the novel configuration of Design 3 was to achieve the following:

- Improve the handling of slack in downstream sections of the line and when the system is lowered to prevent duck predation.
- Increase the ease of lifting the backbone for harvesting, allowing the same increased mussel mass (22,869 kg dry weight) as in Design 2.
- Investigate reducing peak loads in extreme storms by increasing mooring compliance.

The required structural capacities of the mooring lines, longlines, and anchors are similar for Designs 2 and 3. In a worst-case 100-year storm, the required minimum breaking strength for the **mooring lines is 62,000 lbf**; the required minimum breaking strength for the **backbone line is 66,000 lbf**. The required holding capacity of **the helical anchors is 67,000 lbf in the horizontal direction and 14,000 lbf in the vertical** direction. These values include safety factors of 1.8 for synthetic rope and 2.0 for the helical anchors.

The RMS accelerations at the longline midpoint are also similar between Designs 2 and 3.

Design 2 requires less force raise the fully-stocked backbone to 2 m above the water surface for maintenance or harvesting. However, the difference in required lift force between Design 2 and Design 3 becomes small if the backbone must be raised to 3 m. This is because the backbone tension in Design 3 stays relatively constant regardless of backbone lift height; in Design 2, the static tension is lower, but increases more quickly as the backbone is raised above the surface.

Both Designs 2 and 3 were successfully engineered to eliminate the tendency of the backbone to lift to the surface, even under the strong maximum currents characteristic of the site. This was accomplished by limiting the amount of submerged buoyancy on the backbone to less than two-thirds of the wet weight of the mussel biomass.

The key difference in the performance of Designs 2 and 3 is that Design 3 eliminates slack in the downstream mooring line under all environmental loading conditions, whether the backbone is at 20-feet or lowered to 40 feet to avoid duck predation. The trade-off for this improved performance is achieved by submerged flotation on the mooring lines below the Mean Lower-Low Water height. Since those submerged buoys cannot reach the surface, they could increase the difficulty of installation.

## 2 Numerical Model of the Backbone System

### 2.1 Numerical Modeling Approach

A numerical model of the proposed backbone system was developed using a Hydro-/Structural Dynamic Finite Element Analysis (HS-DFEA). This HS-DFEA approach solves the equations of motion at each time step using a nonlinear Lagrangian formulation to accommodate for large displacements of structural elements. Wave and current loading on buoy and line elements (including mussel rope elements) is incorporated into the model using a Morison equation formulation (1950) modified to include relative motion between the structural element and the surrounding fluid. For elements intersecting the free surface, buoyancy, drag, and added mass forces are multiplied by the fraction of the element's volume that is submerged. Steady incident flow and wave forcing are specified by the user and are not altered by the presence of the structure.

### 2.2 Numerical Model Setup

An FEA-based numerical model was developed for the Ventura Shellfish Enterprise (VSE) mussel farm. The structural and hydrodynamic parameters of the mussel lines were taken from (Dewhurst, 2016). The diameter of the mussel ropes was set so that the <u>dry weight of mussels</u> was 8 pounds per foot of mussel rope, which represents highest reasonable estimate of maximum growth.

Since each backbone in the array has its own anchors and is independent of the other backbones, an individual backbone was examined.

### 2.3 Location

The location of the site, as provided by VSE, is shown in Figure 1. The coordinates of the site boundaries are listed in Table 1.



Figure 1. Site Boundaries.

| Table 1. | Coordinates | of Site | Boundaries <sup>1</sup> |
|----------|-------------|---------|-------------------------|
|          |             |         |                         |

| Corner | Latitude  | Longitude   |
|--------|-----------|-------------|
| North  | 34.254869 | -119.399051 |
| East   | 34.240018 | -119.373207 |
| South  | 34.217877 | -119.391651 |
| West   | 34.232724 | -119.41749  |

### 2.4 Environmental Parameters

### 2.4.1 Waves

Extreme wave statistics were based on continuous, long-term wave observations from a wave buoy located on the edge of the Santa Barbara Channel (Table 2). Industry standards for finfish aquaculture recommend that calculations of extreme events include local observations of environmental forcing for one to three months. However, no agreed-upon standard exists for non-finfish aquaculture and its relatively lower associated risks compared to finfish systems. The present study used data from a wave buoy 8.6 km SSW of the proposed site. Historical data from this buoy is available from SCRIPPS' Coastal Data Information Program (CDIP buoy 111) and NOAA's National Data Buoy Center (NDBC site 46217) websites.

<sup>&</sup>lt;sup>1</sup> Corps application combined.pdf. Figure 1.

|                              | CDIP 111 / NDBC 46217 |
|------------------------------|-----------------------|
| Latitude                     | 34.166916             |
| Longitude                    | -119.434647           |
| Depth                        | 114 (m)               |
| Distance from center of site | 8.6 km                |
| Data range                   | 2004–2018             |

| Table 2. | Source | of | historical | wave data |
|----------|--------|----|------------|-----------|
|          | 004100 | ~  |            |           |

The fourteen years of historical wave data at the nearby site were fit to a Gumbel distribution, a statistical distribution derived to describe extreme values. This fit, and the underlying data, are shown in Figure 2. The calculated values corresponding to 10-, 20-, 50-, and 100-year events are given in Table 4.



Figure 2. Historical extreme wave data (x) with a Gumbel fit (red). To account for the shallower depth of the site compared to the wave measurements, a wave shoaling factor was computed and used to calculate the increased significant wave heights at the site (blue).

Table 3. Extreme Significant Wave Heights (Hs) and associated Peak Wave Periods (Tp) for various return periods.

| Return Period, years                    | 1    | 10   | 20   | 50   | 100  |
|-----------------------------------------|------|------|------|------|------|
| Significant Wave Height, Hs (m)         | 3.89 | 4.94 | 5.23 | 5.62 | 5.91 |
| Shortest associated peak period, Tp (s) | 5.90 | 6.63 | 6.82 | 7.09 | 7.27 |

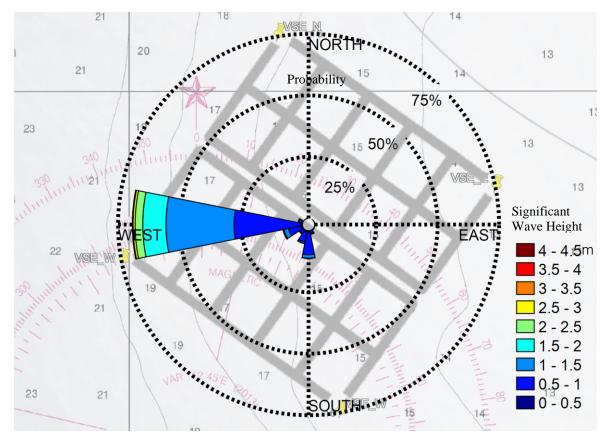



Figure 3. Probability distribution of sea-states by peak wave direction and significant wave height. Wave direction in both typical and extreme conditions is from the south. VSE Site layout (gray) is from "Corps application combined.pdf".<sup>2</sup>

### 2.4.2 Currents

Extreme current statistics were based on continuous, long-term hindcast data for the general vicinity of the site. Industry standards for finfish aquaculture recommend that calculations of extreme events include local observations of environmental forcing for one to three months. However, no agreed-upon standard exists for non-finfish aquaculture and its relatively lower associated risks compared to finfish systems. For the present study, daily maximum current speeds between 1992 and 2012 were provided by Dr. Lisa Wickliffe of NOAA. These were extracted from the HYbrid Coordinate Ocean Model (HyCOM)<sup>3</sup> hindcast data with 4 km resolution. The twenty years of hindcast data were fit to a Gumbel distribution and extrapolated to compute extreme values. This fit, and the underlying data, are shown in Figure 4. The derived extreme values for 1-, 10-, 20-, 50-, and 100-year events are shown in Table 4.

<sup>&</sup>lt;sup>2</sup> This is consistent with the wave rose plot available from CDIP:

http://cdip.ucsd.edu/themes/s?r=26&wp=0&pb=1&d2=p70&u2=s:111:st:1:v:min\_max\_mean:dt:201801 <sup>3</sup> https://www.hycom.org/

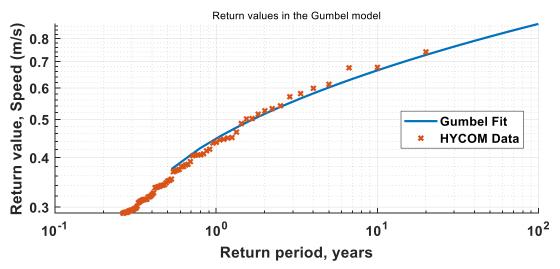



Figure 4. Historical extreme current speed data (x) with a Gumbel fit (blue).

Table 4. Extreme current speeds for various return periods.

| Return Period, years | 1    | 10   | 20   | 50   | 100  |
|----------------------|------|------|------|------|------|
| Speed, m/s           | 0.45 | 0.66 | 0.73 | 0.81 | 0.87 |

The directionality of the extreme currents was examined by plotting the maximum observed current speed in each of 30 directional bins. The resulting "maximum current rose" in Figure 5 shows that extreme current speeds are not constrained to a narrow directional band.

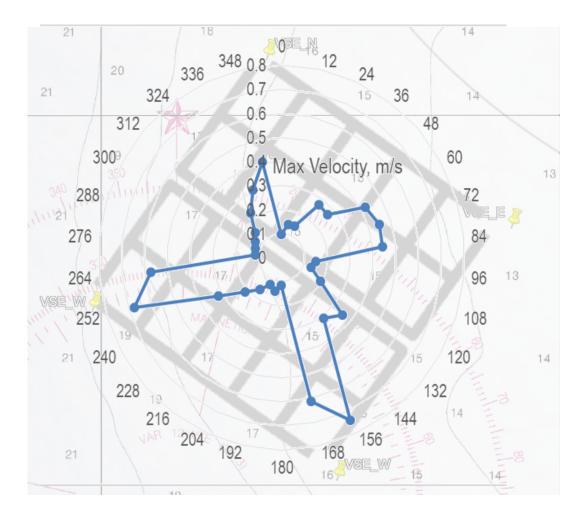



Figure 5. HYCOM current data in m/s. Maximum velocity in each heading direction over 20-year period. Headings are relative to true north.

### 2.4.3 Tidal elevation

Based on data from NOAA Tide Prediction station 9411189, Ventura CA, the maximum tidal amplitude near the site is 1.25 m.

### 2.4.4 Depth

Mean lower-low water depths at the site range from 27.4 to 33m (15–18 fathoms). For the present analysis, a site near the edge of the permitted area in 33m of water was analyzed. It should be noted that, if mooring scope is kept constant, the backbone at shallower locations will be longer than those at deeper parts of the site.

### 2.4.5 Wind

Extreme wind statistics were based on continuous, long-term wind observations from a nearby observation station. Industry standards for finfish aquaculture recommend that calculations of extreme events include local observations of environmental forcing for one to three months. However, no agreed-upon standard exists for non-finfish aquaculture and its relatively lower

associated risks compared to finfish systems. In the present study, historical wind data was taken from NDBC station 46053 (34.167N 119.435W, East Santa Barbara). NOAA reports the maximum peak wind gust between 1998 and 2008 to be 54 knots (28 m/s). This 10-year return period wind speed was assumed to be aligned with the wave direction for all extreme loadcases.

### 2.4.6 Load Cases

100-year waves, wind, and currents do not generally occur simultaneously. Norwegian Standard NS 9415 recommends examining both wave-dominated and current-dominated extreme events (Standards Norway, 2009). For the 50-year current-dominated event, the 50-year current speed is combined with 10-year waves and wind. Similarly, the 50-year wave event is combined with 10-year return period currents. In the present analysis, the 10-year return period was used for the non-dominant forcing (waves or current) for both the 20-year and 100-year events.

### 2.4.7 Minimum Allowable Capacity of Structural Components

Offshore industry standards (e.g. API RP2SK) require safety factors of 2.0 for pile anchors and 1.67 for mooring lines (API, 2005). Here, the safety factor is the ratio of ultimate capacity (e.g. breaking strength) to the maximum expected demand (e.g. the maximum expected tension). ABS recommends increasing safety factors by 20% for synthetic lines, bringing the mooring line safety factor up to 1.82. The API recommended safety factor of 2.0 for pile anchors was in these calculations applied to helical anchors. MMC calculated the minimum breaking strength of the structural lines and the minimum holding power of the anchors required to achieve these safety factors.

# 3 Calculation of Minimum Required Capacity of Structural Components

For each design under each loadcase, the maximum expected tensions and forces in a three-hour storm,  $F_{max}$ , were calculated assuming a Rayleigh distribution of the maximum loads. That is,

$$F_{max} = F_{mean} + \sqrt{2\log(3*3600/T_{pk}\sigma_F)},$$

where  $T_{pk}$  is the peak wave period and  $\sigma_F$  is the standard deviation of the force time series.

MMC calculated the minimum breaking strength of the structural lines and the minimum holding power of the anchors required to achieve safety factors recommended by API for offshore structures. API requires a safety factor of 1.82 on synthetic ropes. API requires a safety factor of 2.0 on vertical loading of pile anchors. In the present analysis, this safety factor of 2.0 was applied to both the vertical and horizontal forces on the helical anchor.

# 4 Design 1: Preliminary NZ System (Phase I)

Gear specifications and dimensions of the initial NZ-style backbone system were taken from the document titled, *Request for U.S. Army Corps of Engineers Authorization of the Proposed Ventura Shellfish Enterprise Project*<sup>4</sup>. Figures 11 and 2 from this document were used to derive dimensions and components. Where the two figures were inconsistent, Figure 11 was taken to be authoritative.

<sup>&</sup>lt;sup>4</sup>September 27, 2018. "Corps application combined.pdf". 50 pages.

### 4.1.1 Statics

MMC analyzed the specified backbone configuration under fully-stocked conditions with no waves, wind, or current. The resulting static displacement shown in Figure 6 shown that the center buoy is completely submerged in this case.

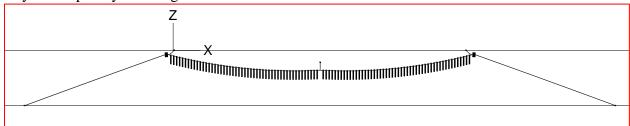



Figure 6. Static displacement of specified system (one central surface float) under fully-stocked conditions with no forcing.

• Because the specified system could not support the maximum expected wet weight of mussel growth, surface buoys were added until a non-negligible portion of each surface buoy was above the water surface. As shown in Figure 9, this was found to require seven surface buoys along the backbone, in addition to the corner surface buoys.

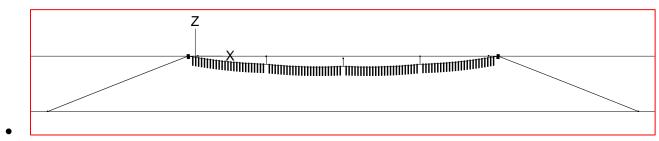



Figure 7. Static displacement of modified system (three interior surface floats) under fully-stocked conditions with no forcing.




Figure 8. Static displacement of modified system (five interior surface floats) under fully-stocked conditions with no forcing



Figure 9. Static displacement of modified system (seven interior surface floats) under fully-stocked conditions with no forcing.

### 4.1.1.1 <u>Mooring Pretension</u>

Figures 7 – 9 show that submerged corner buoys float to the surface in the as-specified configuration with added surface floats. Thus, once the required number of surface buoys had been determined, MMC adjusted the tension in the backbone system until the tether lines for the corner surface buoys remained under tension in typical environmental conditions. Here, typical conditions were defined as mean values—a current speed of 0.09 m/s and a significant wave height of 0.75 m. For demonstration, Figure 10 shows that 7.78 kN (1750 pounds) of pretension is inadequate to keep the aft surface tether under tension in mean conditions. Pretension was increased by increasing the distance between anchors. MMC found that keeping the corner tethers tensioned requires 10 kN (2250 lbf) of tension in the backbone under fully-stocked conditions. This condition is shown in Figure 11.

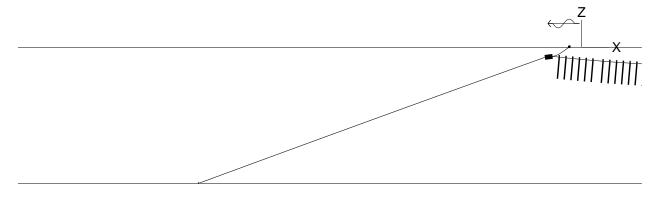



Figure 10. Aft mooring leg showing slack corner tether under mean environmental conditions (U = 9 cm/s and Hs = 0.75 m) with a pretension of 7.78 kN (1750 pounds).

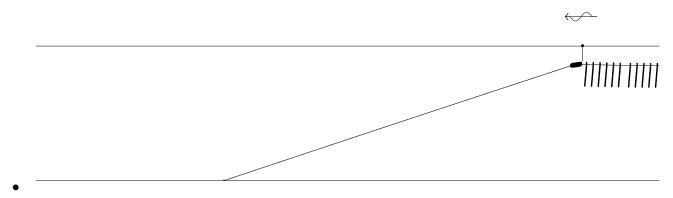



Figure 11. Aft mooring leg showing tensioned corner tether under mean environmental conditions (U = 9 cm/s and Hs = 0.75 m) with a pretension of 10 kN (2250 pounds).

• While high pretension values are widely considered to be beneficial in reducing the risk of animal entanglement, the operational challenges associated with high pretensions should be considered. As an alternative to the increased pretension values presented here, mooring lines with smaller scope values may yield a system in which the static position of the submerged corner buoys is less sensitive to tension. However, the reduced scope would affect predicted forces on the anchors. These effects would need to be quantified with additional numerical modeling.

### 4.1.2 Sensitivity to Current Direction

The tensions in structural members and forces on anchors are a function of the direct of current, waves, and wind. Since Figure 5 shows that the currents at the site are not strongly aligned with a single direction, the worst-case forcing direction was found by quantifying the tensions in the system as a function of current heading. For this analysis, a 100-year current speed was used with no wave forcing. Figure 12 shows that the highest tensions occur when the current heading is approximately 45 degrees from the nominal backbone axis. To provide a conservative estimate of maximum loading, current, waves, and wind were assumed to be collinear at 45 degrees from the backbone axis for all subsequent analyses.

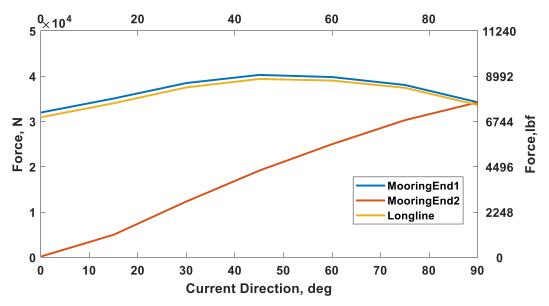



Figure 12. Mooring tensions as a function of current direction. Direction is relative to backbone.

### 4.1.3 Fully stocked conditions

Maximum tensions and anchor forces were quantified for the worst-case storms. The backbone system's response to the 100-year current event with 10-year return period waves and 10-year return period wind speed is illustrated in Figure 13.

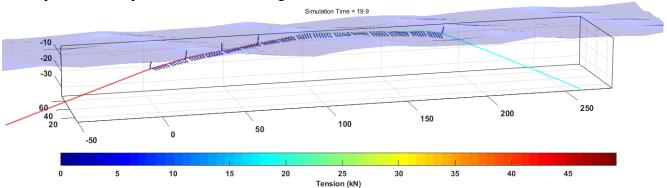



Figure 13. Backbone deformation and distribution of tensions in a 100-year current event with 10-year return period waves and 10-year return period wind speed. Current, waves, and wind are moving left to right and into the page.

### 4.1.4 Maximum Observed Tensions and Forces

The resulting maximum expected tensions in each storm event are shown in Table 5 (in SI units) and in Table 6 (in standard units).

# Table 5. <u>Maximum expected tensions and forces</u> on Major Structural Components in extreme storm conditions. (Current, wave, and wind direction is 45 degrees from backbone axis.) <u>SI</u> units.

|                                               | Max. Expected Tension<br>End 1 End2 Backbon<br>e |        |        | Max. Expected<br>Force on Anchor |          |
|-----------------------------------------------|--------------------------------------------------|--------|--------|----------------------------------|----------|
| Scenario                                      |                                                  |        |        | Horizont.                        | Vertical |
|                                               | Ν                                                | Ν      | Ν      | Ν                                | Ν        |
| 10 year waves, 20-year current, 10-year wind  | 52,503                                           | 19,361 | 54,009 | 51,365                           | 10,903   |
| 10 year waves, 100-year current, 10-year wind | 53,133                                           | 21,115 | 57,424 | 52,098                           | 10,458   |
| 20 year waves, 10-year current, 10-year wind  | 57,538                                           | 19,890 | 53,660 | 56,353                           | 11,757   |
| 100 year waves, 10-year current, 10-year wind | 60,856                                           | 19,329 | 58,190 | 59,643                           | 12,271   |

# Table 6. Maximum expected tensions and forces on Major Structural Components in extreme storm conditions. (Current, wave, and wind direction is 45 degrees from backbone axis.) Standard units.

|                                               | Max. Expected Tension |       |        | Max. Expected<br>Force on Anchor |          |
|-----------------------------------------------|-----------------------|-------|--------|----------------------------------|----------|
| Scenario                                      | End 1 End2 Backbon e  |       |        | Horizont.                        | Vertical |
|                                               | lbf                   | lbf   | lbf    | lbf                              | lbf      |
| 10 year waves, 20-year current, 10-year wind  | 11,932                | 4,400 | 12,275 | 11,674                           | 2,478    |
| 10 year waves, 100-year current, 10-year wind | 12,076                | 4,799 | 13,051 | 11,840                           | 2,377    |
| 20 year waves, 10-year current, 10-year wind  | 13,077                | 4,520 | 12,195 | 12,808                           | 2,672    |
| 100 year waves, 10-year current, 10-year wind | 13,831                | 4,393 | 13,225 | 13,555                           | 2,789    |

### 4.1.5 Minimum Allowable Capacity of Structural Components

MMC calculated the minimum breaking strength of the structural lines and the minimum holding power of the anchors required to achieve safety factors recommended by API for offshore structures. The resulting minimum capacities are given in Table 7 (SI units) and Table 8 (standard units).

# Table 7. <u>Minimum allowable capacity (e.g. breaking strength)</u> of major structural components in extreme storm conditions. (Current, wave, and wind direction is 45 degrees from backbone axis.) <u>SI</u> units.

|                                               | Minimu               | m Breaking | g Strength | Minimum<br>Pov | U        |
|-----------------------------------------------|----------------------|------------|------------|----------------|----------|
| Scenario                                      | End 1 End2 Backbon e |            |            | Horizont.      | Vertical |
|                                               | Ν                    | Ν          | Ν          | Ν              | Ν        |
| 10 year waves, 20-year current, 10-year wind  | 95,555               | 35,237     | 98,297     | 102,730        | 21,806   |
| 10 year waves, 100-year current, 10-year wind | 96,703               | 38,428     | 104,512    | 104,195        | 20,917   |

| 20 year waves, 10-year current, 10-year wind  | 104,720 | 36,199 | 97,661  | 112,706 | 23,514 |
|-----------------------------------------------|---------|--------|---------|---------|--------|
| 100 year waves, 10-year current, 10-year wind | 110,759 | 35,178 | 105,905 | 119,286 | 24,541 |

 Table 8. Minimum allowable capacity (e.g. breaking strength)
 of major structural components in extreme storm conditions. (Current, wave, and wind direction is 45 degrees from backbone axis.) Standard units.

|                                               | Minimum Breaking Strength |       |           | Minimum<br>Pov | U     |
|-----------------------------------------------|---------------------------|-------|-----------|----------------|-------|
| Scenario                                      | End 1 End2 Backbon e      |       | Horizont. | Vertical       |       |
|                                               | lbf                       | lbf   | lbf       | lbf            | lbf   |
| 10 year waves, 20-year current, 10-year wind  | 21,717                    | 8,008 | 22,340    | 23,348         | 4,956 |
| 10 year waves, 100-year current, 10-year wind | 21,978                    | 8,734 | 23,753    | 23,681         | 4,754 |
| 20 year waves, 10-year current, 10-year wind  | 23,800                    | 8,227 | 22,196    | 25,615         | 5,344 |
| 100 year waves, 10-year current, 10-year wind | 25,172                    | 7,995 | 24,069    | 27,111         | 5,578 |

### 4.1.6 Design 1: Unresolved Issues

Under certain combinations of current speed and direction, the backbone was observed lifting to the surface (Figure 14). The cause of this phenomenon is described in Section 5.1.

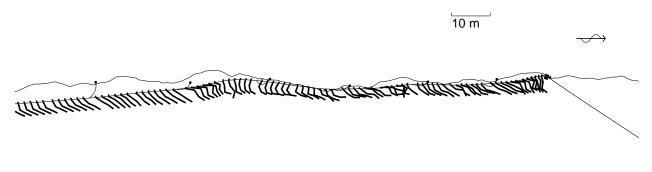



Figure 14. <u>Design 1</u> allowing backbone to lift to the surface under a 0.66 m/s current. This is due to the large amount of submerged buoyancy and the lift force on the mussel droppers. This results in a <u>potential navigation hazard</u> and <u>lost</u> <u>harvest</u> due to increased mussel drop-off in storms.

#### 4.1.7 Observations and Recommendations (Design 1)

- Mooring lines, backbones, and anchors must be selected to meet the minimum required capacities shown in Table 8.
- Up to six surface floats must be added to the backbone (in addition to the center surface float) to support the backbone under full grow-out conditions.
- Under fully-stocked conditions with six added surface floats, the system must have a static tension of 10 kN (2250 lbf) in the backbone to keep the corner tethers under tension. If this creates operational difficulties, moorings with smaller scope values could be considered. However, the effect on tensions and anchor loads would need to be quantified.

- MMC recommends using sinking rope instead of floating rope so that slack portions of the backbones or moorings do not rise to the surface and present risks to boat traffic.
- The backbone and mussel droppers can drift to the surface when subjected to high current speeds. This is due to excessive submerged buoyancy combined with the induced lift force on the mussel droppers when they swing back under a current.

## 5 Design 2: Engineered Revision of NZ System

To address the design issues identified with Design 1, a revised NZ system was engineered for the specific site conditions to address the following issues:

- The backbone lifting to the surface, resulting in a potential navigation hazard and loss-ofharvest when mussel droppers are subjected directly to surface waves.
- Reduce the tendency of the down-current submerged corner float drifting to the surface when the current is aligned with the backbone, resulting in a potential navigation hazard. (This was reduced, not successfully eliminated.)
- Maximize the usable backbone length. The total length of the backbone was increased from 175m to 205 m by reducing the scope of the mooring lines. This increased the usable portion (allowing 15m of unusable length on each end) from 145 m in Design 1 to 175 m. This corresponds to a 20% increase in maximum mussel harvest (from 18,950 kg dry weight to 22,869 kg dry weight).

Prior to engineering the revised system, the following criteria were modified:

- Based on personal communication between Owen Hesp and Scott Lindell, the last 15 m on each end of the backbone line were assumed to be unworkable. This is based on mussel farmers' being unable to raise the end sections to the surface.
- Based on conversations with the client, the mussel dropper lengths were increased to 30 feet from top to bottom.

### 5.1 Maximum allowable submerged buoyancy

Under certain combinations of current speed and direction, the backbone of Design 1 was observed lifting to the surface (Figure 14). This effect is described in detail below.

The current exerts an upward force on a mussel dropper as the dropper lays back at an angle. This was observed in tow tank tests by Landmann *et al.* (2019).

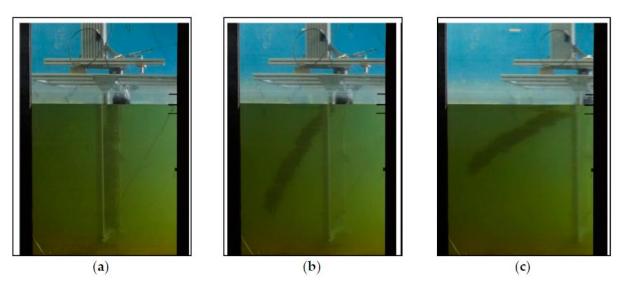



Figure 15. Landmann *et al.* (2019): "The drag testing of a top-mounted only specimen at velocities of 0.10 m/s (a), 0.25 m/s (b) and 0.5 m/s (c) with a progressive lift towards the surface visible."

The free-body diagram for this scenario is shown in Figure 16. The incline (angle from vertical) has been exaggerated for clarity.

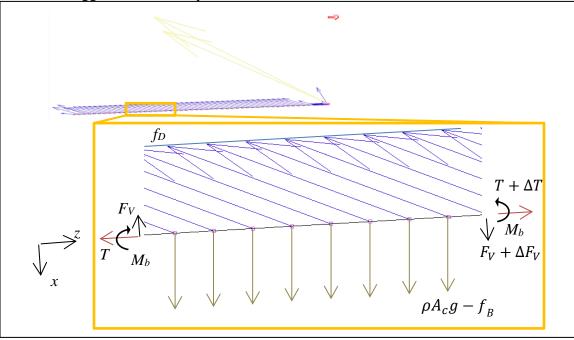



Figure 16. Force balance on a straight section mussel dropper under a steady current. Blue arrows show the drag vectors. Black arrows show the wet weight per length of the mussel dropper.

If curvature is negligible, then the shear force and bending moment in the dropper are taken to be zero. Since the system is at steady state, summing forces per length in the x-direction, normal to the dropper axis, yields,

$$f_{Dx} = (\rho A_c g - f_B) \cos(\theta) .$$
<sup>(1)</sup>

Here,  $\rho$  is the effective density of the dropper. A<sub>c</sub> is the cross-sectional area of the dropper. The buoyant force per length is f<sub>B</sub>, and  $\theta$  is the angle between the dropper axis and horizontal. The drag force normal to the dropper is f<sub>Dx</sub>.

The resulting vertical component of drag is then,

$$f_Z = f_{Dx} \cos(\theta) .$$
 (2)

Equations (1) and (2) were solved as a function of current speed using inputs that correspond to a mussel dropper with a dry weight per length of 8 lbm/foot. Figure 17 compares the wet weight of a 10-m mussel dropper with the resulting lift force as a function of speed. To prevent the backbone and mussel droppers from rising to the surface under <u>currents exceeding 0.5 m/s</u>, <u>submerged buoyancy should not support more than **two-thirds of the wet weight** of the mussel droppers. Excessive submerged buoyancy can result in a potential navigation hazard and loss of harvest due to mussel drop-off.</u>



Figure 17. Drag-induced lift on a 10-m long mussel dropper weighing 8 lbm/foot (dry) as a function of current speed. Maximum lift per length is approximately one-third of wet weight per length. To prevent the backbone and mussel droppers from rising to the surface under currents exceeding 0.5 m/s, <u>submerged buoyancy should not support more than two-thirds of the wet weight of the mussel droppers. Excessive submerged buoyancy can result in a potential navigation hazard and loss of harvest due to mussel drop-off.</u>

### 5.2 Pretensioning: Design 2

Typical industry values were used for the mooring scope (2.5) and the volume of the submerged corner floats (480 liters). The system was then pretensioned by adjusting the length of the backbone line until the submerged corner buoys were submerged and the surface corner buoys were upright. This condition corresponded to a pretension in the backbone line of 8.9 kN (2020 lbf) at mid tide. The resulting unstocked static configuration is shown Figure 18.

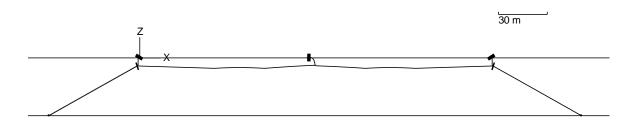



Figure 18. Unstocked static configuration for Design 2.

### 5.3 Uplift Prevention: Design 2

To eliminate the tendency of the backbone and mussel droppers to lift to the surface when subjected to a current, the ratio of submerged buoyancy to mussel weight was limited to two-thirds. This corresponds to a maximum of 30 submerged 120 liter buoys on the backbone for a maximum dry mussel mass of <u>22,869 kg</u> dry weight.

Because lifting is a concern for navigation and loss of harvest, but not for structural integrity, uplift was analyzed using the five-year return period current speed of 0.6 m/s. The resulting disposition of the backbone is shown in Figure 19.

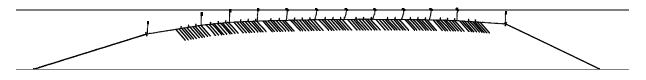



Figure 19. Design 2 under a 0.6 m/s (5-year return period) current at 45 degrees to the backbone. The current does not lift the backbone and mussel ropes to the surface in this configuration.

### 5.4 Corner Buoy Uplift Prevention: Design 2

Analysis of the initial backbone design showed that the downstream submerged corner buoy tends to float to the surface when the current direction is aligned with the backbone. Figure 20 shows that this condition occurs even with the specified tension of 8.9 kN (2020 lbf).

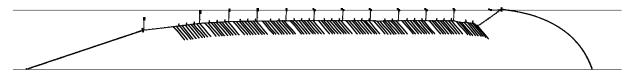



Figure 20. Design 1 under a one-year return period current aligned with the backbone line.

### 5.5 Statics: Design 2

The static configuration is shown in still water in Figure 21.



Figure 21. Design 2 under fully-stocked conditions with no environmental forcing.

### 5.6 Design 2 Summary

The components of Design 2 are specified in Table 9.

Table 9. Summary of Design 2 Components

| Component                 | Material     | Qty | Length | Net Buoyancy | Diameter | Volume   |
|---------------------------|--------------|-----|--------|--------------|----------|----------|
|                           |              |     |        | Total        |          | Each     |
|                           |              |     | m each | kg           | m        | m^3      |
| Mussel-Ropes              | Mussels      | 195 | 10.0   | -5,717       | 2.70E-01 | 5.75E-01 |
| Anchor-Line               | Duradan      | 2   | 67.1   | 16           | 4.00E-02 | 8.43E-02 |
| Long-Line                 | Duradan      | 1   | 205    | 24           | 4.00E-02 | 2.57E-01 |
| Sub-Corner-Float          | 4X120L, LDPE | 2   | 0.91   | 920          | 8.18E-01 | 4.80E-01 |
| Corner-Float              | 300L, LDPE   | 2   | 1.51   | 575          | 5.03E-01 | 3.00E-01 |
| Corner-Float-Line         | Duradan      | 2   | 6.1    | 1.1          | 4.00E-02 | 5.75E-03 |
| Long-Line-Float           | 120L, LDPE   | 30  | 1.1    | 3,229        | 3.71E-01 | 1.20E-01 |
| Tethers                   | Duradan      | 30  | 0.1    | 0.2          | 3.20E-02 | 8.04E-05 |
| Surface-Center-Float      | 300L, LDPE   | 10  | 1.5    | 2,875        | 5.03E-01 | 3.00E-01 |
| Surface-Center-Float-Line | Duradan      | 10  | 6.1    | 5.5          | 4.00E-02 | 5.75E-03 |

### 5.7 Operations: Design 2

### 5.7.1 Predation Avoidance

To protect against duck predation, the backbones must occasionally be lowered to about 40 feet. Consequently, the system must allow for managing tension in this alternative configuration. Two alternative configurations for Design 2 were analyzed under still water and 1-year storm conditions.

Figure 22 shows the lowered configuration (all tethers increased to 40 feet) in still water. Corner tethers are slack, with some line floating to the surface.

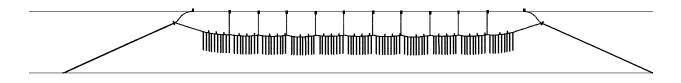



Figure 22. Design 2 with the tether lengths increased to 40 feet.

Figure 23 shows Design 2 in in still water in the lowered configuration with the middle tethers increased to 40 feet but the corner tethers kept at 20 feet. This configuration maintains tension in the corner tethers, with no line floating to the surface <u>in still water</u>.

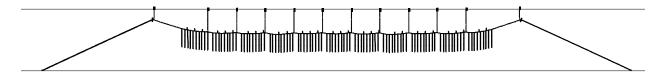



Figure 23. Design 2 with the tether lengths increased to 40 feet and the corner tethers kept at 20 feet, in still water. In this condition, tension in the system is maintained.

The lowered configuration was assessed under a 1-year return period storm in which current, wave, and wind are aligned with the backbone. Figure 24 and Figure 25 show that <u>even when the corner tethers are kept at 20 feet, significant slack is present in the down-current line</u>.

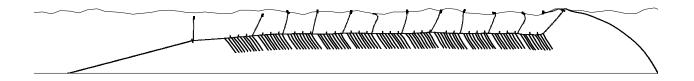



Figure 24. Design 2 in the lowered configuration with all tethers lengthened to 40 feet. Response to a 1-year storm aligned with the backbone. Significant slack is observed at the down-current end.

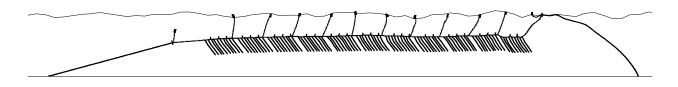



Figure 25. Design 2 in the lowered configuration with middle tethers lengthened to 40 feet and end tethers kept at 20 feet. Response to a 1-year storm aligned with the backbone. Significant slack is observed at the down-current end.

To further assess the likelihood of the downstream submerged buoy lifting to the surface, Design 2 was analyzed in the 1-year currents in the 300-degree and 30-degree directional bins, relative to true north. These are the directions aligned with the edges of the site. The 1-year return period currents in these directions were 0.10 m/s for the 120-degree/300-degree direction and 0.14 m/s

for the 30-degree/210-degree direction. Figure 26 and Figure 27 show that the submerged buoy stays at least slightly submerged in both cases. The risks associated with the buoy floating to the surface can be reduced by employing sinking rope.

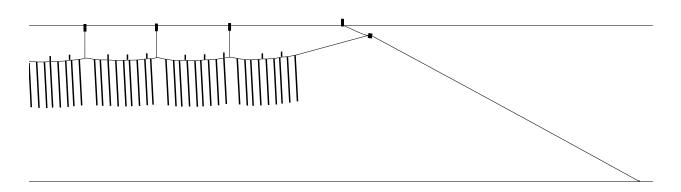



Figure 26. The downstream corner buoy stays submerged in the 1-year maximum currents (0.10 m/s) that occur in the 120-degree/300-degree direction.

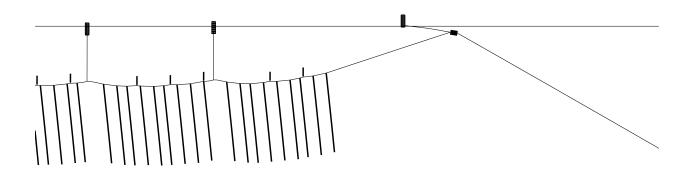



Figure 27. The downstream corner buoy stays (slightly) submerged in the 1-year maximum currents (0.14 m/s) that occur in the 30-degree/210-degree direction.

## 5.7.2 Harvesting and maintenance

The numerical model was used to quantify the force required to lift 2 meters of the fully-laden backbone above the surface of the water for maintenance or harvesting. To lift the backbone 2-m above the surface, the required force was 9.2 kN (2100 lbf) for Design 2. To lift the backbone 3-m above the surface, the required force was 13.2 kN (3000 lbf) for Design 2.

## 5.8 Storm Response: Design 2

MMC calculated the minimum breaking strength of the structural lines and the minimum holding power of the anchors required to achieve safety factors recommended by API for offshore structures under fully stocked conditions. Additionally, the 100-year storm that produced the largest loads in the fully stocked condition was used for the unstocked case. The resulting minimum capacities are given in Table 10 (SI units) and Table 11 (standard units).

|                                                                                                |         | Tension |          | Force on  | Anchor   |
|------------------------------------------------------------------------------------------------|---------|---------|----------|-----------|----------|
| Scenario                                                                                       | End 1   | End2    | Longline | Horizont. | Vertical |
|                                                                                                | Ν       | Ν       | Ν        | Ν         | Ν        |
| 1 year waves, 1-year current, 10-year wind                                                     | 126,769 | 52,419  | 125,926  | 135,458   | 33,063   |
| 10 year waves, 20-year current, 10-year wind                                                   | 232,638 | 75,613  | 231,203  | 250,661   | 50,909   |
| 10 year waves, 100-year current, 10-year wind                                                  | 267,695 | 82,908  | 266,205  | 288,891   | 56,303   |
| 20 year waves, 10-year current, 10-year wind                                                   | 212,956 | 72,154  | 211,239  | 229,406   | 46,956   |
| 100 year waves, 10-year current, 10-year wind<br>10 year waves, 100-year current, 10-year wind | 230,121 | 74,149  | 222,790  | 248,225   | 49,134   |
| - <u>Unstocked</u>                                                                             | 55,563  | 38,262  | 49,306   | 56,883    | 22,674   |

| Table 10. Minimum allowable capacity (e.g. breaking strength) of major structural components for Design 2 in extreme |
|----------------------------------------------------------------------------------------------------------------------|
| storm conditions. (Current, wave, and wind direction is 45 degrees from backbone axis.) <u>SI</u> units.             |

 Table 11. <u>Minimum allowable capacity (e.g. breaking strength)</u> of major structural components for <u>Design 2</u> in extreme storm conditions. (Current, wave, and wind direction is 45 degrees from backbone axis.) <u>Standard</u> units.

|                                                                                             | Tension |        |          | Force on Anchor |          |
|---------------------------------------------------------------------------------------------|---------|--------|----------|-----------------|----------|
| Scenario                                                                                    | End 1   | End2   | Longline | Horizont.       | Vertical |
|                                                                                             | lbf     | lbf    | lbf      | lbf             | lbf      |
| 1 year waves, 1-year current, 10-year wind                                                  | 28,811  | 11,913 | 28,620   | 30,786          | 7,514    |
| 10 year waves, 20-year current, 10-year wind                                                | 52,872  | 17,185 | 52,546   | 56,968          | 11,570   |
| 10 year waves, 100-year current, 10-year wind                                               | 60,840  | 18,843 | 60,501   | 65,657          | 12,796   |
| 20 year waves, 10-year current, 10-year wind                                                | 48,399  | 16,399 | 48,009   | 52,138          | 10,672   |
| 100 year waves, 10-year current, 10-year wind 10 year waves, 100-year current, 10-year wind | 52,300  | 16,852 | 50,634   | 56,415          | 11,167   |
| - <u>Unstocked</u>                                                                          | 12,628  | 8,696  | 11,206   | 12,928          | 5,153    |

## 6 Design 3: Novel Engineered System

To address concerns with Designs 1 and 2, Dewhurst developed a new backbone system design. This design incorporates submerged buoyancy at a point on each mooring line positioned such that anchor line float cannot reach the surface. The goal of this design is threefold:

- Increase the ease of lifting the backbone for harvesting, allowing the same increased mussel mass (22,869 kg dry weight) as in Design 2.
- Improve the handling of slack in downstream sections of the line and when the system is lowered to prevent duck predation.
- Investigate the possibility of improved mooring compliance reducing peak loads in extreme storms.

Clump weights on the mooring line could be used to a similar end, but have been known to break when not carefully designed and constructed.

### 6.1 Pretensioning and Corner Buoy Uplift Prevention: Design 3

Typical industry values were used for the mooring scope (3:1) and the volume of the submerged corner floats (420 liters per mooring line). However, the submerged buoyancy was placed 30 m above the anchor (90% of the MLLW depth) instead of at the top end of the mooring line.

Analysis of the previous designs showed that the downstream submerged corner buoy tends to float to the surface when the current direction is aligned with the backbone. In the proposed design, the system was pretensioned by adjusting the length of the backbone line until no part of the backbone line lifted to the surface in a 1-year current event (0.45 m/s) even when the current is directly in line with the backbone. As shown in Figure 28, this design satisfies the objective of preventing submerged buoys from surfacing under one-year return period conditions. This is the objective which Design 2 was unable to satisfy.

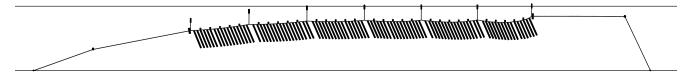



Figure 28. Design 3 in a one-year return period current directly aligned with the backbone. This design satisfies the objective of preventing submerged buoys from surfacing under one-year return period conditions.

This condition corresponded to a pretension in the backbone line of 7.4 kN (1660 lbf) at mid tide. The resulting unstocked static configuration is shown Figure 29.



Figure 29. Unstocked static configuration for Design 3.

### 6.2 Statics: Design 3

The static configuration is shown in still water in Figure 24.



Figure 30. Design 2 under fully-stocked conditions with no environmental forcing.

### 6.3 Uplift Prevention: Design 3

To eliminate the tendency of the backbone and mussel droppers to lift to the surface when subjected to a current, the ratio of submerged buoyancy to mussel weight was limited to less than two-thirds. This corresponds to a maximum of 30 submerged 120 liter buoys on the backbone for a maximum dry mussel mass of 22,869 kg (50,418 lbm).

Because lifting is a concern for navigation and loss of harvest, but not for structural integrity, uplift was analyzed using the five-year return period current speed of 0.6 m/s. The resulting disposition of the backbone is shown in Figure 19.



Figure 31. Design 2 under a 0.6 m/s (5-year return period) current at 45 degrees to the backbone. The current does not lift the backbone and mussel ropes to the surface in this configuration.

#### 6.4 Design 3 Summary

The components of Design 3 are specified in Table 12.

| Component                 | Material   | Qty | Length      | Net Buoyancy | Diameter | Volume   |
|---------------------------|------------|-----|-------------|--------------|----------|----------|
|                           |            |     |             | Total        |          | Each     |
|                           |            |     | m each      | kg           | m        | m^3      |
| Mussel-Ropes              | Mussels    | 195 | 10.0        | -5,717       | 2.70E-01 | 5.75E-01 |
| Anchor-Line               | Duradan    | 2   | 80.5        | 19           | 4.00E-02 | 1.01E-01 |
| Anchor-Line-Float         | 420L, LDPE | 2   | 2.112934433 | 804.7        | 5.03E-01 | 4.20E-01 |
| Long-Line                 | Duradan    | 1   | 175         | 21           | 4.00E-02 | 2.20E-01 |
| Corner-Float              | 300L, LDPE | 2   | 1.51        | 535          | 5.03E-01 | 3.00E-01 |
| Corner-Float-Line         | Duradan    | 2   | 6.1         | 1.1          | 4.00E-02 | 5.75E-03 |
| Long-Line-Float           | 120L, LDPE | 30  | 1.1         | 3,229        | 3.71E-01 | 1.20E-01 |
| Tethers                   | Duradan    | 30  | 0.1         | 0.2          | 3.20E-02 | 8.04E-05 |
| Surface-Center-Float      | 300L, LDPE | 10  | 1.5         | 2,875        | 5.03E-01 | 3.00E-01 |
| Surface-Center-Float-Line | Duradan    | 10  | 6.1         | 5.5          | 4.00E-02 | 5.75E-03 |
| TOTAL                     |            |     |             | 1,774        |          |          |

| Table 12.  | Summarv | of Design | 2 Components |
|------------|---------|-----------|--------------|
| 1 4010 12. | Summary | or Design | 2 components |

### 6.5 Operations: Design 3

### 6.5.1 Predation Avoidance

To protect against duck predation, the backbones must occasionally be lowered to about 40 feet. Consequently, the system must allow for managing tension in this alternative configuration. Design 3 was analyzed under still water and 1-year storm conditions.

Figure 32 shows the lowered configuration (all tethers increased to 40 feet) in still water. Tension is maintained in the system, with no line floating to the surface.



Figure 32. Design 2 with the tether lengths increased to 40 feet.

The lowered configuration was assessed under a 1-year return period storm in which current, wave, and wind are aligned with the backbone. Figure 33 shows that <u>no slack is present in the down-current line</u>.

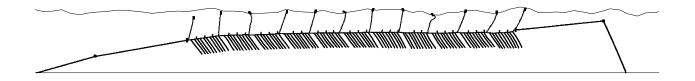



Figure 33. Design 2 in the lowered configuration with all tethers lengthened to 40 feet. Response to a 1-year storm aligned with the backbone. No slack is observed at the down-current end.

### 6.5.2 Harvesting and maintenance: Design 3

The numerical model was used to quantify the force required to lift a 2-m length of the backbone 2 meters above the surface of the water. The required force was 12,878 kN (2,927 lbf) for Design 3. To lift the backbone 3 m above the surface, the required force was 14,948 kN (3,397lbf)

### 6.6 Storm Response: Design 3

### 6.6.1 Survival Conditions

MMC calculated the minimum breaking strength of the structural lines and the minimum holding power of the anchors required to achieve safety factors recommended by API for offshore structures under fully stocked conditions. Additionally, the 100-year storm that produced the largest loads in the fully stocked condition was used for the unstocked case. The resulting minimum capacities are given in Table 13 (SI units) and Table 14 (standard units).

|                                                                                                |         | Tension |          | Force on  | Anchor   |
|------------------------------------------------------------------------------------------------|---------|---------|----------|-----------|----------|
| Scenario                                                                                       | End 1   | End2    | Longline | Horizont. | Vertical |
|                                                                                                | Ν       | Ν       | Ν        | Ν         | Ν        |
| 1 year waves, 1-year current, 10-year wind                                                     | 124,697 | 49,242  | 122,133  | 132,353   | 35,624   |
| 10 year waves, 20-year current, 10-year wind                                                   | 252,797 | 78,869  | 257,041  | 271,713   | 58,701   |
| 10 year waves, 100-year current, 10-year wind                                                  | 269,045 | 84,192  | 271,600  | 289,611   | 60,516   |
| 20 year waves, 10-year current, 10-year wind                                                   | 255,653 | 78,900  | 248,941  | 274,826   | 59,052   |
| 100 year waves, 10-year current, 10-year wind<br>10 year waves, 100-year current, 10-year wind | 265,931 | 79,701  | 256,358  | 286,010   | 60,954   |
| - <u>Unstocked</u>                                                                             | 42,830  | 31,949  | 39,661   | 43,125    | 19,265   |

| Table 13. Minimum allowable capacity (e.g. breaking strength) of major structural components for Design 3 in extreme |
|----------------------------------------------------------------------------------------------------------------------|
| storm conditions. (Current, wave, and wind direction is 45 degrees from backbone axis.) <u>SI</u> units.             |

Table 14. <u>Minimum allowable capacity (e.g. breaking strength)</u> of major structural components for <u>Design 3</u> in extreme storm conditions. (Current, wave, and wind direction is 45 degrees from backbone axis.) <u>Standard</u> units.

|                                                                                                |        | Tension |          |           | Force on Anchor |  |
|------------------------------------------------------------------------------------------------|--------|---------|----------|-----------|-----------------|--|
| Scenario                                                                                       | End 1  | End2    | Longline | Horizont. | Vertical        |  |
|                                                                                                | lbf    | lbf     | lbf      | lbf       | lbf             |  |
| 1 year waves, 1-year current, 10-year wind                                                     | 28,340 | 11,191  | 27,757   | 30,080    | 8,096           |  |
| 10 year waves, 20-year current, 10-year wind                                                   | 57,454 | 17,925  | 58,418   | 61,753    | 13,341          |  |
| 10 year waves, 100-year current, 10-year wind                                                  | 61,147 | 19,135  | 61,727   | 65,821    | 13,754          |  |
| 20 year waves, 10-year current, 10-year wind                                                   | 58,103 | 17,932  | 56,577   | 62,461    | 13,421          |  |
| 100 year waves, 10-year current, 10-year wind<br>10 year waves, 100-year current, 10-year wind | 60,439 | 18,114  | 58,263   | 65,002    | 13,853          |  |
| - <u>Unstocked</u>                                                                             | 9,734  | 7,261   | 9,014    | 9,801     | 4,378           |  |

## 7 Comparison of Design Alternatives

Table 15 compares key results for Designs 1, 2, and 3. (Since certain key problems with Design 1 were identified early on, Design 1 was not reanalyzed with the increase mussel biomass for which Designs 2 and 3 were analyzed.)

|                                                                                                                                                                                                               | Design 1         | Design 2             | Design 3             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|----------------------|
| Survival                                                                                                                                                                                                      |                  |                      |                      |
| Required Minimum Breaking Load: Mooring Line                                                                                                                                                                  | N/A <sup>5</sup> | <b>60,840</b> lbf    | <b>61,147</b> lbf    |
| Required Minimum Breaking Load: Long Line                                                                                                                                                                     | N/A              | <b>60,501</b> lbf    | <b>61,727</b> lbf    |
| Required Anchor Holding Capacity: Horizontal                                                                                                                                                                  | N/A              | <b>65,657</b> lbf    | <b>65,821</b> lbf    |
| Required Anchor Holding Capacity: Vertical                                                                                                                                                                    | N/A              | 12,796 lbf           | <b>13,754</b> lbf    |
| Navigability and Operations                                                                                                                                                                                   |                  |                      |                      |
| Force required to lift fully-stocked backbone 2m above surface                                                                                                                                                | N/A              | 2094 lbf             | 2927 lbf             |
| Force required to lift fully-stocked backbone 3m above surface                                                                                                                                                | N/A              | 3001 lbf             | 3397 lbf             |
| Backbone stays at nominal depth under high currents?                                                                                                                                                          | No               | Yes                  | Yes                  |
| Slack lines eliminated in lowered (predation avoidance) configuration in still water?                                                                                                                         | No               | Yes <sup>6</sup>     | Yes                  |
| Slack lines eliminated when the highest 1-year current is aligned with backbone?                                                                                                                              | No               | No                   | Yes                  |
| Slack lines eliminated for 1-year currents aligned<br>with probable orientations of the backbone (the<br>120-degree/300-degree direction and the 30-<br>degree/210-degree direction, relative to true north)? | No               | No                   | Yes                  |
| Mussel Drop-off                                                                                                                                                                                               |                  |                      |                      |
| Collision between droppers?                                                                                                                                                                                   | N/A              | N/A                  | N/A                  |
| RMS Acceleration at backbone midpoint <sup>7</sup> in 1-year storm                                                                                                                                            | N/A              | 0.7 m/s <sup>2</sup> | 0.8 m/s <sup>2</sup> |

| Table 15  | Comparison | of Key Resi | ilts for Desig  | ns 1, 2, and 3 |
|-----------|------------|-------------|-----------------|----------------|
| Table 15. | Comparison | of Key Kest | into for Design | 15 1, 2, and 5 |

N/A: Not Analyzed

<sup>&</sup>lt;sup>5</sup> Structural requirements for Design 1 are not presented here because it was analyzed with a much lower biomass than Designs 2 and 3

<sup>&</sup>lt;sup>6</sup> If end tethers are kept at 20 feet

<sup>&</sup>lt;sup>7</sup> May serve as a proxy for mussel drop-off

The required structural capacities of the mooring lines, longlines, and anchors are similar for Designs 2 and 3.

The RMS accelerations at the longline midpoint are also similar between Designs 2 and 3.

Design 2 requires less force raise the fully-stocked backbone to 2 m above the water surface for maintenance or harvesting. However, the difference in required lift force between Design 2 and Design 3 becomes small if the backbone must be raised to 3 m. This is because the backbone tension in Design 3 stays relatively constant regardless of backbone lift height; in Design 2, the static tension is lower, but increases more quickly as the backbone is raised above the surface.

Both Designs 2 and 3 were successfully engineered to eliminate the tendency of the backbone to lift to the surface, even under the strong maximum currents characteristic of the site. This was accomplished by limiting the amount of submerged buoyancy on the backbone to less than two-thirds of the wet weight of the mussel biomass.

The key difference in the performance of Designs 2 and 3 is that Design 3 better reduces slack in the downstream mooring line under all environmental loading conditions, whether the backbone is at 20-feet or lowered to 40 feet to avoid duck predation. The trade-off for this improved performance is that it is achieved by submerged flotation on the mooring lines below the Mean Lower-Low Water height. Since those submerged buoys cannot reach the surface, they could increase the difficulty of installation. If Design 2 is used, MMC recommends using sinking rope rather than floating rope, particularly for any lines that may be slack or near slack in reasonable loading conditions.

## 8 References

API, R. (2005) 'Design and analysis of station keeping systems for floating structures', *American Petroleum Institute*, (May 2008).

Dewhurst, T. (2016) Dynamics of a Submersible Mussel Raft. University of New Hampshire.

Landmann, J. *et al.* (2019) 'Physical Modelling of Blue Mussel Dropper Lines for the Development of Surrogates and Hydrodynamic Coefficients', *Journal of Marine Science and Engineering*, 7(3), p. 65. doi: 10.3390/jmse7030065.

Morison, J. R., Johnson, J. W. and Schaaf, S. A. (1950) 'The Force Exerted by Surface Waves on Piles', *Journal of Petroleum Technology*. Society of Petroleum Engineers (SPE), 2(05), pp. 149–154. doi: 10.2118/950149-g.

Standards Norway (2009) NS 9415.E.2009\_Marine fish farms - Requirements for site survey, risk analyses, design, dimensioning.

# <u>Appendix B</u>

Engineering Evaluation of Break-away Links and Cascading Failure Risk for a Mussel Backbone System



Kelson Marine Co. PO Box 981 Scarborough, ME 04070

T +1 207-747-2090 KelsonMarine.com Service@KelsonMarine.com

# **Engineering Evaluation of Break-away Links and Cascading Failure Risk for a Mussel Backbone System**

November 2, 2020

For: Ventura Shellfish Enterprise

| Revision | Date      | Originator               | Description                                   |
|----------|-----------|--------------------------|-----------------------------------------------|
| 0        | 11/2/2020 | Tobias Dewhurst, PhD, PE | Final report                                  |
| 0.1      | 11/7/2020 | Tobias Dewhurst, PhD, PE | Clarified example breaking strength for twine |
|          |           |                          |                                               |
|          |           |                          |                                               |

#### Information class: Standard

This document is issued for the party which commissioned it and for specific purposes connected with the specified project. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us or from the party which commissioned it.

Kelson Marine Co. | Break-away Links and Cascading Failure Risk for a Mussel Backbone System

## 1 Executive Summary

The purpose of this engineering evaluation was to mitigate structural failure and entanglement risks for the proposed mussel farm. The backbone-style mussel cultivation system considered was proposed by Ventura Shellfish Enterprise off the coast of southern California.

Kelson Marine Co. ("Kelson") calculated extreme current, wave, and wind conditions corresponding to a storm that would occur once every 100-years (the 100-year storm), based on nearby historical ocean observations. The 100-year significant wave height was calculated to be 5.91 m (19.4 ft).

To mitigate the risk of structural failure in extreme storms, key components of the backbone and mooring system must meet or exceed the required structural capacities reported in Table 5.

To mitigate the risk of animal entanglement, various break-away links have been proposed. Kelson Marine evaluated the strengths required for those links to maintain the structural integrity of the farm during various 100-year storm. Similarly, Kelson evaluated the strengths required to keep the fully-grown continuous mussel ropes attached to the backbone during 100-year storms.

Results showed that if 1700 lbf break-away links were used to attach the surface buoys to the backbone, they would provide a safety factor of 1.5. If 3400 lbf break-away links were used, they would provide a safety factor of 3.1.

If twine with an overall connection strength of 1100 lbf were used to connect the mussel droppers to the backbone, this connection would have a safety factor of 4.9.

Based on simulations of damaged conditions in which one surface buoy and one submerged buoy are detached from the backbone, the increase in loads on the remaining buoy attachments is negligible and the farm stays afloat. Thus, the structure is not at an appreciable risk of cascading failure due to damage to the buoy attachments.

## 2 Introduction

This report summarizes an engineering analysis of a mussel backbone system designed for the Ventura Shellfish Enterprise. The proposed site is 7 km (4.4 mi) from the coast of California, on the landward side of the Santa Barbara Channel.

The primary goal of this analysis was to determine the required capacities of the attachments connecting 1) the tethers connecting the surface buoys to the backbone, and 2) the continuous mussel dropper rope to the backbone.

## 3 Site Parameters and Extreme Metocean Conditions

### 3.1 Design Basis: Relevant Standards and Extreme Condition Return Period

Several industry and government standards exist for finfish aquaculture. Examples include:

• <u>NS 9415</u>: "Marine fish farms–Requirements for site survey, risk analyses, design, dimensioning, production, installation and operation" (Standards Norway, 2009).

Kelson Marine Co. | Break-away Links and Cascading Failure Risk for a Mussel Backbone System

- "A Technical Standard for Scottish Finfish Aquaculture" (Ministerial Group for Sustainable Aquaculture's Scottish Technical Standard Steering Group, 2015)
- "Basis-of-Design Technical Guidance for Offshore Aquaculture Installations in the Gulf of Mexico" by the U.S. Dept. of Commerce's National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Regional Office. (Fredriksson & Beck-Stimpert, 2019)
- "Guidance Notes on the Application of Fiber Rope for Offshore Mooring" (ABS, 2012).
- "Design and analysis of station keeping systems for floating structures" (API, 2005)

NS9415 and the Scottish standard mandate that structures be designed to withstand 50-year storms. No agreed-upon standard exists for non-finfish aquaculture and its relatively lower associated risks compared to finfish systems. To ensure a conservative analysis, and to comply with guidance from the relevant permitting agencies for this project, the 100-year storm condition was taken to be the design standard for the present study.

### 3.2 Currents

Based on previous analysis conducted for VSE, the current speeds shown in Table 1 were used for each return period.

Table 1. Extreme current speeds for various return periods.

| Return Period, years | 1    | 10   | 20   | 50   | 100  |
|----------------------|------|------|------|------|------|
| Speed, m/s           | 0.45 | 0.66 | 0.73 | 0.81 | 0.87 |

#### 3.3 Waves

Based on previous analysis conducted for VSE, the significant wave heights and associated peak periods shown in Table 2were used for each return period.

 Table 2. Extreme Significant Wave Heights (Hs) and associated Peak Wave Periods (Tp) for various return periods.

| Return Period, years            | 1    | 10   | 20   | 50   | 100  |
|---------------------------------|------|------|------|------|------|
| Significant Wave Height, Hs (m) | 3.89 | 4.94 | 5.23 | 5.62 | 5.91 |

#### 3.4 Wind

Historical wind data was taken from NDBC station 46053. NOAA reports the maximum peak wind gust between 1998 and 2008 to be 54 knots (28 m/s). This 10-year return period wind speed was assumed to be aligned with the wave direction for all extreme loadcases.

#### 3.5 Tidal Range

As per NOAA Tide Prediction station 9411189, Ventura CA, the maximum tidal amplitude near the site is 1.25 m.

Kelson Marine Co. | Break-away Links and Cascading Failure Risk for a Mussel Backbone System

## 4 Numerical Model of the Backbone System

#### 4.1 Backbone dimensions

The backbone dimensions used for the present study proposed by VSE are shown in Table 3.

Table 3. Farm components, as analyzed. SI Units.

| Component                | Material        | Qty | Length<br>Each<br>m | Net Buoyancy<br>Total for material<br>kg | Volume<br>Each<br>m^3 |
|--------------------------|-----------------|-----|---------------------|------------------------------------------|-----------------------|
| Mooring Line             | Duradan         | 2   | 80.5                | 19                                       | 101.1E-3              |
| Mooring Line Float       | 420L, LDPE      | 2   | 2.1                 | 804.7                                    | 420.0E-3              |
| Backbone                 | Duradan         | 1   | 175                 | 21                                       | 220.2E-3              |
| Surface Corner Float     | 300L, LDPE      | 2   | 1.51                | 535                                      | 300.0E-3              |
| Corner Float Tether      | Duradan         | 2   | 6.1                 | -5.4                                     | 7.7E-3                |
| Submerged Backbone Float | 120L, LDPE      | 30  | 1.1                 | 3,229                                    | 120.0E-3              |
| Backbone Float Tether    | Duradan         | 30  | 0.1                 | -1.3                                     | 125.7E-6              |
| Surface Backbone Float   | 300L, LDPE      | 10  | 1.5                 | 2,875                                    | 300.0E-3              |
| Surface Float Tether     | Duradan         | 10  | 6.1                 | -27.2                                    | 7.7E-3                |
| Mussel Dropper           | Mussel<br>Ropes | 195 | 10.0                | -5,717                                   | 574.9E-3              |

#### Table 4. Farm components, as analyzed. Customary Units.

| Component                | Material   | Qty | Length<br>Each<br>ft | Net Buoyancy<br>Total for material<br>Ibf | Volume<br>Each<br>ft^3 |
|--------------------------|------------|-----|----------------------|-------------------------------------------|------------------------|
| Mooring Line             | Duradan    | 2   | 264.1                | 42                                        | 3.57                   |
| Mooring Line Float       | 420L, LDPE | 2   | 6.9                  | 1,774.1                                   | 14.83                  |
| Backbone                 | Duradan    | 1   | 575                  | 46                                        | 7.78                   |
| Surface Corner Float     | 300L, LDPE | 2   | 4.95                 | 1,179                                     | 10.59                  |
| Corner Float Tether      | Duradan    | 2   | 20.0                 | -12.0                                     | 0.27                   |
| Submerged Backbone Float | 120L, LDPE | 30  | 3.6                  | 7,119                                     | 4.24                   |
| Backbone Float Tether    | Duradan    | 30  | 0.3                  | -3.0                                      | 0.00                   |
| Surface Backbone Float   | 300L, LDPE | 10  | 5.0                  | 6,338                                     | 10.59                  |
| Surface Float Tether     | Duradan    | 10  | 20.0                 | -60.0                                     | 0.27                   |
|                          | Mussel     |     |                      |                                           |                        |
| Mussel Dropper           | Ropes      | 195 | 33.0                 | -12,604                                   | 20.30                  |

### 4.2 Numerical Modeling Approach

The proposed farm is located in an exposed ocean site subject to wind, waves, and currents. Since the cultivation system is comprised of flexible components subject to nonlinear wave and current forces, static analysis of the structure was not sufficient for determining the required structural capacity. Therefore, Kelson Marine Co. ("Kelson") developed a numerical model of the proposed backbone system using a Hydro-/Structural Dynamic Finite Element Analysis approach (HS-DFEA). This HS-DFEA approach solves the equations of motion at each time step using a nonlinear Lagrangian method to accommodate the large displacements of structural elements, as described in NOAA's Basis-of-Design Technical Guidance for Offshore Aquaculture Installations In the Gulf of Mexico (Fredriksson & Beck-Stimpert, 2019). Wave and current loading on buoy and line elements (including mussel rope elements) is incorporated into the model using a Morison equation formulation (Morison, Johnson, & Schaaf, 1950) modified to include relative motion between the structural element and the surrounding fluid. For elements intersecting the free surface, buoyancy, drag, and added mass forces are multiplied by the fraction of the element's volume that is submerged. Steady incident flow and wave forcing are specified by the user. For cases in which the angle between the current heading and the backbone axis was small (less than 10 degrees), the reduction in current speed along the length of the backbone was estimated by solving a one-dimensional momentum balance between the net horizontal drag force on the mussel droppers and fluid momentum associated with the current, using a simplified version of the method outlined by (Rosman, Monismith, Denny, & Koseff, 2010). Kelson has demonstrated the validity of this approach for exposed backbone cultivation systems for macroalgae. In this analysis, the pressure gradient due to the free surface gradient was neglected because the overall porosity of the farm (the ratio of volume occupied by water to volume occupied by farm structure) was small. The momentum balance was made onedimensional by averaging the horizontal drag on the mussel droppers equal to the depth of the mussel droppers squared. This likely results in a conservative (high) estimate of total drag.

This analysis does not calculate the larger-scale reduction in current speeds or wave height throughout the farm. This results in a conservative (high) estimate of the required structural capacity for backbones that are not on the exposed edges of the farm.

The structural and hydrodynamic parameters of the mussel lines were taken from (Dewhurst, 2016) and (Dewhurst, Hallowell, & Newell, 2019). The diameter of the mussel ropes was set so that the <u>dry weight of mussels was 12 kg/m (8 pounds per foot)</u> of mussel rope, as specified by the client. This is a typical industry estimate of maximum growth. If higher growths are expected, this analysis should be repeated using the larger values. The net in-water weight of the mature mussel ropes was taken to be ¼ of the dry weight (Bonardelli, Kokaine, Ozolina, & Aigars, 2019). Each mussel dropper loop was combined into a single line of beam elements in the numerical model.

Since each backbone in the array has its own anchors and is independent of the other backbones, an individual backbone system was examined.

Kelson Marine Co. | Break-away Links and Cascading Failure Risk for a Mussel Backbone System

## 5 Results and Risk Mitigation

### 5.1 Mitigating the Risk of Structural Failure

#### 5.1.1 Load cases Considered

NS9415 and the Scottish finfish standard mandate that structures be designed to withstand 50year storms. They stipulate that two 50-year events should be examined: A) 50-year wave conditions combined with 10-year current conditions (the wave-dominated case) and B) 50-year current conditions combined with 10-year wave conditions (the current-dominated case). For this project, the relevant permitting agencies requested the structure be designed withstand 100-year storms. Thus, 100-year current and wave magnitudes were combined with 10-year wave and current magnitudes, respectively. The 10-year wind speed was included in all load cases. Figure 1 shows a screenshot of the hydro-/structural dynamic FEA model of the backbone responding to a 100-year storm.

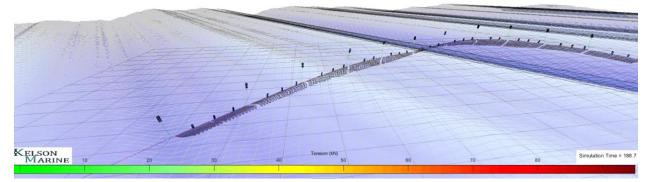



Figure 1. Dynamic model of backbone system in a 100-year, wave-dominated storm.

#### 5.1.2 Calculation of Required Structural Capacity

For each load case, the maximum expected tensions and forces in a three-hour storm,  $F_{max}$ , were calculated assuming a Rayleigh distribution of the maximum loads. That is,

$$F_{max} = F_{mean} + \sqrt{2 \log(3 * 3600/T_{pk})} \sigma_F,$$

where  $T_{pk}$  is the peak wave period and  $\sigma_F$  is the standard deviation of the force time series

Kelson calculated the minimum breaking strength of the structural lines and the minimum holding power of the anchors required to achieve safety factors recommended by ABS and API for offshore structures. The American Bureau of Shipping (ABS) recommends a safety factor of 1.82 on synthetic ropes (ABS, 2012). API requires a safety factor of 2.0 on vertical loading of pile anchors (API, 2005). In the present analysis, this safety factor of 2.0 was applied to both the vertical and horizontal forces on the helical anchor.

Taking into account the required safety factors, Kelson computed the <u>minimum allowable</u> <u>capacity (e.g. breaking strength)</u> of major structural components based on the results of the

Page | 6

Kelson Marine Co. | Break-away Links and Cascading Failure Risk for a Mussel Backbone System

dynamic simulations of the fully-stocked backbone system in the 100-year storm conditions. These required capacities <u>include the recommended safety factors</u>. Since no industry-standard safety factors exist for breakaway links, the required capacities are shown in Table 5 and Table 6 with a safety factor of unity, which corresponds to failure in the 100-year storm condition. In practice, safety factors on weak links must be higher than this.

 Table 5. <u>Minimum allowable capacity (e.g. minimum breaking strength)</u> of major structural components in extreme storm conditions. Recommended <u>safety factors are included</u>. When purchasing ropes, the breaking strength must equal or exceed the requirements shown below. <u>The definition of minimum breaking strength of selected ropes must include reductions in strength due to knots or splicing.</u> SI Units

|                                          |                   | Mooring<br>Line and<br>con-<br>nections,<br>Minimum<br>Breaking<br>Load | Backbone<br>and con-<br>nections,<br>Minimum<br>Breaking<br>Load | Mussel<br>dropper<br>con-<br>nections,<br>Minimum<br>Breaking<br>Load | Backbone<br>surface<br>float con-<br>nections,<br>Minimum<br>Breaking<br>Load | Backbone<br>submerged<br>float con-<br>nections,<br>Minimum<br>Breaking<br>Load | Anchor<br>Horizontal<br>capacity | Anchor-<br>-Vertical<br>capacity |
|------------------------------------------|-------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------|----------------------------------|
|                                          | Safety<br>Factor  | 1.82                                                                    | 1.82                                                             | 1.82                                                                  | 1                                                                             | 1                                                                               | 2                                | 2                                |
|                                          | Storm<br>directio |                                                                         |                                                                  |                                                                       |                                                                               |                                                                                 |                                  |                                  |
| Case                                     | n, deg.           | kN                                                                      | kN                                                               | kN                                                                    | kN                                                                            | kN                                                                              | kN                               | kN                               |
| 10 year                                  | 1                 | 78                                                                      | 74                                                               | 1.0                                                                   | 4.6                                                                           | 1.5                                                                             | 82                               | 26                               |
| waves,<br>100-<br>year                   | 23                | 227                                                                     | 225                                                              | 1.8                                                                   | 4.8                                                                           | 2.0                                                                             | 246                              | 46                               |
|                                          | 45                | 206                                                                     | 204                                                              | 1.3                                                                   | 4.7                                                                           | 1.6                                                                             | 223                              | 44                               |
| current,                                 | 68                | 176                                                                     | 174                                                              | 0.9                                                                   | 4.6                                                                           | 1.3                                                                             | 190                              | 40                               |
| 10-year<br>wind                          | 90                | 143                                                                     | 140                                                              | 0.7                                                                   | 4.6                                                                           | 1.2                                                                             | 153                              | 36                               |
| 100 year                                 | 1                 | 76                                                                      | 72                                                               | 1.1                                                                   | 4.7                                                                           | 1.6                                                                             | 79                               | 25                               |
| waves,<br>10-year<br>current,<br>10-year | 23                | 195                                                                     | 193                                                              | 1.7                                                                   | 4.9                                                                           | 2.0                                                                             | 210                              | 42                               |
|                                          | 45                | 178                                                                     | 176                                                              | 1.2                                                                   | 4.9                                                                           | 1.6                                                                             | 192                              | 40                               |
|                                          | 68                | 152                                                                     | 150                                                              | 0.8                                                                   | 4.7                                                                           | 1.4                                                                             | 163                              | 37                               |
| wind                                     | 90                | 123                                                                     | 121                                                              | 0.6                                                                   | 4.7                                                                           | 1.3                                                                             | 132                              | 34                               |

#### Kelson Marine Co. | Break-away Links and Cascading Failure Risk for a Mussel Backbone System

 Table 6. Minimum allowable capacity (e.g. minimum breaking strength) of major structural components in extreme storm conditions. Recommended safety factors are included. When purchasing ropes, the breaking strength must equal or exceed the requirements shown below. The definition of minimum breaking strength of selected ropes must include reductions in strength due to knots or splicing. US customary units.

|                                                      |                              | Mooring<br>Line and<br>con-<br>nections,<br>Minimum<br>Breaking<br>Load | Backbone<br>and con-<br>nections,<br>Minimum<br>Breaking<br>Load | Mussel<br>dropper<br>con-<br>nections,<br>Minimum<br>Breaking<br>Load | Backbone<br>surface<br>float con-<br>nections,<br>Minimum<br>Breaking<br>Load | Backbone<br>submerged<br>float con-<br>nections,<br>Minimum<br>Breaking<br>Load | Anchor<br>Horizontal<br>capacity | Anchor-<br>-Vertical<br>capacity |
|------------------------------------------------------|------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------|----------------------------------|
|                                                      | Safety<br>Factor             | 1.82                                                                    | 1.82                                                             | 1.82                                                                  | 1*                                                                            | 1                                                                               | 2                                | 2                                |
| Case                                                 | Storm<br>directio<br>n, deg. | kip                                                                     | kip                                                              | kip                                                                   | Кір                                                                           | kip                                                                             | kip                              | kip                              |
| 10 year                                              | 1                            | 17                                                                      | 17                                                               | 0.235                                                                 | 1.0                                                                           | 0.333                                                                           | 18                               | 6                                |
| waves,                                               | 23                           | 51                                                                      | 51                                                               | 0.405                                                                 | 1.1                                                                           | 0.440                                                                           | 55                               | 10                               |
| 100-year<br>current,                                 | 45                           | 46                                                                      | 46                                                               | 0.301                                                                 | 1.1                                                                           | 0.358                                                                           | 50                               | 10                               |
| 10-year<br>wind                                      | 68                           | 40                                                                      | 39                                                               | 0.208                                                                 | 1.0                                                                           | 0.299                                                                           | 43                               | 9                                |
|                                                      | 90                           | 32                                                                      | 31                                                               | 0.148                                                                 | 1.0                                                                           | 0.281                                                                           | 34                               | 8                                |
| 100 year<br>waves,<br>10-year<br>current,<br>10-year | 1                            | 17                                                                      | 16                                                               | 0.242                                                                 | 1.1                                                                           | 0.357                                                                           | 18                               | 6                                |
|                                                      | 23                           | 44                                                                      | 43                                                               | 0.379                                                                 | 1.1                                                                           | 0.447                                                                           | 47                               | 9                                |
|                                                      | 45                           | 40                                                                      | 39                                                               | 0.270                                                                 | 1.1                                                                           | 0.370                                                                           | 43                               | 9                                |
|                                                      | 68                           | 34                                                                      | 34                                                               | 0.188                                                                 | 1.1                                                                           | 0.306                                                                           | 37                               | 8                                |
| wind                                                 | 90                           | 28                                                                      | 27                                                               | 0.136                                                                 | 1.0                                                                           | 0.296                                                                           | 30                               | 8                                |

Note: 1 kip is 1,000 pounds force.

Table 6 shows that surface floats would detach from the backbone in a 100-year storm if 1100 pound-force (1.1 kip) break-away links were used. If 1700 lbf break-away links were used, they would provide a safety factor of 1.5. If 3400 lbf break-away links were used, they would provide a safety factor of 3.1. Additional design options for mitigating entanglement risks while maintaining structural integrity can also be explored.

The minimum strength required for mussel dropper attachments to the backbone is 405 lbf. This assumes there is one connection at each end of a loop in a continuous dropper configuration. Unlike the results for break-away links, these results include a safety factor of 1.82, which is standard for synthetic lines. If twine were used to form a connection that had an overall breaking strength of 1100 lbf (when including strength lost to abrasion, knots, etc.), this connection would have a safety factor of 4.9.

Kelson Marine Co. | Break-away Links and Cascading Failure Risk for a Mussel Backbone System

### 5.1.3 Risk of Cascading Failure

Accidental damage to one component in a structure has the potential to increase the loads on nearby components. If the increased loads on the intact components cause those components to fail, this can result in a cascading, catastrophic failure in which components fail one after another until the structure is destroyed. The proposed backbone structure was evaluated to mitigate the risk of cascading failure.

The risk of cascading failure was investigated using the 100-year storm loadcases described above. For each loadcase, the highest-loaded surface buoy attachment and the highest-loaded submerged buoy attachment were identified. Then, Kelson simulated the same 100-year storm events with these attachments broken. In every loadcase, the forces on the other buoy attachments increased by less than 2%, and the system stayed afloat. Thus, the structure is not at an appreciable risk of cascading failure due to damage to the buoy attachments.

## 6 Conclusion

To mitigate the risk of structural failure in extreme storms, key components of the backbone and mooring system must meet or exceed the required structural capacities reported in Table 5.

If 1700 lbf break-away links were used to attach the surface buoys to the backbone, they would provide a safety factor of 1.5. If 3400 lbf break-away links were used, they would provide a safety factor of 3.1.

If twine were used to connect the mussel droppers to the backbone with an overall connection strength of 1100 lbf, this connection would have a safety factor of 4.9.

Based on simulations of damaged conditions in which one surface buoy and one submerged buoy are detached from the backbone, the increase in loads on the remaining buoy attachments is negligible and the farm stays afloat. Thus, the structure is not at an appreciable risk of cascading failure due to damage to the buoy attachments.

## 7 References

ABS. (2012). Guidance Notes on the Application of Synthetic Ropes for Offshore Mooring. World Trade, 2011(March).
 API, R. (2005). Design and analysis of station keeping systems for floating structures. American Petroleum Institute, (May 2008).
 Bonardelli, J. C., Kokaine, L., Ozolina, Z., & Aigars, J. (2019). Technical evaluation of submerged mussel farms in the Baltic sea Kurzeme planning region Kalmar municipality.

Dewhurst, T., Hallowell, S. T., & Newell, C. (2019). Dynamics of an Array of Submersible Mussel Rafts in Waves and Current. Proceedings of the ASME 2019 38 Th International Conference on Ocean, Offshore and Arctic Engineering, 1–8.

Fredriksson, D. W., & Beck-Stimpert, J. (2019). Basis-of-Design Technical Guidance for Offshore Aquaculture Installations In the Gulf of Mexico, (March 2019). https://doi.org/10.25923/r496-e668

Ministerial Group for Sustainable Aquaculture's Scottish Technical Standard Steering Group. (2015). A Technical Standard for Scottish Finfish Aquaculture. Retrieved from https://www.gov.scot/binaries/content/documents/govscot/publications/adviceand-guidance/2015/06/technical-standard-scottish-finfish-aquaculture/documents/00479005-pdf/00479005pdf/govscot%3Adocument

Morison, J. R., Johnson, J. W., & Schaaf, S. A. (1950). The Force Exerted by Surface Waves on Piles. *Journal of Petroleum Technology*, 2(05), 149–154. https://doi.org/10.2118/950149-g

Rosman, J. H., Monismith, S. G., Denny, M. W., & Koseff, J. R. (2010). Currents and turbulence within a kelp forest (Macrocystis pyrifera): Insights from a dynamically scaled laboratory model. *Limnology and Oceanography*, 55(3), 1145–1158. https://doi.org/10.4319/lo.2010.55.3.1145

Standards Norway. (2009). NS 9415.E.2009\_Marine fish farms - Requirements for site survey, risk analyses, design, dimensioning.

Dewhurst, T. (2016). Dynamics of a Submersible Mussel Raft. University of New Hampshire.

# Appendix $\underline{AC}$

Biological Assessment for the Ventura Shellfish Enterprise Project\*

\* Any revisions to the management plans will be updated after receiving comments from relevant regulatory agencies.

# **BIOLOGICAL ASSESSMENT** FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

PREPARED FOR:

# **VENTURA PORT DISTRICT**

1603 Anchors Way Ventura, California 93001 Contact: Brian Pendleton

PREPARED BY:

# DUDEK

621 Chapala Street Santa Barbara, California 93101 Contact: John H. Davis IV, Senior Coastal Ecologist jdavis@dudek.com (805) 252-7996

# SEPTEMBER 2018

#### ATTACHMENT 2 BIOLOGICAL ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# TABLE OF CONTENTS

## SECTION

# PAGE

| 1.0 | NTRODUCTION1                                                                                                                                                                                                                                                                                                                                                                            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 | DESCRIPTION OF PROJECT ACTION       3         2.1       Project Location       3         2.2       Project Actions       4         2.2.1       Project Construction       4         2.2.2       Project Operation       5         2.2.3       Project Decomissioning       7         2.3       Project Action Area       7                                                              |
| 3.0 | REGULATORY SETTING278.1Federal Endangered Species Act (1973)8.2Marine Mammal Protection Act (1972)8.3Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act)28                                                                                                                                                                                                  |
| 4.0 | FEDERALLY PROTECTED SPECIES AND CRITICAL HABITAT       29         4.1       Federally Protected Species       29         4.2       Status of the Species and their Habitat in the Action Area       29         4.2.1       Federally-Listed Species       30         4.2.2       Other Non-Listed Species Protected Under the MMPA       34         4.3       Critical Habitat       37 |
| 5.0 | SEFFECTS OF THE ACTION385.1Effects of the Project Actions385.1.1Federally-Listed Species455.1.2Other Non-Listed Species Protected Under the MMPA485.2Mitigation Measures515.3Cumulative Effects565.4Compensatory Mitigation56                                                                                                                                                           |
| 6.0 | CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                             |
|     | REFERENCES         60           DIX A         1                                                                                                                                                                                                                                                                                                                                         |
|     | DIX B                                                                                                                                                                                                                                                                                                                                                                                   |

# APPENDICES

A Essential Fish Habitat Assessment

# TABLE OF CONTENTS (CONTINUED)

PAGE

- B Federally Protected Species Potential to Occur
- C Phytoplankton Population Impact Analysis

## FIGURES

| 1  | Project Location                                             | 9  |
|----|--------------------------------------------------------------|----|
| 2  | Detailed Plan for Shellfish Longlines                        | 11 |
| 3A | Parcel Array Overview                                        | 13 |
| 3B | Backbone Details                                             | 15 |
| 4  | Simulated View of Parcel Array at the Surface: 100 Acre Plot | 17 |
| 5  | Simulated View of Parcel Array at the Surface                | 19 |
| 6  | Simulated View of Parcel Array Underwater                    | 21 |
| 7  | Simulated View of Parcel Array Underwater with Anchor Line   | 23 |
| 8  | Ventura Shellfish Enterprise Action Area                     | 25 |
|    |                                                              |    |

## TABLES

| 1 | NOAA Fisheries Acoustic Thresholds | .42 |
|---|------------------------------------|-----|
| 2 | Summary of Effects Determinations  | .58 |

# 1.0 INTRODUCTION

This Biological Assessment (BA) has been prepared for the Ventura Port District (VPD, project applicant) to evaluate the effects of the Ventura Shellfish Enterprise (VSE) Project (project) on federally protected species along with federally designated critical habitat. The project, supported in part through the NOAA 2015 Sea Grant Aquaculture Extension and Technology Transfer to California Sea Grant (NOAA Sea Grant Program), will establish a commercial offshore bivalve aquaculture operation. VPD is applying for a U.S. Army Corps of Engineers (Corps) authorization under Section 10 of the Rivers and Harbors Act. The Corps will act as the federal lead agency on the project. The BA will determine whether any federally protected species or habitats are likely to be adversely affected by the project. Pursuant to Section 7 of the Endangered Species Act (ESA) and its implementing regulations (50 CFR § 402.01 et seq.), this BA has been prepared to support consultation between the Corps, the U.S. Fish and Wildlife Service (USFWS), and National Oceanic and Atmospheric Administration's (NOAA's) National Marine Fisheries Service (NMFS). Section 7 of the ESA insures that through consultation federal actions are not likely to jeopardize the continued existence of any federally protected species or result in the destruction or adverse modification of critical habitat. This BA is also intended to support of the National Environmental Quality Act (NEPA) planning process as well as the resource agency permitting of the project. An Essential Fish Habitat (EFH) assessment has also been prepared, which analyzes how the project would affect EFH for species regulated under a Fisheries Management Plan, pursuant to the requirements of the Magnuson-Stevens Fishery Conservation and Management Act, which requires consultation with NMFS on all actions or proposed actions that may adversely affect EFH (Appendix A).

## INTENTIONALLY LEFT BLANK

# 2.0 DESCRIPTION OF PROJECT ACTION

The project will establish a commercial offshore bivalve aquaculture operation based from the Ventura Harbor in Ventura, California, focused on the cultivation of Mediterranean mussels (*Mytilus galloprovincialis*).

## 2.1 Project Location

The project will consist of twenty 100-acre plots (total of 2,000 acres) located in open federal waters of the Santa Barbara Channel (Channel) in the Southern California Bight (SCB), northwest of Ventura Harbor (Figure 1), with approximate depths ranging from 78 to 114 feet below sea level (13 - 19 fathoms) and an average depth of 98 feet. The plots are 3.53 miles from the shore. Each of the 20 plots are 2,299.5 feet by 1,899.5 feet, for an average plot size of 100.27 acres. Each plot will contain up to 24 lines (12 end-to-end pairs), with each line consisting of 575 feet of backbone length and 250 feet of horizontal scope on each end. There will be a 50 foot setback on each end of the pairs (for a total of 100 feet of spacing between lines of adjacent parcels) and 50 foot spacing between the two center pins. Parallel lines will be spaced 150 feet apart, with a 125 foot setback at each of the long sides (for a total of 250 feet of spacing between lines of adjacent parcels). The closest distance to the 3-mile nautical line is 2,900 feet from the plots, with an average closest distance of over 3,000 feet. The closest distance to the City of Ventura limit is 4.5 miles. Ventura harbor is 4.1 miles from the closest plot (8 miles in distance to the most distant plot). The lease sites are located on sandy bottom habitat outside of any rocky reef habitat, as evaluated in Gentry et al. 2017 and illustrated by NOAA United States West Coast nautical charts (NOAA 2017a).

The project site is characterized by a gradually sloping sandy/soft bottom. The SCB is located along the curved coastline of Southern California from Point Conception south to Cape Colnett in Baja California and includes the Channel Islands and the Pacific Ocean. The habitats and biological communities of the SCB are influenced by dynamic relationships among climate, ecology, and oceanography (e.g., currents) (Leet et al. 2001). The SCB provides essential nutrients and marine habitats for a range of species and organisms. Submarine canyons, ridges, basins, and seamounts provide unique deep water habitats within the region. The basins provide habitats for a significant number of mid-water and benthic deep-sea fish near the Channel Islands, whereas nearshore areas provide habitats for kelp and seagrass communities. Nearshore geology includes a variety of bottom types, including soft sediments and rocky bottoms. Hard-substrates environments, such as the rocky intertidal, shallow subtidal reefs, and deep rocky reefs, are a key component of the high productivity found near the project area. Due to linkages among ecosystems, the impacts of ecosystem dynamics contained within the project area extend to interactions with species in the greater Eastern Pacific Ocean. The Santa Barbara Channel is located within the SCB and extends from Point Conception to Point Mugu.

The waters of the Santa Barbara Channel form one of the most biologically productive ecosystems found on Earth. Unlike most of coastal California, which faces due west and the open ocean, the coastal waters of the Santa Barbara Channel are on a south-facing coast and situated between two land masses, the South Coast and the Northern Channel Islands. The project site is 9.1 miles from the Channel Islands National Marine Sanctuary, a Federal Marine Protected Area, and 13.5 miles from the Channel Islands National Park boundary. The western section of the Santa Barbara Channel is a meeting place of the cool Northern California Current and warm Southern California Countercurrent. This type of ecosystem is called a

"transition zone." Transition zones are known to promote large concentrations of both biomass and species diversity, as they are the confluence between two or more ecologically distinct systems. In addition, upwelling provides unusually high concentrations of nutrients, especially macrozooplankton, which are one of the primary driving forces behind the Santa Barbara Channel's biological productivity and diversity. Wind patterns around Point Conception and in the Santa Barbara Channel create frequent seasonal upwelling, which force deep nutrient-laden ocean waters to rise up the water column into the biologically rich euphotic zone (Santa Barbara Channelkeeper 2017). Data from last year, for the closest oceanographic buoy to the project site (Station 46217 Anacapa Passage), shows the following average wave action conditions for the project area: an average wave height of 1.04 feet, with a dominant wave period of 10.1 seconds, and an average wave period of 6.49 seconds, with surface currents generally moving in a SW (249 degrees) direction and an average temperature of 16 °C (National Data Buoy Center 2017). The Ventura area is known to be an area of high swell height, particularly in the winter (Guza and O'Reilly 2001). Wave action is focused by the large fan of sediment deposited on the shelf from the Ventura and Santa Clara rivers. When deep water swell comes in from a WSW direction, these bathymetric features can focus the wave energy northward into the Ventura area. Wave action is slightly less in the summer months when the Channel Islands block southward swells (Guza and O'Reilly 2001).

# 2.2 Project Actions

# 2.2.1 PROJECT CONSTRUCTION

The proposed plots will be used for growing Mediterranean mussels via submerged longlines (Figures 2 and 3).

Installation of anchors, longlines, and other facilities will be performed by permitted shellfish companies, in compliance with all permit requirements. Submerged longlines consist of a horizontal structural header line, or "backbone," that is attached to the seafloor by sand screw anchors at each end and is marked and supported by a series of buoys along the central horizontal section. Sand screw anchors have been shown to exhibit superior holding power as compared to other anchoring systems and are removable. Sand screw anchors will be installed by a hydraulic drill with a drill head that operates from a rig lowered to the ocean floor. The sand screw anchors would be screwed into the sandy bottom ocean floor approximately 10 to 20 feet (3 to 6 meters) deep. Each 100-acre plot will contain up to 48 anchors for a total of 960 anchors at full project build out.

Buoys marking the corners of each parcel will identify the cultivation area for navigational safety and will comply with all regulations for height, illumination, and visibility, including radar reflection. As shown in Figure 2 and Figure 3, surface buoys for each longline would consist of two 16 inch surface corner buoys (one corner buoy supporting and marking either end of the backbone), as well as one 16 inch buoy supporting and marking the center pickup line, for a total of three surface buoys per longline. Simulated views of parcel arrays at the surface and underwater are provided in Figures 4 through 7. All surface buoys would be uniquely colored for each operator and marked with the grower/producer name and phone number. Buoys attached to the central horizontal portion of the backbone line support the line, provide a means of lifting the backbone line to access the cultivation ropes, and determine the depth of the submerged backbone, which will vary seasonally from 15 to 45 feet below the surface. Additionally, a combination of surface and submerged buoys attached to the backbone line will be used during the mussel production

#### ATTACHMENT 2 BIOLOGICAL ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

cycle to maintain tension on the structural backbone line as the weight of the mussel crop increases. These will consist of 24-inch (or equivalent, with greater than 200 L buoyancy) buoys attached at required intervals along the surface and connecting to the backbone line, in combination with smaller submerged buoys affixed directly to the backbone line. The combination of surface and submerged buoyancy is designed to create a tensioned but flexible structure that is capable of responding dynamically to surface waves and storms.

The longlines that will be utilized are thick (1-inch diameter), tensioned (to approximately 800 pounds) rope that is not conducive to wrapping around or entangling protected species. The longline configuration produces a fairly rigid tensioned structure from which the cultivation ropes, or "fuzzy ropes" are attached. Fuzzy ropes are characterized by extra filaments that provide settlement substrate for mussels to attach. Fuzzy ropes may be attached to and suspended from the backbone rope either as individual lengths or as a continuous looping single length that drapes up and down over the backbone. The length of each section or loop of fuzzy rope would be approximately 20 feet but would depend on the lifting capacity of the servicing vessel. The length of the central horizontal section of backbone line would be 575 feet, which would support approximately 8,000 feet of fuzzy cultivation line.

The shape of each of the 100-acre cultivation parcels would be a function of the geometry of the submerged backbone line and anchoring. Each horizontal section of the longline will be approximately 575 feet and will require an anchor scope of approximately 2.5 times depth. Therefore, in 100 feet of water depth, scope from the horizontal section of backbone to the helical screw anchor will require 250 feet on each end of the line, making a total length of 1,075 feet from anchor screw to anchor screw. A 100-acre parcel with rectangular dimensions of 1,899.5 feet by 2,299.5 feet will therefore accommodate up to 24 individual longlines. The submerged longline growing gear configuration would be specifically engineered for open ocean conditions with respect to size and strength of all lines, anchoring, hardware, and buoyancy.

Construction in each individual growing plot will take place only after VPD approval of a sub-permits with the individual grower/producer. While project development is dependent on market demand, VPD estimates that full build out would occur within three to five years after project approval.

# 2.2.2 PROJECT OPERATION

The mussels will be grown and harvested by permitted growers/producers and landed at Ventura Harbor. Initial plantings of juvenile seed mussels, commonly referred to as spat, will be purchased from onshore hatcheries certified by the CDFW. At the hatcheries, mussels adhere directly to special textured ropes that promote mussel attachment and growth. When the seed are firmly settled to ropes, the ropes are covered with cotton socking material to protect them from shaking off the ropes during transport to the offshore growing site and deployment. The socks hold the spat next to the rope until the mussels naturally attach with their byssal threads, after which the cotton material naturally degrades. These ropes are then attached to the longlines and buoys, as described above.

The mussel grow-out ropes themselves are typically planted with seed 3-inches thick and may grow to be stiff with byssus at diameters of 10-inches or more at harvest, thus making them very unlikely sources of entanglement. As an additional precaution, grow ropes will be attached to the headrope with a low-breaking-strength twine (4-millimeter

#### ATTACHMENT 2 BIOLOGICAL ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

(0.16-inch diameter), which will facilitate rapid detachment in the unlikely event of any interaction with the longline. To further minimize entanglement potential, a 1,100 pound breakaway link will be installed between the surface buoys and vertical lines, similar to strategies used to mitigate potential entanglement in trap fisheries in the northeastern United States (NOAA 2008). Buoy lines between the surface and headrope are generally under tension partially equivalent (0 to 10 kilograms (0 to 22 pounds)) to their full buoyancy (42 kilograms (93 pounds)).

Cultivated mussels grow by filtering naturally occurring phytoplankton from the ocean. Harvesting involves separating the mussels from the ropes, followed by cleaning, sorting, and bagging. All of these activities will take place aboard the harvesting vessel. Juvenile mussels will grow on lines until an intermediate size where the density of mussels on the fuzzy rope becomes limiting. At this point, a servicing vessel will lift the backbone line in order to access the fuzzy rope stocked with juvenile mussels and pull the fuzzy rope through vessel-based equipment designed to strip the mussels from the fuzzy rope at a reduced density for their second stage of grow out to market size. Maintenance and inspection of the longlines is proposed to be carried out on a monthly basis, which consists of lifting the longlines out of the water and adding additional buoys as necessary to account for increased mussel weight. Inspections of the anchor ropes, anchors, and connecting ropes shall take place at a minimum of twice per month. Inspections shall include recordings by depth/fish finder or ROV surveys of lines and/or monitoring performed by SCUBA divers.

When the mussels reach market size, which is expected to occur after about one year of total production time, the submerged backbone lines again will be lifted in order to access the fuzzy cultivation ropes, and mussels again will be stripped from the line, cleaned, and separated, and this time size-graded and bagged for landing at the Ventura Harbor as market-ready product. The bagged mussels will be transported to Ventura Harbor for offloading, sale, and distribution. All husbandry activities related to harvesting, grading, and restocking of mussels to cultivation lines will occur onboard the servicing vessel using specialized equipment for that purpose.

Watercraft used for planting, inspections, and harvesting would be home ported at Ventura Harbor. On average, between 20 to 40 boats would be traveling to the specific lease sites to conduct these activities on a three times per week to daily basis. The maximum distance traveled would be between the harbor and the farthest potential lease area, which could be up to approximately 8.7 miles. Once constructed, it is projected that each sub-permit site will generate an estimated 150 trips per year to accomplish the tasks outlined above.

Landed product will comply with all testing and labeling regulations as part of the California Department of Public Health (CDPH) Shellfish Sanitation plan and the National Shellfish Sanitation Program (NSSP) guidelines for shellfish grown in federal waters. NOAA-Seafood Inspection Program (NOAA-SIP), in collaboration with the Food and Drug Administration (FDA), recently began the process of developing NSSP-compliant sanitation protocols for bivalve shellfish cultivated in Federal waters.

Qualified researchers affiliated with universities (i.e., U.C. Santa Barbara - Bren School, or University of Southern California, etc.), or qualified marine research institutes (i.e., Woods Hole Oceanographic Institute, Scripps Institution of Oceanography, etc.) will have access to aquaculture plots to conduct research and monitoring approved by the

Ventura Port District; however, access may be limited in certain circumstances to respect grower/producer proprietary data or technology or to accommodate a grower/producer's operational and logistical needs in operating the farm. The Ventura Port District will review and approve research projects in consultation with USACE, NMFS, NOAA, and any affected grower/producers. Grower/producers will be fairly compensated for the use of their vessels, equipment, and fair market value of any mussels produced or generated as part of approved research projects.

# 2.2.3 PROJECT DECOMISSIONING

The project will include a decommissioning plan when activities in that lease are terminated. The decommissioning plan for the timely removal of all shellfish, structures, anchoring devices, equipment, and materials associated with the shellfish cultivation facility and documentation of completion of removal activities will be a requirement of each permit or subpermit. Financial assurances to guarantee implementation of the plan will be in place and reviewed periodically.

## 2.2.4 PROJECT OBJECTIVES

Objectives of the proposed project are as follows:

- 1. To increase the supply of safe, sustainably produced, and locally grown shellfish while minimizing potential negative environmental impacts;
- 2. To enhance and sustain Ventura Harbor as a major west coast fishing port and support the local economy;
- 3. To provide economies of scale, pre-approved sub-permit area, and technical support to include small local producers who would not otherwise be able to participate in shellfish aquaculture;
- 4. To provide an entitlement and permitting template for aquaculture projects state-wide;
- 5. To enhance public knowledge and understanding of sustainable shellfish farming practices and promote community collaboration in achieving VSE objectives;
- 6. To advance scientific knowledge and state of the art aquaculture practices through research and innovation.

# 2.3 Project Action Area

The Action Area for this project includes the project site (twenty 100-acre growing sites occupying a total project area of 2,000 acres) and all areas within 100 feet of the Project Actions (Figure 8). This Action Area was defined based upon several factors, including the project location and components, the potential noise impacts and disturbance areas for project components, and the properties of underwater acoustics. It is anticipated that the potential noise impacts from the initial installation of the sand screw anchors using a hydraulic drill will be minimal. Helical anchors for mussel farms in open ocean habitats have been installed all over the world, including at Catalina Island. They are drilled into the seabed using a hydraulic auger controlled at the surface. The drill is submersible and is lowered with the anchor. Noise levels are very low in the water, with a 50 horsepower hydraulic power pack on the boat (Fielder Marine Services, New Zealand, pers.comm.). Rotation speeds are very low, which minimizes entanglement of marine species. The anchor installation disturbs less than 1 square meter of sea bed on installation and once installed no rope

#### ATTACHMENT 2 BIOLOGICAL ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

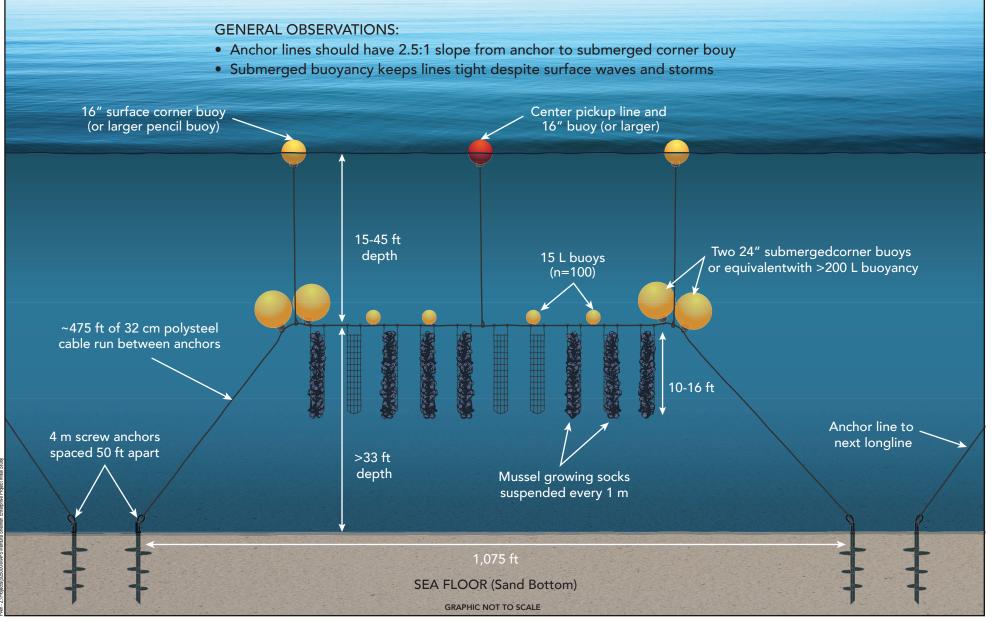
or chain touches the sea floor which also minimizes seabed disturbance (Fielder Marine Services, New Zealand, Pers.comm). Marine wildlife, especially cetaceans, are known to be sensitive to noise effects (NMFS 2007a). However, construction noise levels will be well within acceptable thresholds for both marine mammals and fish (ICF Jones & Stokes and Illingworth and Rodkin, Inc. 2009; NMFS 2007a). Due to the minimal noise level and area of disturbance on the sea floor, we believe an action area of 100 feet is sufficient.



DATE OF PREPARATION: 8/30/2018

DUDEK

6,250

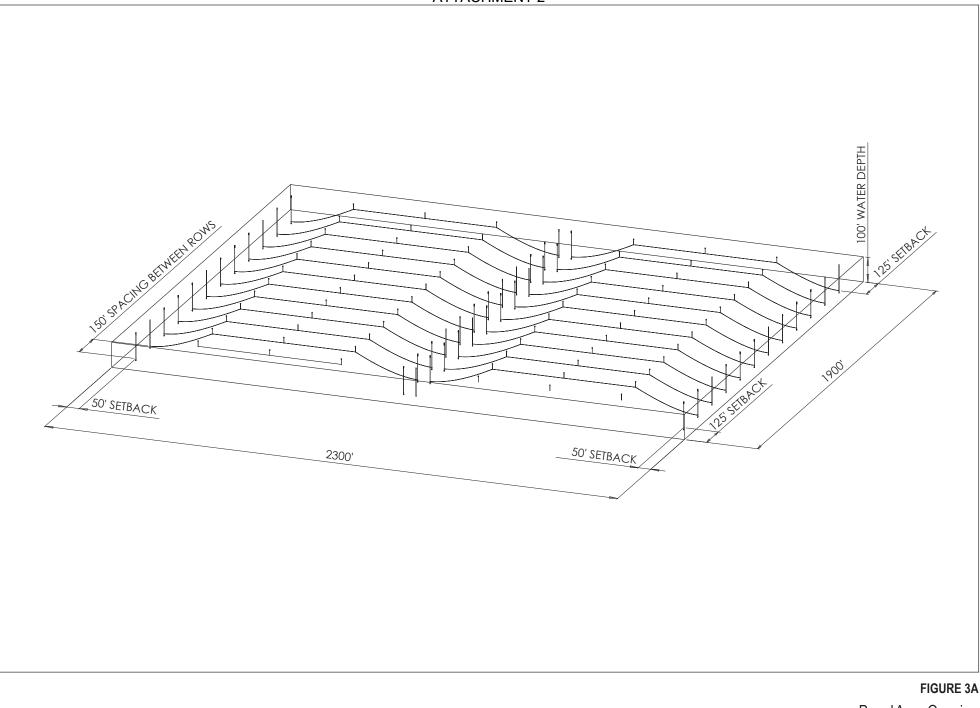

12,500

Feet

**Project Location** Ventura Shellfish Enterprise Project

## INTENTIONALLY LEFT BLANK

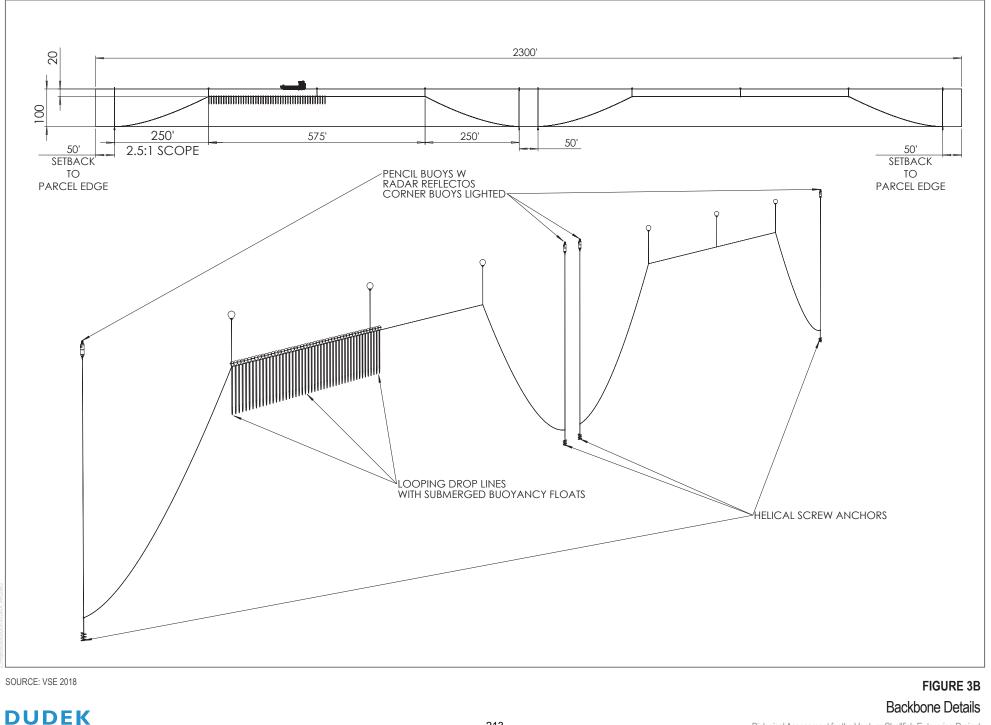
# General Plan for Submerged Longlines




### FIGURE 2 Detailed Plan for Shellfish Longlines

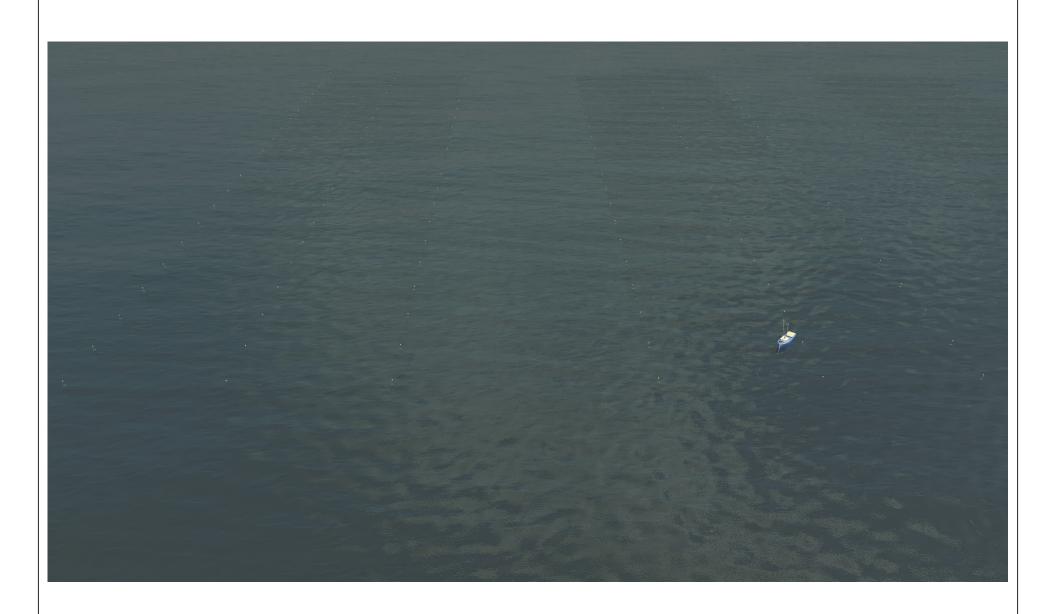
DUDEK

Biological Assessment for the Ventura Shellfish Enterprise Project


## INTENTIONALLY LEFT BLANK



# DUDEK


Parcel Array Overview Biological Assessment for the Ventura Shellfish Enterprise Project

## INTENTIONALLY LEFT BLANK



Biological Assessment for the Ventura Shellfish Enterprise Project

## INTENTIONALLY LEFT BLANK



## INTENTIONALLY LEFT BLANK

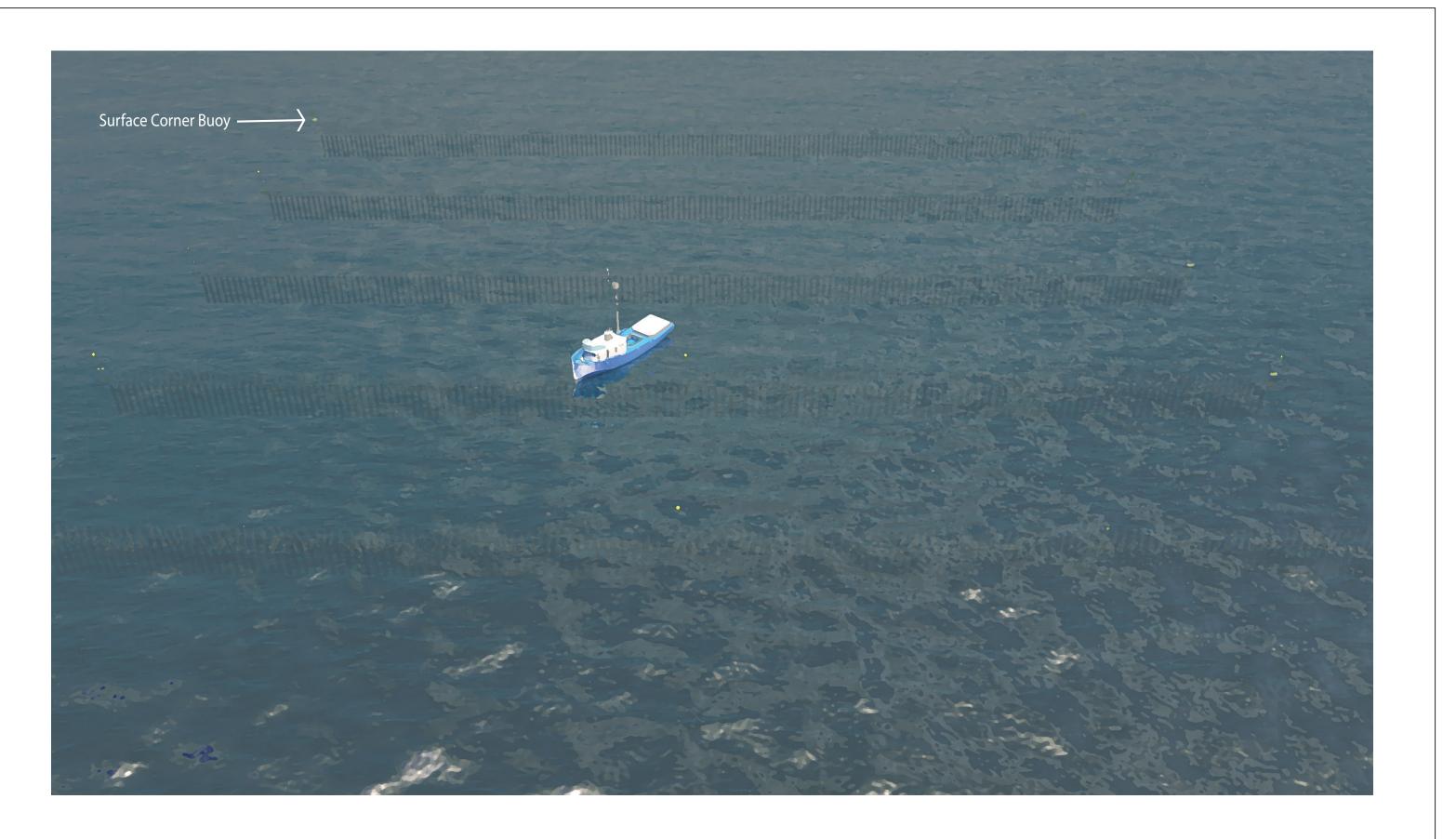
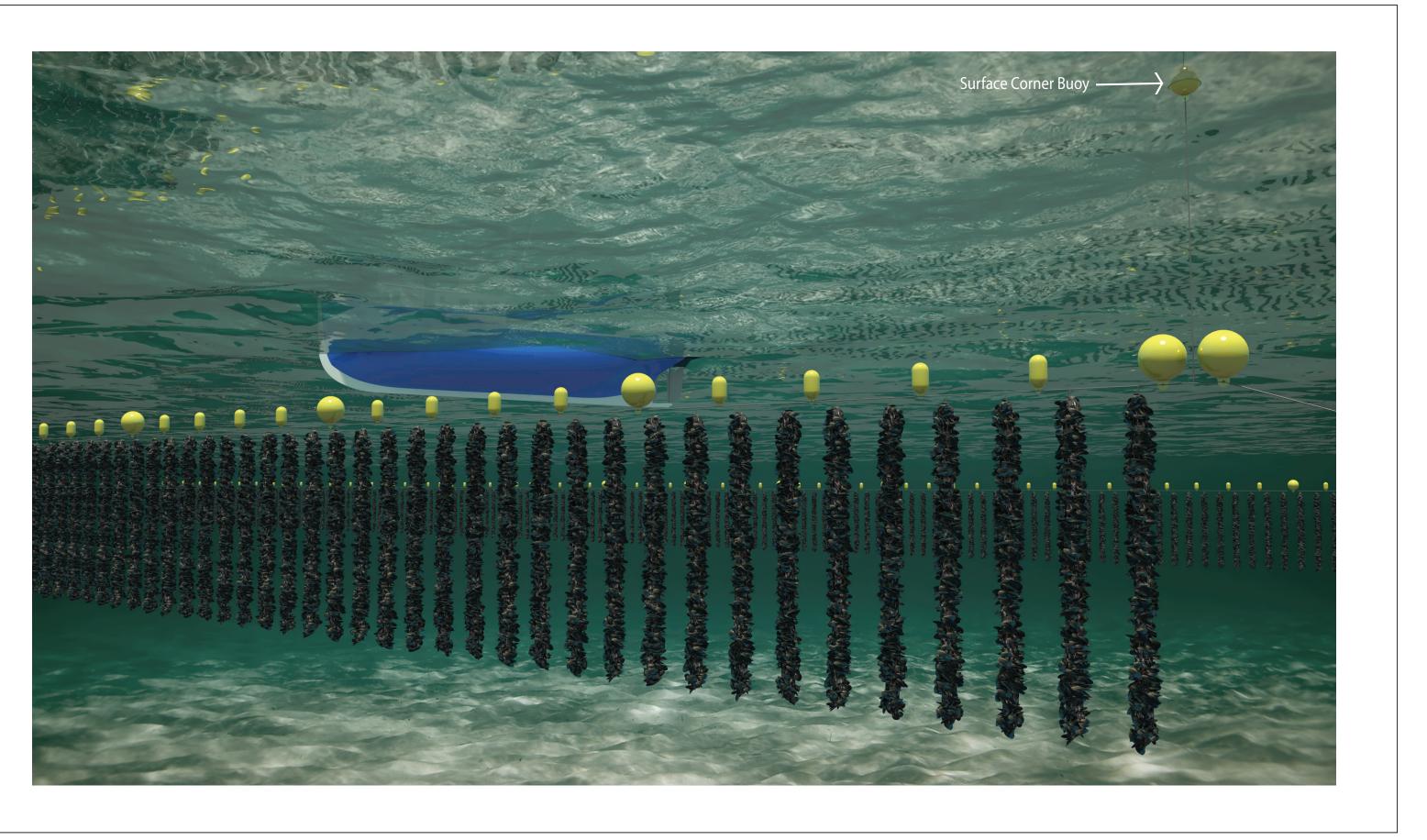
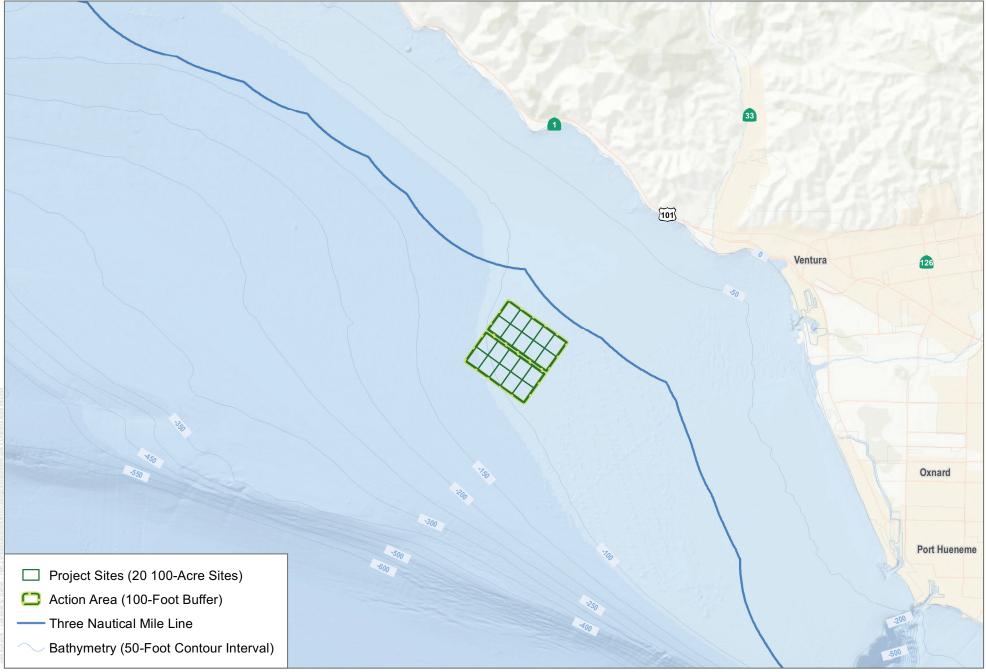



FIGURE 5 Simulated View of Parcel Array at the Surface Biological Assessment for the Ventura Shellfish Enterprise Project

INTENTIONALLY LEFT BLANK





FIGURE 6 Simulated View of Parcel Array Underwater Biological Assessment for the Ventura Shellfish Enterprise Project

INTENTIONALLY LEFT BLANK



### INTENTIONALLY LEFT BLANK

#### ATTACHMENT 2



SOURCE: ESRI ArcGIS Online: World Ocean Base

0

DUDEK

1 2 Miles

#### FIGURE 8 Ventura Shellfish Enterprise Action Area Biological Assessment for the Ventura Shellfish Enterprise Project

### INTENTIONALLY LEFT BLANK

# 3.0 REGULATORY SETTING

# 3.1 Federal Endangered Species Act (1973)

The federal Endangered Species Act (ESA) of 1973 (16 U.S.C. 1531 et seq.), as amended, is administered by the USFWS and NMFS. This legislation is intended to provide a means to conserve the ecosystems upon which endangered and threatened species depend and provide programs for the conservation of those species, thus preventing extinction of plants and wildlife. The ESA defines an endangered species as "any species that is in danger of extinction throughout all or a significant portion of its range." A threatened species is defined as "any species that is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range." Under the provisions of Section 9(a)(1)(B) of the ESA (16 U.S.C. 1531 et seq.), it is unlawful to "take" any listed species. Take is defined in Section 3(19) of the ESA as, "harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct." A Final Rule published in the Federal Register on November 8, 1999 (64 FR 60727–60731), further defines "harm" as any act that kills or injures fish or wildlife, and emphasizes that such acts may include significant habitat modification or degradation that significantly impairs essential behavioral patterns (e.g., nesting or reproduction) of fish or wildlife. Further, the USFWS, through regulation, has interpreted the terms "harm" and "harass" to include certain types of habitat modification that result in injury to or death of species, which therefore are defined as forms of take. These interpretations, however, are generally considered and applied on a case-by-case basis and often vary from species to species.

In a case where a property owner seeks permission from a federal agency for an action that could affect a federally listed plant or wildlife species, the property owner and agency are required to consult with USFWS. Take prohibitions in Section 9 of the ESA (16 U.S.C. 1531 et seq.) do not expressly encompass all plants. Property owners may take listed plant species without violating the take prohibition if:

- The proposed development is private and does not require federal authorization or permit.
- There are no special federal regulations under Section 4(d) that prohibit take of the plant species.
- There are no state laws prohibiting take of the plant species.

Section 9(a)(2) of the ESA (16 U.S.C. 1531 et seq.) addresses the protections afforded to listed plants. In addition, the ESA provides protection to invertebrate species by listing them as threatened or endangered.

# 3.2 Marine Mammal Protection Act (1972)

The Marine Mammal Protection Act of 1972 (MMPA), as amended, establishes a federal responsibility for the protection and conservation of marine mammal species by prohibiting the "take" of any marine mammal. The MMPA defines "take" as the act of hunting, killing, capture, and/or harassment of any marine mammal, or the attempt at such. The MMPA also imposes a moratorium on the import, export, or sale of any marine mammals, parts, or products within the U.S. The USFWS and NMFS are jointly responsible for implementation of the MMPA; USFWS is responsible for the protection of sea otters, and NMFS is responsible for protecting pinnipeds (seals and sea lions) and cetaceans (whales and dolphins).

Under Section 101(a)(5)(D) of the MMPA, an incidental harassment permit may be issued for activities other than commercial fishing that may impact small numbers of marine mammals. An incidental harassment permit covers activities that extend for periods of not more than 1 year, and that will have a negligible impact on the impacted species. Amendments to the MMPA in 1994 statutorily defined two levels of harassment. Level A harassment is defined as any act of pursuit, torment, or annoyance that has the potential to injure a marine mammal in the wild. Level B harassment is defined as harassment having potential to disturb marine mammals by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering.

### 3.3 Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act)

The Magnuson-Stevens Fishery Conservation and Management Act (16 U.S.C. Sections 1801–1884) of 1976, as amended in 1996 and reauthorized in 2007, is intended to protect fisheries resources and fishing activities within 200 miles of shore. The amended law, also known as the Sustainable Fisheries Act (Public Law 104-297), requires all federal agencies to consult with the Secretary of Commerce on proposed projects authorized, funded, or undertaken by that agency that may adversely affect Essential Fish Habitat (EFH). The main purpose of the EFH provisions is to avoid loss of fisheries due to disturbance and degradation of the fisheries habitat. Managed fisheries found in the project vicinity include, but are not limited to California halibut, ridgeback prawn, sea cucumber trawl, and rock crab trawl fisheries, and set gill net for California halibut and white sea bass

Essential Fish Habitat is addressed in the Essential Fish Habitat Assessment Report for the Ventura Shellfish Enterprise.

# 4.0 FEDERALLY PROTECTED SPECIES AND CRITICAL HABITAT

## 4.1 Federally Protected Species

The following resources were used to determine which federally listed, proposed, or federally recognized (i.e., NMFS Species of Concern) species had a potential to occur in the Action Area: NOAA California Species List Tools (NOAA 2018a), NOAA Find a Species Website (NMFS 2018a, filtered for West Coast Region), Channel Islands Bird Checklist (Collins 2011), USFWS Information for Planning and Consulting (USFWS 2018a), USFWS Environmental Conservation Online System (USFWS 2018b), the NOAA Section 6 Program Website (NOAA 2018b), NMFS Species of Concern (NMFS 2018), Environmental Sensitivity Index (ESI 2010), and California Natural Diversity Database (CNDDB; CDFW 2018). The NOAA Species List Tools (NOAA 2018a) and CNDDB (CDFW 2018) were queried for the 7.5-minute U.S. Geological Survey quadrangle that bordered the Pacific Ocean from the Ventura County line south to Port Hueneme, which included Pitas Point, White Ledge Peak, Ventura, Oxnard, and Oxnard OE W.

Information on species distribution, behavior, and habitat preferences was obtained from sources such as NOAA Find a Species Website (NMFS 2018a), Marine Mammal Stock Assessment Reports (e.g., Allen and Angliss. 2014), Marine Mammals of the World: A Comprehensive Guide to Their Identification (Jefferson et al. 2008), Point Blue Conservation Science Whale Alert Map (PBCS 2018), Large Cetacean Analysis for the Santa Barbara Channel Region (Cascadia 2011), Marine Mammal Commission (MMC 2007, 2018), Marine Mammal Haulouts and Rookeries (CDFW 2009), California Bird Records Committee (CBRC 2018), USFWS Recovery Plans, USFWS 5-Year Reviews and/or Federal Registers. Additional resources are reported within the species account information.

The database searches returned a total of 68 species. Of these species, 8 cetaceans, 1 mustelid, 2 pinnipeds, 3 birds, 5 sea turtles, 2 sharks, 8 fish, and 2 invertebrates have a federal status of Endangered or Threatened. Other species that are covered only under the MMPA (no other federal designation) include 21 cetaceans and 4 pinnipeds. Species that are only covered under NMFS Species of Special Concern include 1 shark, 8 fish and 3 invertebrates. Although NMFS Species of Concern designation is not protected under the ESA, this BA includes these species for a complete analysis of species with a recognition from a federal agency.

Based on Dudek's habitat suitability analysis, 13 species have a moderate to high potential to occur in the Action Area. Appendix B provides Dudek's habitat suitability analysis and an assessment of the species potential to occur in the Action Area, including species not expected to occur or a low potential to occur. Section 4.2, below, provides species descriptions and assessments for those species with a moderate to high potential to occur.

# 4.2 Status of the Species and their Habitat in the Action Area

This section describes the status, basic life history, and potential for occurrence for federally-listed, proposed, or federally recognized species that are identified as potentially affected by the Project Actions as described above.

# 4.2.1 Federally-Listed Species

## 4.2.1.1 Cetaceans

# Gray Whale

Gray whales (Eschrichtius robustus) of the Eastern North Pacific Stock were delisted from the ESA in 1994 (59 FR 31094-31095) but are protected by the MMPA. This species occurs in coastal waters along the west coast of North America from Mexico to Alaska, and in eastern Siberia. Gray whales usually feed along the Bering, Chukchi, and Beaufort seas during the summer, and winter along breeding and calving areas off the coast of Baja California. Calves are born from January to February (NMFS 2018a). During their northward migration from Baja to Alaska, cow-calf pairs stay particularly close to shore to avoid predation by orcas (Orcinus orca) (NMFS 2014). Gray whales are bottom feeders that consume benthic amphipods (epibenthic fauna such as mysids, amphipods, polychaete tubeworms). Since this species is a bottom feeder, gray whales are restricted to shallow continental shelf waters (Jefferson et al. 2008). Juvenile gray whales often are found in Santa Barbara Harbor and along the coastline and have been observed in the surf at Ventura Point (J. Davis IV, pers. obs). In Santa Barbara, gray whales are seen during their northward migration within 3 nautical miles from shore, frequently travelling along the kelp line within close proximity to Coal Oil Point where surveys take place for four months beginning in February (Gray Whales Count 2018). Data shows an upward trend for gray whales over the last five years from 736 whales in 2013 to 1,052 whales in 2017. More whales means an increase in the chance for interaction between ships and fishing gear. Ship strikes, entanglement, habitat degradation, whale watching harassment, low-frequency noise disturbance and impacts from commercial/industrial development are the largest threats to gray whales (NMFS 2018c). In California, ship strikes of gray whales are the most commonly reported followed by fin, blue, humpback, and sperm whales (NOAA 2017b).

**Potential for Occurrence.** High potential to occur. This species is a frequent visitor to the Ventura coastline and the Santa Barbara Channel and is commonly observed during migration, especially during the northward migration from Baja to Alaska. Gray whales are often observed close to shore, and there have been many regular occurrences in the Action Area on a yearly basis (PBCS 2018). The local whale watching boat, The Condor Express, has sighted 12 gray whales within 5 miles of the project area since the start of the 2018 gray whale season in the Santa Barbara Channel (Condor Express 2018, PBCS 2018). Whales are traveling northward at about 2.5 miles from shore as seen for example on the local whale watching trip in Santa Barbara Channel on March 15, 2018 (Condor Express 2018). Gray whale migration routes overlap with the Action Area and encompass the entire Santa Barbara Channel (Calambokidis et al. 2015; NOAA 2012; NOAA 2018e).

# Humpback Whale

The humpback whale (*Megaptera noaengliaea*) is a federally-listed endangered species and is protected by the MMPA. Humpback whales occur throughout the North Pacific. North Pacific breeding areas fall broadly into three regions: 1) western Pacific (Japan and Philippines); 2) central Pacific (Hawaiian Islands); and 3) eastern Pacific (Central America and Mexico). Along the U.S. west coast, one stock is currently recognized that includes individuals that appear to be part of two separate feeding groups, a California and Oregon feeding group and a northern Washington and southern

#### ATTACHMENT 2 BIOLOGICAL ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

British Columbia feeding group. Humpbacks from both groups have been matched to breeding areas off Central America, mainland Mexico, and Baja California. The population is estimated at approximately 1,918 animals for the California/Oregon/Washington stock (NOAA 2015). Migrating individuals from the Central America Distinct Population Segment (DPS) may migrate through the Action Area on their way to feeding grounds located off the Pacific Northwest (NMFS 2018a). This species stays near the surface of the ocean when migrating and prefers shallow waters when feeding and calving. This species can be seen close to shore when conditions allow for prey switching from krill to small schooling fish, which inhabit nearshore areas. Humpbacks are commonly found feeding in the Santa Barbara Channel during summer and fall, with some observations closer to shore in the Ventura Area. Typically, humpback whales utilize predictable habitats offshore along the continental shelf break and slope where upwelling occurs where they feed on krill (Yen et al. 2004). However, when conditions change and krill is not available, humpback whales are known to prey switch and feed on small schooling fish, which occur in nearshore waters (Fleming et al. 2016). In July 2017, a humpback found its way into Ventura Harbor (VC Star 2017). In addition, this species is strongly associated with the 200 meter isobath (Cascadia 2011). Threats to humpback whales include ship strikes, entanglement in fishing gear, whale watch harassment, and habitat impacts (NMFS 2018c). On the west coast of the United States, ship strikes are an important cause of mortality for baleen whales, including humpback, blue, fin and gray whales (Berman-Kowalewski et al. 2010).

**Potential for Occurrence.** Moderate to high potential to occur. Foraging and migration habitat is present in the Action Area. Numerous observations of this species have been documented within the Santa Barbara Channel both close to shore and near the Channel Islands (PBCS 2018). NOAA's cetacean mapping tool indicates humpback whale feeding habitat is close to the Action Area and is prevalent in the Santa Barbara Channel (NOAA 2018e). The project area is situated near feeding Biologically Important Areas (BIAs) and encompasses moderate humpback whale predicted densities for the Santa Barbara Channel (Calambokidis et al. 2015). Habitat-based density models show high predicted density in the action area (Becker et al. 2016), and Becker et al. (2017) show a marked seasonal difference in the area, with the highest predictions for this species in winter and spring for the Santa Barbara Channel.

### Fin Whale

The fin whale (*Balaenoptera physalus*) is a federally-listed endangered species and also is protected by the MMPA. Fin whales occur worldwide, primarily in temperate to polar latitudes and are less common in the tropics. They are one of the more commonly seen whales in the Northern Hemisphere. Its distribution is not well known, but it generally migrates poleward to feed in the summer and to the subtropics to breed in the winter (Jefferson et al. 2008). The location of the winter breeding grounds is unknown. Fin whales feed on krill, small schooling fish, copepods and squid (NOAA 2018a). They are usually solitary or travel in pairs, but on feeding grounds there can be groups of up to 20, with 100 or more whales loosely grouped (Carwardine et al. 1998). The California/Oregon/Washington stock has approximately 3,200 fin whales. Fin whales prefer deeper, offshore waters and are a fast swimming species. This species is more commonly associated with the 200 meter isobath, which is approximately 7.4 miles from the Action Area (Cascadia 2011). Threats to this species include ship strikes, entanglement and ocean noise pollution (NOAA 2018a). On the west coast of the United States, ship strikes are an important cause of mortality for baleen whales, including humpback, blue, fin and gray whales (Berman-Kowalewski et al. 2010).

Potential for Occurrence. Moderate potential to occur. This species has been observed migrating and feeding through the Santa Barbara Channel on many occasions with one occurrence (12 individuals) noted within 1 mile of the Action Area in 2011 (PBCS 2018; Cascadia 2011). Resources (krill, small schooling fish and squid) are likely present in the Action Area. The project area is situated within moderate fin whale predicted densities within the Santa Barbara Channel (Becker et al. 2016; Calambokidis et al. 2015).

# 4.2.1.2 SEA TURTLES

# Loggerhead Sea Turtle

The loggerhead sea turtle (Caretta caretta) is a federally-listed endangered species, and also is protected by the MMPA. The North Pacific Ocean DPS occurs in tropical to temperate waters in the Pacific Ocean. Loggerhead sea turtles migrate from nesting grounds in Japan and Australia to feeding grounds located along the west coast from central to North America. Nesting occurs mainly on open beaches or along narrow bays having suitable sand, and often in association with other species of sea turtles. They choose ocean beaches with high wave energy, narrow, steep slopes, and coarse-grain sand for their nests. There are no known nesting locations that occur along the western seaboard of the U.S. or Hawaii (NMFS and USFWS 1998a). The closest known loggerhead nesting beaches in the North Pacific Ocean are located in Japan (NMFS and USFWS 2007). Baja California has the largest known aggregations of loggerhead sea turtles. Migration occurs along nearshore coastal waters (neritic zone). Loggerhead sea turtles typically feed on benthic invertebrates in hard bottom habitats, although fish and plants are occasionally consumed (NMFS and USFWS 1998a). During ideal conditions (water temperature/break), this species is known to migrate along the coast of California, including the Santa Barbara Channel. Sightings of this species along the U.S. west coast typically are of juveniles measuring 20-60 centimeter shell length (NMFS and USFWS 1998a). Loggerhead sea turtles are subject to several threats including loss of nesting habitat; disorientation of hatchlings by beachfront lighting; degradation of foraging habitat; marine pollution and debris; ship strikes; disease; and incidental take from commercial trawling, longline, and gill net fisheries (NMFS and USFWS 1998a).

**Potential for Occurrence.** High potential to migrate. Although there is no suitable feeding habitat (hard bottoms, benthic invertebrates) within the Action Area, during migration they may enter the Action Area. This species has been observed at San Clemente Island (NMFS and USFWS 2007). This species has stranded on Ventura beaches in 2014 and 2017 (Dan Lawson, NMFS Protected Resources Division, 2018, pers. comm.). Loggerhead sea turtles are not expected to nest in the Action Area. No beach habitat is present in the Action Area and the Santa Barbara Channel area is outside of nesting range.

# Green Sea Turtle

The green sea turtle (*Chelonia mydas*) is a federally-listed threatened species, and also is protected by the MMPA. The Eastern Pacific DPS ranges from Baja California to southern Alaska. However, the green sea turtle is more common from San Diego southward. This species forages in the open ocean when migrating as well as shallow waters of lagoons, bays, estuaries, mangroves, eelgrass, and seaweed beds. They are herbivorous and feed primarily on seagrasses and algae. Green sea turtles are generally found in shallow waters except when migrating. It is a regular visitor in the waters off the

southwest coast of the United States. Residents occur in the San Gabriel River, Long Beach (NMFS and USFWS 1998b). The closest known nesting occurrences are in Mexico (NMFS and USFWS 1998b). This species requires open beaches with a sloping platform and minimal disturbance for nesting. Green sea turtles have strong nesting site fidelity and often make long distance migrations between feeding grounds and nesting beaches. Threats to the green sea turtle include commercial harvesting, loss of nesting habitat; disorientation of hatchlings by beachfront lighting; nest predation by native and non-native predators; degradation of foraging habitat; marine pollution and debris; ship strikes; and incidental take from commercial fishing operations (NMFS and USFWS 1998b).

**Potential for Occurrence.** High potential to occur. They have been captured at Sterns Wharf in Santa Barbara harbor and at the Channel Islands. This species has stranded on Santa Barbara and Ventura beaches in 2014, 2015 and 2017 (Dan Lawson, NMFS Protected Resources Division, 2018, pers. comm.). This species may migrate and/or forage in the Action Area. Green sea turtles are not expected to nest in the Action Area.

## Olive Ridley Sea Turtle

The olive ridley sea turtle (*Lepidochelys olivacea*) is a federally-listed threatened species, and also is protected by the MMPA. Olive ridley sea turtles occur worldwide in tropical and warm temperate ocean waters. In the eastern Pacific, this species distribution ranges from Southern California to Northern Chile. Olive Ridley sea turtles are mostly pelagic but will also inhabit coastal areas. This species feeds on algae, lobster, crabs, tunicates, mollusks, shrimp, and fish. The olive ridley sea turtle gets its name from the olive coloration of its heart-shaped carapace. Their nesting behavior is called "arribada" nesting, whereby large groups gather and come ashore and nest all at once. This nesting behavior makes the olive ridley sea turtle vulnerable to harvest of eggs and even adult turtles. The breeding populations on the Pacific Coast of Mexico are listed as endangered and all other populations are listed as threatened under the ESA (NOAA 2018f). Their Pacific nesting grounds include the Pacific coasts of Mexico and Central America. As a highly migratory species, they are encountered in U.S. waters as they travel between nesting and foraging habitats (NOAA 2018f).

**Potential for Occurrence.** Moderate potential to occur. They have been captured at Sterns Wharf in Santa Barbara harbor and at the Channel Islands. This species may migrate and/or forage in the Action Area. Olive ridley sea turtles are not expected to nest in the Action Area. This species has been observed in the Los Angeles Harbor (NMFS and USFWS 1998e). This species has stranded on Santa Barbara County beaches in 2014 and 2015 (Dan Lawson, NMFS Protected Resources Division, 2018, pers. comm.).

# 4.2.2 OTHER NON-LISTED SPECIES PROTECTED UNDER THE MMPA

### 4.2.2.1 Cetaceans

### Common Minke Whale

The common minke whale (*Balarnoptera acutorostrata*) is protected by the MMPA. Minke whales are found throughout the world in polar, temperate, and tropical waters in both coastal and offshore habitats (NMFS 2018a). They are the smallest baleen whale in North American waters. It migrates seasonally and travels great distances. Common minke whales are the smallest baleen whale in North American waters. Some individual minke whales are residents in California waters. They are often solitary but sometimes travel in groups of 2-3 individuals (NMFS 2018a). This species feeds on copepods, krill, and small schooling fish. Minke whales are a normally cryptic species but are sometimes curious and will approach vessels (especially stationary vessels). Minke whales are subject to the following threats including entanglement (gill nets, seine nets, herring weirs, lobster traps, driftnets, longlines, and trawls), habitat disturbance, human interactions, noise pollution, and ship strikes (NMFS 2018a).

**Potential for Occurrence.** Moderate potential to occur. Foraging and migration habitat is present in the Action Area. Minke whales feed on euphausiids, copepods and small schooling fish, which are present in the Channel. In addition, this species has been recorded since 1988 in the Santa Barbara Channel and within 1 mile of the Action Area, although this species is usually in slightly deeper waters (PBCS 2018). Stock reports for the California/Oregon/Washington Stock show minke whales in close proximity to the northern Channel Islands, within the Santa Barbara Channel (NMFS 2016c).

### Common Bottlenose Dolphin

The common bottlenose dolphin (*Tursiops truncatus*) is protected by the MMPA. Bottlenose dolphins have a worldwide distribution ranging from 45°N to 45°S latitude and are found in temperate and tropical waters. Coastal populations often migrate into bays, estuaries, and river mouths. Offshore populations inhabit pelagic waters along the continental shelf. The common bottlenose dolphin, as its name suggests, is a common coastal species, and a generalist feeder (squid, fish and crustaceans) (Jefferson et al. 2008). Common bottlenose dolphins are comprised of two sub-populations: coastal bottlenose dolphins and offshore bottlenose dolphins. Coastal bottlenose dolphins are known to regularly occur within 1 kilometer of shore (Carretta et al. 1998). In southern California, they are found within 500 m of the shoreline 99% of the time and within 250 m 90% of the time (NMFS 2017g). On the other hand, offshore bottlenose dolphins inhabit areas at distances greater than a few kilometers from the mainland (NMFS 2011a). They may travel alone or in groups and commonly work together to herd prey. They are active at the surface and will approach ships and even other whales to bow ride as an energy efficient mode of transportation (NMFS 2018a). They interact with fisheries and are often seen following shrimp travlers (Jefferson et al. 2008). Common bottlenose dolphins are subject to the following threats including entanglement (gill nets, driftnets, longlines, and trawls), habitat degradation, noise pollution, pollution from oil spills and chemicals, and ship strikes.

**Potential for Occurrence.** High potential to occur; specifically for offshore bottlenose dolphin populations. This species has many occurrences throughout the Santa Barbara Channel and within or directly adjacent to the Action Area (PBCS 2018). Habitat-based density models show high predicted density for this species in the action area (Becker et al. 2016).

# Long-beaked Common Dolphin

The long-beaked common dolphin (*Delphinus capensis capensis*) is protected by the MMPA. Long-beaked common dolphins are commonly found along the U.S. west coast, from Baja California (including the Gulf of California) northward to about central California. Long-beaked and short-beaked common dolphins are similar species but have different habitat preferences. Long-beaked common dolphins prefer coastal waters. Long-beaked common dolphins are not as abundant as short-beaked common dolphins. They select shallower areas in tropical, subtropical, and warmer temperate to cool waters closer to the coast (within 50-100 nautical miles (90-180 km)) and the continental shelf (NMFS 2018a). This species will sometimes come close to shore within waters that are only a few meters deep (Jefferson et al. 2008). Long-beaked common dolphins usually travel in pods of 100-500 individuals, but have been seen numbering in the thousands. They are active at the surface and will approach ships to bow ride as an energy efficient mode of transportation (NMFS 2018a). Long-beaked common dolphins are subject to the following threats: entanglement (gill nets, driftnets, longlines, and trawls).

**Potential for Occurrence.** High potential to occur. Foraging resources (small schooling fish and squid) are likely present in the Action Area. This species has been recorded multiple times and in great numbers (e.g., occurrences with 1,500 individuals) in the Santa Barbara Channel, including the Action Area (PBCS 2018). Habitat-based density models show high predicted density for this species in the action area (Becker et al. 2016; Douglass et al. 2014).

# Short-beaked Common Dolphin

The short-beaked common dolphin (*Delphinus delphis delphis*) is protected by the MMPA. Short-beaked common dolphins inhabit warm tropical to cool temperate waters that are primarily oceanic and offshore. Off the U.S. west coast, the majority of the populations are found off California, especially during the warm-water months. This species occurs along the continental slope in waters 650-6,500 feet (200-2,000 m) deep (NMFS 2018a). This species is often associated with areas of upwelling and areas of steep sea-bottom, and as an offshore species they are commonly associated with pilot whales (Jefferson et al. 2008). Short-beaked common dolphins prefer deeper, offshore habitat. Short-beaked common dolphins travel in pods of hundreds to thousands of individuals. They are active at the surface and will approach ships and even other whales to bow ride as an energy efficient mode of transportation (NMFS 2018a). Short-beaked common dolphins are subject to the following threats: entanglement (gill nets, driftnets, longlines, and trawls).

**Potential for Occurrence.** Moderate to high potential to occur. Foraging resources (small schooling fish and squid) are likely present in the Action Area. This species has been recorded multiple times and in great numbers (e.g., occurrences with 1,500 individuals) in Santa Barbara Channel and adjacent to the Action Area (PBCS 2018). Habitat-based density models show high predicted density in the action area (Becker et al. 2016; Douglass et al. 2014), and

#### ATTACHMENT 2 BIOLOGICAL ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

indicated a marked seasonal difference in the area, with the highest predictions for this species in summer and fall for the Santa Barbara Channel (Becker et al. 2017; Campbell et al. 2014).

## Pacific White-sided Dolphin

The Pacific white-sided dolphin (*Lagenorhynchus obliquidens*) is protected by the MMPA. Pacific white-sided dolphins are found in temperate waters in the North Pacific and they utilize waters over the continental shelf to the deep open ocean (NMFS 2018a). In North America, in the Pacific they range from the Gulf of Alaska to the Gulf of California. Pacific white-sided dolphins exhibit seasonal inshore/offshore and north/south movements, but are generally non-migratory. This species feeds mostly on cephalopods and small schooling fish in deep offshore waters but also on the continental shelf (Jefferson et al. 2008). They are often observed working together in pod sizes of 10-100 individuals working together to herd schools of fish. Pacific white-sided dolphins are subject to several threats: entanglement in fishing gear (gillnets, longline), pollution, noise (will react to pingers), and ship strikes (NMFS 2018a). They will often bow ride with vessels as a method of energetically efficient transportation.

**Potential for Occurrence.** Moderate potential to occur. Foraging habitat is present in the Action Area. In addition, this species has numerous occurrences within the Santa Barbara Channel (mostly offshore, this species is commonly associated with other deep-water cetaceans such as Risso's dolphins and Northern right whale dolphins (NMFS 2018a)) and a few occurrences in the Action Area (PBCS 2018). Habitat-based density models show high predicted density for this species in the action area (Becker et al. 2016), particularly in the fall (Campbell et al. 2014; Douglass et al. 2014).

### 4.2.2.2 Pinnipeds

# California Sea Lion

The California sea lion (*Zalophus californianus*) is protected by the MMPA. It inhabits the eastern North Pacific Ocean from central Mexico to Canada. This species is present along the west coast from the Tres Marias Islands off Puerto Vallarta, throughout the Gulf of California and the Baja peninsula, north to Alaska. Males (adults, subadults, and juveniles) undertake a northward migration to Central California and Washington after the breeding season in southern rookeries. They are generalist opportunistic feeders (squid and fishes in areas of upwelling) and utilize the continental shelf and slope, but have also been observed in deeper oceanic waters (Jefferson et al. 2008). California sea lions prefer shallow coastal and estuarine waters and sandy beaches for haul out sites but will also haul out on marina docks, jetties, and buoys (NMFS 2018a). On land, they are wary of humans, but in the water they are curious, bold and will approach boats looking for fish. They will take fish from commercial fishing gear, sport fishing lines, and fish passage facilities at dams and rivers. They are less wary of people because they associate people with an easy meal. They may also be curious about construction activities. California sea lions are subject to several threats: entanglement in fishing gear (gillnets, longline), pollution, ship strikes and human caused injuries.

**Potential for Occurrence.** High potential to occur. This species has known haulouts along all of the Channel Islands and rookeries at San Nicholas Island (CDFW 2009, NMFS 2018a). The project site is within their distribution range (Lowry and Carretta 1999; NOAA 2018a). California sea lions mostly forage near mainland coastlines, the continental

shelf, and seamounts. Adult females feed between 10–100 km from shore (Lowry and Carretta 1999) while adult males may forage up to 450 km from shore (Weise et al. 2006).

# Pacific Harbor Seal

The Pacific harbor seal (*Phoca vitulina*) is protected by the MMPA. It is widespread in coastal areas of the Northern Hemisphere, in temperate and polar habitats. It is generally non-migratory and inhabits areas from the coast to the continental slope (Jefferson et al. 2008). On the U.S. west coast, this species is found in coastal and estuarine waters from Canada to Baja California, Mexico. Harbor seals inhabit temperate coastal habitats and use rocks, reefs, beaches, and drifting glacial ice for hauling out and pupping sites (NMFS 2018a). Diving averages less than 35 meters and they are generalist feeders (a variety of fish, cephalopods and crustaceans) (Jefferson et al. 2008). On land, harbor seals are very wary and shy, and will stampede into the water when disturbed. In the water, they are curious but cautious and will peer at people/boats. Harbor seals are subject to several threats: incidental capture in fishing gear (gillnets, trawls, purse seines, weirs), ship strikes, pollution, power plant entrainment, and harassment by humans when on land.

Potential for Occurrence. High potential to occur. Harbor seals have known haulouts and rookeries at Carpinteria Bluffs (Santa Barbara County) and Point Mugu (Ventura County); and haulouts from Point Conception to Santa Barbara and along all of the Channel Islands (CDFW 2009).

### 4.3 Critical Habitat

No designated critical habitat for federally-listed threatened and endangered species occurs within the Action Area (USFWS Environmental Online System (USFWS 2018b), NOAA Critical Habitat Maps (NOAA 2018c)).

# 5.0 EFFECTS OF THE ACTION

## 5.1 Effects of the Project Actions

This section analyzes all of the potential effects to listed species from Project Actions. As described in NMFS (2009) and 50 CFR 402.02, **direct effects** are those that have direct or immediate effects on the species or its habitat during construction. These effects include temporary changes in marine wildlife behavior from construction noise; and temporary construction disturbance to feeding habitat. **Indirect effects** are those that are caused by or will result from the Project Action later in time, after completion of initial construction, but still reasonably certain to occur. These effects include marine mammal disturbance due to inadvertent spills or introduction of chemical pollutants; release of invasive species, parasites, and pathogens from seed stock; effects on sediment quality due to biodeposits and changes in benthic invertebrate species; phytoplankton consumption, and fouling organisms and non-native species. Effects that may occur **both** during construction (direct effects) and later in time (indirect effect) include entanglement in aquaculture gear; vessel strikes; noise disturbance from vessels, and interference with migration or feeding routes. Each of these effects is discussed more in detail below. In addition, further assessments and mitigation measures aimed at avoiding, reducing, or remedying the effect of Project Actions are recommended below.

#### Direct and Indirect Effects (Occurring During and After Construction)

• Potential for Marine Wildlife Entanglement in Aquaculture Gear. The Project Actions may result in marine mammal entanglement. Mussel aquaculture utilizes various ropes in the water column that may pose an entanglement risk to cetaceans and sea turtles. In contrast to fishing gear, however, there are far fewer documented entanglement cases in mussel aquaculture gear. Interactions and entanglements with longline aquaculture gear worldwide are rare, and close approaches by protected species are seldom documented (Price et al. 2016). West coast entanglement summaries for 2015 and 2016 report no entanglements from mussel aquaculture fisheries (NOAA 2017c). There have been no reported marine mammal entanglements associated with Santa Barbara Mariculture, which has operated a 25-acre mussel aquaculture farm in the Santa Barbara Channel, using similar cultivation techniques, for over a decade (CDFG 2018).

Reported entanglements are predominantly from crab, gillnet and spiny lobster fisheries. Fixed fisheries gear (e.g., pot and trap gear) is the most commonly recognized and reported gear type causing entanglements since 2000. Documented entangled animals and disentanglement efforts in the Pacific Northwest have mostly involved gray whales and humpback whales and have involved both gill nets and crab gear. While not as common, both fin and blue whales are sometimes entangled in gill nets and crab gear based on a few stranded animals and scarring on live animals (NOAA 2014). More recently, from 2014 to 2017, the majority of the whale entanglements involved humpback whales and most of the entanglements were from commercial Californian and Washington Dungeness crab traps, and gillnet fisheries (NOAA 2017c). Large whale species appear to be more vulnerable to entanglement than smaller cetacean species, such as dolphins and porpoises, which are more prone to be caught as bycatch in nets due to their smaller size (Benjamins et al. 2014). Furthermore, juveniles are more likely to be entangled due to their inquisitive nature and inexperience. The

proposed mussel culture techniques have some significant differences as compared to crab and fishing gear that reduce the potential for marine mammal entanglement. As opposed to fishery gear, the mussel aquaculture gear is stationary, the lines are larger, and the gear is not designed to catch or ensnare fish. Further, as described below, the lines will be highly tensioned, which reduces the risk of marine mammals being caught in slack lines. Therefore, the project design is expected to pose a much smaller risk to marine mammal entanglement compared to longline fishing methods.

Cetaceans also have different ways in which they can perceive mussel farm lines and navigate around them. For example, odontocetes, such as harbor porpoises, are able to use echolocation to detect the lines (Lloyd 2003; Nielson et al. 2012), and minke whales are able to detect and avoid ropes that are white or black (Kot et al. 2012).No entanglements have been reported for pinnipeds with this method of mussel aquaculture (Lloyd 2003, Clement 2013).

Entanglements involving sea turtles and cetaceans have occurred in mussel aquaculture operations in Australia, New Zealand, Iceland, South Korea and Canada (Young et al. 2015). Entanglement risk is highest at mussel farms that employ mussel spat collecting ropes, as these ropes are thinner and more flexible making them more conducive to entanglement (Keeley et al. 2009). The majority of entanglements have involved these thinner mussel spat collector ropes or buoy lines connected to them. To avoid this concern, Mitigation Measure BIO-4 requires all mussel spat to be provided by land-based hatcheries certified by the California Department of Fish and Wildlife (or collected from grow-out lines) and will prohibit spat collector ropes. The project will only utilize grow-out ropes, which are thicker and more tightly anchored and tensioned (Lindell 2014; Moore & Wieting, 1999; Price et al. 2017).

Lines with spat or mature muscles will be freely hanging (not looping ropes), thereby allowing wildlife to traverse through the area. These lines will likely be heavy enough and under sufficient tension to prevent loose lines from becoming entangled and forming loops or knots along the longline. In addition, it is anticipated that when muscles are harvested, the lines will immediately be re-seeded with spat. Project design specifications are also proposed to minimize protected marine mammal and sea turtle entanglement. The longlines that will be used are a thick (1-inch-diameter) tensioned (to approximately 800 pounds) rope that is not conducive to wrapping around or entangling protected species. The mussel grow-out ropes themselves are typically planted with seed 3 inches thick and may grow to be stiff with byssus at diameters of 10 inches or more at harvest, thus making them very unlikely sources of entanglement. As an additional precaution, grow-ropes will be attached to the headrope with a low-breaking-strength twine (4-millimeter (0.16-inch) diameter; <1,000 pounds), which will facilitate rapid detachment in the unlikely event of any marine mammal interaction with the longline (see Mitigation Measure BIO-2).

Other potential entanglement points include (1) two vertical lines to the surface buoys marking each end of the headrope and (2) one pull-up buoy line for servicing at the midpoint. To minimize these potential entanglements, a 1,100-pound breakaway link will be installed between these buoys and the vertical lines, similar to strategies used to mitigate potential entanglement in trap fisheries in the northeastern United States (NOAA 2008). Buoy lines between the surface and headrope are generally under tension partially equivalent

(0 to 10 kilograms (0 to 22 pounds)) to their full buoyancy (42 kilograms (93 pounds)). Overall, the longline configuration produces a fairly rigid structure under tension, with stout lines and little slack.

Other mitigation measures have been incorporated into the project to further minimize the potential for marine mammal entanglement. The project will incorporate a marine wildlife entanglement plan to regularly check equipment for evidence of marine mammal entanglement (MM BIO-1) and require a qualified marine wildlife observer to be present during construction activities that can halt activities if marine mammals are observed (MM BIO-3). Further details regarding these measures are found in the mitigation measures provided in Section 5. After the incorporation of these mitigation measures and given the lack of documented marine mammal entanglement are considered insignificant.

- Ship Strikes Due to Increased Activity. Vessel strikes are known to be a hazard to a number of marine species, particularly whales. Project Actions may result in an additional 20 to 40 small boats traveling to lease sites on an average of 3 times per week to daily and would therefore contribute to increased boat traffic in the area during both construction and regular operations. Between 1988 and 2012, there were 100 documented large whale ship strikes along the California coast (NOAA 2017b). Large whale species are vulnerable to collisions with all vessel types, classes and sizes (NOAA 2017b); however, most collisions are associated with large container and freight ships due to their mass and the speed at which they transit the shipping lanes (Silber et al. 2010). When large vessels such as container ships are involved, the crew may be unaware a strike has occurred. As such, the number of ship strikes to whales is likely under reported. Most cases where whales were known to be severely hurt or killed occurred at vessel speeds of 14 knots or more and were caused by large ships of 80 meters or more in length (Laist et al., 2001). However, collisions with smaller boats, such as those that would be used for the aquaculture operations, do have the potential to injure or kill marine wildlife, especially when travelling at high speeds (Ritter 2012). Large container or freight ships will not be used during construction of the mussel farm nor during regular maintenance. To address this concern, the project will require continuous education regarding how to properly interact with marine mammals if encountered during operations (MM BIO-5) and include vessel management requirements if vessels observe marine mammals in close proximity to the vessel (MM BIO-6). After incorporation of these mitigation measures, impacts associated with ship strikes are considered insignificant.
- Interference with Migration or Feeding Routes. The Project Actions will result in increased human activity and the establishment of aquaculture facilities across 2,000 acres. Available habitat within Southern California Bight includes 400 miles of recessed coastline from Point Conception, Santa Barbara County to Cabo Colnet, Mexico, (SCCWRP 2016) and comprises over 6 million acres. Increased human activity and facilities during construction and operation may deter marine wildlife from using previously open and unoccupied areas for feeding or migration in different spatial and temporal ways. As a result, marine wildlife may be forced to seek feeding or open migration routes outside of the Action Area, thereby causing wildlife to expend time and energy seeking these resources. The project site is within the northward migration route for gray whales but it is largely unknown how many marine species perceive and respond to man-made structures in the ocean (Price et al. 2017). Habitat exclusion can range from low to high risk depending upon

the location and density of mussel farms. Existing studies have demonstrated the potential for species to be excluded from foraging habitats. Lloyd (2003) describes how curtains of mussel growing lines may act as barriers and impede hunting behavior in dolphins (dusky, common, and Hector's dolphins) by interfering with sonar signals for finding prey and communicating with other members of the pod. Dusky dolphins rarely enter mussel farms (Markowtiz et al. 2004). Whales and some dolphins tend to be more sensitive, while pinnipeds and both common and bottlenose dolphins seem attracted to the underwater arrays (Clement 2013). Dusky dolphins were observed foraging adjacent to mussel farms pointing to the suggestion that fish may be attracted to the structure (Price et al. 2017). Most studies were conducted in nearshore waters and it is uncertain how, or even if these results, pertain to offshore longline mussel farms in deep open ocean locations. However, this effect would be minimal due to the expansive open ranges that are open for marine wildlife in the greater region, and the project site is not located within critical habitat.

#### Direct Effects (Construction-Related Effects)

• Changes in Marine Wildlife Behavior from Construction. Disturbance to marine wildlife such as construction-related noise could occur from anchor installation and array set up. Noise effects may have a variety of indirect effects on marine wildlife species, including increased stress, weakened immune systems, altered feeding behavior, altered mother-infant relationships, displacement due to startle, degraded communication with conspecifics (e.g., masking), damaged hearing from extremely loud noises, and increased vulnerability to predators (MMC 2007; NMFS 2016c; Thomsen 2009). Another potential effect is abandonment of an area due to human disturbance which has been shown in several species (Lloyd 2003). The NOAA Fisheries criteria distinguishes between impulse sound, such as that from impact pile driving, and continuous sounds, such as that from vibratory pile driving. The Level A (injury) and Level B (disturbance) threshold levels used by NOAA Fisheries are summarized in Table 2 for cetaceans (whales, dolphins, and porpoises) and pinnipeds (seals and sea lions). NOAA is developing comprehensive guidance on sound characteristics likely to cause injury and behavioral disruption in the context of the Marine Mammal Protection Act (MMPA), Endangered Species Act (FESA) and other statutes. Until formal guidance is available, NOAA Fisheries uses conservative thresholds of received sound pressure levels from broad band sounds that may cause behavioral disturbance and injury, and the criterion levels specified in Table 1 are specific to the levels of harassment permitted under the MMPA (NMFS 2018e). Project Activities will temporarily disturb and alter the seafloor habitat from the placement of screw anchors used to hold the lines, ropes, floats, and buoys. Construction-related noise with the installation of sand screw anchors is very low in the water, with only a 50 horsepower hydraulic power pack on the boat, stipulating that noise will not approach NOAA thresholds. Furthermore, rotation speeds are also very low, which minimizes entanglement of marine species. The anchor installation disturbs less than 1 square meter of sea bed on installation and once installed no rope or chain touches the sea floor which also minimizes seabed disturbance (Fielder Marine Services, New Zealand, Pers.comm). Marine species that are the focus of this assessment are highly mobile and have the ability to temporarily avoid the project site during construction activities. Therefore, noise impacts associated with installation of equipment are considered insignificant.

#### ATTACHMENT 2 BIOLOGICAL ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

| Criterion | Criterion Definition                                                               | Threshold                             |
|-----------|------------------------------------------------------------------------------------|---------------------------------------|
|           | In-Water (Excluding Tactical Sonar and Explosives)                                 | •                                     |
| Level A   | PTS (injury) conservatively based on TTS                                           | 190 dB rms <sup>1</sup> for pinnipeds |
|           |                                                                                    | 180 dB rms for cetaceans              |
| Level B   | Behavioral disruption for impulsive noise (e.g., impact pile driving)              | 160 dB <sub>rms</sub>                 |
| Level B   | Behavioral disruption for non-pulse noise (e.g., vibratory pile driving, drilling) | 120 dB <sub>rms</sub>                 |
|           | In-Air                                                                             |                                       |
| Level A   | PTS (injury) conservatively based on TTS                                           | None established                      |
| Level B   | Behavioral disruption for harbor seals                                             | 90 dB rms                             |
| Level B   | Behavioral disruption for non-harbor seal pinnipeds                                | 100 dB rms                            |

Table 1 NOAA Fisheries Acoustic Thresholds

#### Indirect Effects (After Completion of Initial Construction)

- Oil Spills. Construction and harvesting operations (and the use of any heavy equipment) could result in water-quality effects due to chemical-compound pollution (fuel, oil, lubricants, inadvertent spills, and other materials) in the event of an oil spill. As with any mechanized machinery, there is a small risk of accidental discharge of fuel, lubricants, or hydraulic fluids, which could affect marine wildlife in the area and result in injury and/or mortality to wildlife in the area of the contaminant through ingestion, physical contact that reduces survival functions (e.g., oiled wildlife), or a reduction in suitable feeding habitat. Although spills of this nature are detrimental to aquatic organisms, it is expected that the impacts would be negligible because of the limited occurrence of spills and corrective actions.
- Marine Debris. The project has the potential to create marine debris if aquaculture gear breaks free through poor maintenance or damage from storm or wave activity. Entanglement may occur if aquaculture gear comes loose, washes away, or otherwise escapes into the environment as a result of tide, wind, or wave action. Additional risk may occur if derelict fishing gear, lines, and other materials become entangled in the longline arrays of this project, which could compromise structural integrity and/or exacerbate the risk of marine wildlife entanglements. There is also a risk that marine debris could be ingested by gray whales and sea turtles. To address this concern, Mitigation Measure BIO-10 incorporates and aquaculture gear monitoring and escapement plan to routinely check and maintain aquaculture gear to prevent breakage and quickly retrieve any gear that breaks free. Further, Mitigation Measure BIO-11 incorporates a decommissioning plan to require timely removal of aquaculture gear once shellfish operations cease on a parcel. Upon incorporation of the proposed mitigation, impacts associated with marine debris are considered insignificant.

RMS refers to the sound pressure level that is square root of the sum of the squares of the pressure contained within a defined period from the initial time to the final time. For marine mammals, the RMS pressure historically has been calculated over the period of the pulse that contains 90% of the acoustical energy.

- Release of Potentially Invasive Species, Parasites, and Pathogens from Seed Stock. Mussel aquaculture practices have the potential to introduce invasive species, parasites, and pathogens into the environment via contaminated seed stock, which could have detrimental effects on the California marine ecosystem. However, this project will use spat from hatcheries certified by CDFW to not contain invasive species, parasites or pathogens of concern or will be collected directly from grow-out lines. Seed stock, other than those obtained from State waters, must be inspected and certified before planting in compliance with Sections 15201 and 15600 of the Fish and Game Code. Mediterranean mussels are a non-native, but naturalized species. In fact, this mussel is now one of the most abundant mussel species, the proposed mussel farm would have a negligible effect on the surrounding environment. Furthermore, benthic characteristics of the project site demonstrate a lack of available substrate for any further establishment of mussels beyond the project site, as the closest substrate where mussels could establish beyond the project site is several miles away.
- Disturbance/ Displacement of the Benthic Environment. Effects on sediment quality underneath shellfish aquaculture gear could be impacted from biodeposits and changes to the benthic invertebrate species composition. The Project Actions have the potential to disturb or alter the seafloor habitat by the deposition of biological materials resulting from dislodged or discharged shells, shell fragments, and deposits from the growing operation accumulating on the seafloor beneath the aquaculture structures. Such material typically includes feces and pseudofeces from the cultivated shellfish, as well as fouling organisms such as algae, barnacles, sponges, and other invertebrates that accumulate on the project equipment and subsequently become dislodged by natural processes, or due to harvesting or cleaning operations. Cultivated shellfish or shells from can also be dislodged from the structure during growth, storm events, predation by marine wildlife, and cleaning and harvesting activities. The accumulation of material including shell fragments, intact shells, fouling organisms, and feces can alter the physical and chemical characteristics of the bottom substrate, and can affect the benthic community and sediment-dwelling organisms that may be sensitive to conditions such as substrate composition and chemistry. Accumulation of material could also attract organisms that would change the composition of the benthic community. Other potential benthic impacts can include increased loads on sediment dissolved oxygen and redox conditions, and changes to nutrient cycling resulting in a decrease in benthic species abundance and sediment porosity (Pearson and Rosenberg 1978; Wilding and Nickell 2013; Wilding 2012). The effect on benthic nitrogen cycling is determined by biogeochemical and physical variables, such as water depth, current velocities, and bottom type and composition (CFGC 2018). Shellfish are able to alter the biogeochemical process in the water column by stimulating nitrification (Souchu et al. 2001).Mussel farms that are located in areas with greater water depths and current speeds, spread biodeposits over a larger area without posing the risk of enhanced sediment nutrient release (Stadmark & Conley 2011). A local mussel farm, the Santa Barbara Mariculture Company, with thirteen years in operation, conducted benthic analysis testing. This sediment analysis testing examined grain size, and levels of benthic epifaunal and infaunal biodiversity both within the farm and outside of the farm, and found no significant benthic impact (CFGC 2018). Given the conditions at the Ventura Shellfish Enterprise project site, with the significant depth, wave action and mixing, this potential impact is unlikely to be significant and bioaccumulation is expected to be dispersed over a larger area. To confirm this conclusion, Mitigation

Measure BIO-9 has been incorporated, which requires monitoring of sediment quality and composition to evaluate any benthic impacts associated with the project.

Installation of the anchors proposed with the project also has the potential to displace benthic invertebrates. However, the adverse impacts to epifauna and infauna would be minimal. Each anchor would only have a footprint of less than one square meter. The total habitat area that would be disturbed by the proposed project would be small and regionally insignificant when compared to the overall amount of habitat available in the area. Further, many benthic invertebrates are mobile and would quickly recolonize the area after installation of the anchors. Therefore, impacts associated with benthic disturbance are considered insignificant.

- Fouling Organisms and Nonnative Species. The submerged structures of the Project Actions can provide hard substrate habitat for invasive "fouling organisms." Fouling organisms, such as invasive algae, sea squirts, and mussels, can pose economic and ecological risks to the marine environment. For example, the invasive carpet sea squirt (*Didemnum vexillum*) reproduces rapidly and fouls marine habitats (including shellfish aquaculture operations and fishing grounds), ship's hulls, and maritime structures. Like other fouling organisms, they are found on hard substrates that include floats, moorings and ropes, steel chain and ship hulls. They overgrow other marine organisms such as tunicates, sponges, macro algae, hydroids, anemones, bryozoans, scallops, mussels, and oysters. Where these colonies occur on the seabed, they likely cover the siphons of infaunal bivalves and serve as a barrier between demersal fish (or benthic feeding grey whales) and their prey. However, the invasive carpet sea squirt is not present in the Channel Islands area. The nearest known occurrences are in Monterey Bay and Mission Bay in San Diego (Woods Hole Science Center 2007). Further, there is a lack of available substrate within or near the project site suitable for colonization by fouling organisms, as these invasive species cannot attach themselves to the sandy bottom substrate at the project site.
- **Carrying Capacity** (Phytoplankton Consumption). Mussels feed primarily on phytoplankton filtered from the water column. Each individual is capable of filtering over 20-gallons of seawater per day (Okumus et al. 2002). Hence, in some circumstances, large concentrations of mussels found in mussel farms can remove a significant proportion of available phytoplankton from the water column in an area, causing localized phytoplankton depletion (Okumus et al. 2002). Other studies suggest that nutrient regeneration in the water column within mussel farms is high, as phytoplankton consumed by the mussels results in released nutrients supporting new phytoplankton production (CFGC 2018). Ventura Shellfish Enterprise has adopted the methodology utilized by CDFW to evaluate carrying capacity impacts associated with Santa Barbara Mariculture Company's mussel aquaculture farm, whereby the standing stock of phytoplankton biomass outside the facility is determined and compared with the filtration/consumption rate of mussels within the farm. The results of the Santa Barbara Mariculture Company indicated that total production of the fully built-out farm would not have an adverse impact on phytoplankton in the Santa Barbara Channel (CFGC 2018). Similarly, calculations for the Ventura Shellfish Enterprise mussel farm indicate that no adverse impact on phytoplankton in the Santa Barbara Channel would occur (Appendix C).

# 5.1.1 FEDERALLY-LISTED SPECIES

### 5.1.1.1 Cetaceans

### Gray Whale

#### **Direct Effects**

As described in Section 4.0, gray whales and their calves forage and travel in close proximity to shore during their northward migration. Due to their size, behavior, and occurrence close to shore, gray whales are likely to be affected by the Project Actions. The gray whale is a frequent visitor to the Santa Barbara Channel and may migrate directly along the path of the project site. As a result, gray whales may experience both direct and indirect effects from the Project Actions. If Project Actions will occur during the migration period, adults (and particularly calves) have the potential for entanglement in aquaculture gear. However, gray whales routinely swim through kelp and are adept at navigating obstacles, given they are accustomed to coastal areas. Absent mitigation, entanglement could adversely affect this species. However, with incorporation of **MM BIO-1 through BIO-5**, the effect would be reduced.

As described in Section 4.0, one of the main threats to gray whales is from ship strikes. Project Actions will involve an increase in boat traffic both within the Project Action Area and routes to and from the Ventura Harbor. Ship strike risk may also increase at nighttime when whales are resting, unaware of ship presence, and are less visible to staff onboard. Absent mitigation, the Project Actions have the potential to result in injury and/or mortality to gray whales from ship strikes, which would adversely affect this species. However, with incorporation of **MM BIO-6**, the effect would be reduced.

Project Actions have the potential to interfere with gray whale migration and feeding routes. However, the Santa Barbara Channel measures over 20 miles wide and the Project Action Area would be under 2 miles wide. Due to the expansive open ranges that are available for grey whales in the greater region, the Project Actions interference with migration and feeding routes would not adversely affect this species.

Project Actions have the potential to result in changes of gray whale migration or feeding behavior during construction from noise or disturbance to benthic feeding areas. Although noise effects will be very low, gray whales may temporarily avoid construction areas. Absent mitigation, construction activities may adversely affect this species. However, with incorporation of **MM BIO-3**, **MM BIO-5** and **MM BIO-6**, the effect would be reduced.

#### **Indirect Effects**

Project Actions have the potential to result in inadvertent oil spills. Any grey whales traversing through areas that enter areas containing material from oil spills or other pollutants may experience immediate health effects. Absent mitigation, Project Activities may adversely affect this species. However, with incorporation of **MM BIO-7**, the effect would be reduced.

Project Actions have the potential to result in the release of invasive species, parasites, and pathogens. Absent mitigation, Project Activities may adversely affect this species through reducing its access to prey within the Project Area. However, with incorporation of **MM BIO-4**, **MM BIO-8**, and **MM BIO-10** the effect would be reduced.

#### **Determination of Effects**

Project Actions have the potential to result in direct and indirect effects to grey whale individuals and/or their migration and feeding habitats. The highest risk to this species includes entanglement in gear and vessel strikes. Construction activities are anticipated to be relatively brief (several weeks) within each plot which would cause temporary changes to grey whale feeding and migrating behavior. In addition, due to the availability of feeding habitat in the Santa Barbara Channel, Project Actions are not anticipated to interfere with gray whale migration and feeding routes. Additional Project effects to this species include the potential effects on sediment quality from aquaculture farms or fouling organisms. Measures to avoid and minimize any potential adverse effects to grey whale are discussed above and include **MM BIO-1 through BIO-11**. With implementation of these measures, the effects of the Project Actions would not jeopardize the continued existence of this species. As such, the Project Actions **may affect**, **but is not likely to adversely affect** the grey whale.

### Humpback Whale and Fin Whale

Humpback and fin whales are anticipated to experience similar effects as those described for grey whales, with the exception of effects to sediment quality and the fouling of organisms. As described below, these species are expected to be directly and indirectly effected by the Project Actions from entanglement, ship strikes, interference with migration or feeding routes, changes in behavior from construction activities, oil spills, and release of invasive species. Given recent reports, humpback whales may in fact be more susceptible to entanglements, given their size, large appendages relative to body size ratio, and propensity to roll when entangled (NOAA 2018f).

#### **Direct Effects**

Humpback and fin whales may transit directly along the path of the project site. If Project Actions occur during the migration period, individuals have the potential for entanglement in aquaculture gear. Absent mitigation, entanglement would adversely affect this species. However, with incorporation of **MM BIO-1 through BIO-5**, the effect would be reduced.

Project Actions will involve an increase in boat traffic both within the Project Action Area and routes to and from the Ventura Harbor. Ship strike risk may also increase at nighttime when whales are resting, unaware of ship presence, and are less visible to staff onboard. Absent mitigation, the Project Actions have the potential to result in injury and/or mortality to humpback and fin from ship strikes, which would adversely affect these species. However, with incorporation of **MM BIO-6**, the effect would be reduced.

Project Actions have the potential to interfere with humpback and fin whale migration and feeding routes. However, the Santa Barbara Channel measures over 20 miles wide and the Project Action Area would be under 2 miles wide. Due to the expansive open ranges that are available for these in the greater region, the Project Actions interference with migration and feeding routes would not adversely affect these species.

Project Actions have the potential to result in changes of humpback and fin whale migration or feeding behavior during construction from noise or avoidance of suitable feeding areas. Although, noise effects will be very low, these

species may temporarily avoid construction areas. Absent mitigation, construction activities may adversely affect this species. However, with incorporation of **MM BIO-3**, **MM BIO-5** and **MM BIO-6**, the effect would be reduced.

#### **Indirect Effects**

Project Actions have the potential to result in inadvertent oil spills. Any humpback or fin whales traversing through areas that enter areas containing material from oil spills or other pollutants may experience immediate health effects. Absent mitigation, Project Activities may adversely affect these species. However, with incorporation of **MM BIO-7**, the effect would be reduced.

#### **Determination of Effects**

Project Actions have the potential to result in direct and indirect effects to humpback and fin whale individuals and/or their migration and feeding behaviors. The highest risk to these species includes entanglement in gear and vessel strikes. Construction activities are anticipated to be relatively brief (several weeks) within each plot which would cause temporary changes to humpback and fin whale feeding and migrating behavior. In addition, due to the availability of feeding habitat in the Santa Barbara Channel, Project Actions are not anticipated to interfere with these species' migration and feeding routes. Additional Project effects to these species include the release of invasive species, parasites, and pathogens from seed stock. Measures to avoid and minimize any potential adverse effects to the humpback and fin whale are discussed above and include **MM BIO-11 through BIO-11**. With implementation of these measures, the effects of the Project Actions would not jeopardize the continued existence or recovery of these species. As such, the Project Actions **may affect, but are not likely to adversely affect** the humpback and fin whales.

### 5.1.1.2 Sea Turtles

#### **Direct Effects**

Loggerhead, green, and olive ridley sea turtles may traverse the Project Action Area during migration. Should marine debris (e.g., fishing nets or wire not a part of the Project Actions) become entangled on the aquaculture long lines, sea turtles may become entangled leading to injury and/or mortality. Absent mitigation, entanglement would adversely affect these species. However, with incorporation of **MM BIO-1 through BIO-5 and MM BIO-10**, the effect would be reduced.

Project Actions will involve an increase in boat traffic both within the Project Action Area and routes to and from the Ventura Harbor. Absent mitigation, the Project Actions have the potential to result in injury and/or mortality to sea turtles from ship strikes, which would adversely affect these species. However, with incorporation of **MM BIO-6**, the effect would be reduced.

Project Actions have the potential to interfere with sea turtle migration routes. However, the Santa Barbara Channel measures over 20 miles wide and the Project Action Area would be under 2 miles wide. Due to the expansive open ranges that are available for these in the greater region, the Project Actions interference with migration routes would not adversely affect these species.

Project Actions have the potential to result in changes of sea turtle migrating behavior during construction from noise or avoidance of migratory routes. Although noise effects will be very low, these species may temporarily avoid construction areas. Artificial lighting during construction activities and regular operations can be disorienting to sea turtles (as well as seabirds and migratory birds). Absent mitigation, construction activities may adversely affect this species. However, with incorporation of **MM BIO-3**, **MM BIO-5**, **MM BIO-6** and **MM BIO-12**, the effect would be reduced.

#### **Indirect Effects**

Project Actions have the potential to result in inadvertent oil spills. Any sea turtles traversing through areas that enter areas containing material oil spills or other pollutants may experience immediate health effects. Absent mitigation, Project Activities may adversely affect these species. However, with incorporation of **MM BIO-7**, the effect would be reduced.

#### **Determination of Effects**

Project Actions have the potential to result in direct and indirect effects to sea turtle individuals and/or their migration behaviors. The highest risk to these species includes entanglement in fugitive nets and fishing line that may become attached to aquaculture gear. Construction activities are anticipated to be relatively brief (several weeks) within each plot which would cause temporary changes to sea turtle and migrating behavior. In addition, due to the availability of open ocean in the Santa Barbara Channel, Project Actions are not anticipated to interfere with these species' migration routes. Additional Project effects to these species include possible ship strikes and the release of invasive species. Measures to avoid and minimize any potential adverse effects to sea turtles are discussed above and include **MM BIO-1 through BIO-12**. With implementation of these measures, the effects of the Project Actions would not jeopardize the continued existence or recovery of these species. As such, the Project Actions **may affect**, **but are not likely to adversely affect** the loggerhead, green and olive ridley sea turtles.

# 5.1.2 OTHER NON-LISTED SPECIES PROTECTED UNDER THE MMPA

### 5.1.2.1 Cetaceans

The common minke whale, common bottlenose dolphin, long-beaked common dolphin, short-beaked common dolphin, and pacific white-sided dolphin are anticipated to experience similar effects as those described for humpback and fin whale. However, these dolphins are resident that may be present in the Santa Barbara Channel year-round. As described below, these species are expected to be directly and indirectly effected by the Project Actions from entanglement, ship strikes, interference with migration or feeding routes, changes in behavior from construction noise, potential oil spills, and release of invasive species, parasites, and pathogens from seed stock. There are few documented cases of interactions between cetaceans and shellfish farms. However, in Australia, studies of bottlenose dolphins indicate that they avoid mussel farms in shallow nearshore waters and the displacement of habitat causes a reduction in fecundity (Kemper et al. 2003). This study involved coastal bottlenose dolphins, and it is unknown if displacement of habitat will occur in offshore waters for offshore bottlenose dolphins. Similarly, in New Zealand, dusky dolphins were seen avoiding mussel leases in shallow waters (they utilize shallow waters for foraging) which may indicate that placing mussel farms in nearshore waters affects their ability to forage. In Chile, a bay used by Chilean dolphins was completed filled in with mussel lines and the dolphins ceased to use the area for foraging

(Kemper et al. 2003). These studies occur in shallow coastal waters and for different species than those that occur on the project site but it habitat displacement may occur to offshore species as well, such as bottlenose dolphins, common dolphins, pacific white-sided dolphins and minke whales in the project area. If these species are prevented from foraging in the project area, it would be a small reduction in their overall foraging area and would not adversely affect these species.

### **Direct Effects**

The common minke whale may migrate along the Project Action Area and many dolphins are year-round residents. If Project Actions occur during the common minke whale migration period, individuals have the potential for entanglement in aquaculture gear. In addition, dolphins have the potential for entanglement year-round. Normally adept at maneuvering around objects, individuals have the potential for entanglement in loose fishing nets, debris and other ghost gear that could become attached to the mussel aquaculture gear. Absent mitigation, entanglement may adversely affect these species. However, with incorporation of **MM BIO-1 through BIO-5 and MM BIO-10**, the effect would be reduced.

Project Actions will involve an increase in boat traffic both within the Project Action Area and routes to and from the Ventura Harbor. Ship strike risk may also increase at nighttime when migrating common minke whales may be resting, unaware of ship presence, and are less visible to staff onboard. In addition, dolphins are known to bow-ride which may result in accidental ship strikes to these species. Absent mitigation, the Project Actions have the potential to result in injury and/or mortality, which would adversely affect these species. However, with incorporation of **MM BIO-6**, the effect would be reduced.

Project Actions have the potential to interfere with common minke whale migration routes. In addition, foraging areas for the common minke whale and dolphins may be disrupted from Project Actions. However, the Santa Barbara Channel measures over 20 miles wide and the Project Action Area would be under 2 miles wide. Habitat displacement could occur for these species, but it would be a small reduction in their overall foraging area. Due to the expansive open ranges that are available for these in the greater region, the Project Actions interference with migration and feeding routes would not adversely affect this species.

Project Actions have the potential to result in changes of common minke whale migration along with whale and dolphin feeding behavior during construction from noise or avoidance of suitable feeding areas. These species may temporarily avoid construction areas or experience more long lasting and adverse effects, as described above. Absent mitigation, construction activities may adversely affect this species. However, with incorporation of **MM BIO-3**, **MM BIO-5** and **MM BIO-6**, the effect would be reduced.

#### **Indirect Effects**

Project Actions have the potential to result in inadvertent oil spills. Any common minke whales or dolphins traversing through areas that enter areas containing material from oil spills or other pollutants may experience immediate health effects. Absent mitigation, Project Activities may adversely affect these species. However, with incorporation of **MM BIO-7**, the effect would be reduced.

Project Actions have the potential to result in the release of invasive species, parasites, and pathogens. Absent mitigation, Project Activities may adversely affect these species. However, with incorporation of **MM BIO-4** and **MM BIO-8**, the effect would be reduced.

#### **Determination of Effects**

Project Actions have the potential to result in direct and indirect effects to the common minke whale, common bottlenose dolphin, long-beaked common dolphin, short-beaked common dolphin, and pacific white-sided dolphin. The highest risk to these species includes entanglement in gear (loose fishing nets, debris, or other ghost gear that has become entangled in the aquaculture array) and vessel strikes. Construction activities are anticipated to be relatively brief (several weeks) within each plot which would cause temporary changes to whale and dolphin feeding and/or migrating behavior. In addition, due to the availability of feeding habitat in the Santa Barbara Channel, Project Actions are not anticipated to interfere with these species' migration and feeding routes. Additional Project effects to the sepecies include the release of invasive species. Measures to avoid and minimize any potential adverse effects to the common minke whale and dolphins are discussed above and include MM BIO-1 through BIO-11. With implementation of these measures, the effects of the Project Actions would not jeopardize the continued existence of these species. As such, the Project Actions may affect, but are not likely to adversely affect these species.

### 5.1.2.2 Pinnipeds

Pinnipeds, including the California sea lion and Pacific harbor seal, are expected to experience similar effects as those described for small cetaceans. Similar to dolphins, pinnipeds are resident and are present in the Santa Barbara Channel year-round. As described below, these species are expected to be directly and indirectly effected by the Project Actions from entanglement, ship strikes, interference with feeding routes, changes in behavior from construction activities (disturbance), invasive species, parasites, and pathogens, altered marine food chains/habitat due to fouling the water and changes to the benthic fauna (Kemper et al. 2003). Other affects may include predator control.

#### **Direct Effects**

Pinnipeds may be present year round in the Project Action Area. There have been no reported interactions between pinnipeds and shellfish aquaculture (Kemper et al. 2003) indicating a very low possibility of an impact; however, individuals have the potential for entanglement in loose fishing nets, debris and other ghost gear that could become attached to the mussel aquaculture array. Absent mitigation, entanglement may adversely affect these species. However, with incorporation of **MM BIO-1 through BIO-5 and MM BIO-10**, the effect would be reduced.

Project Actions will involve an increase in boat traffic both within the Project Action Area and routes to and from the Ventura Harbor. Absent mitigation, the Project Actions have the potential to result in injury and/or mortality, which would adversely affect these species. However, with incorporation of **MM BIO-6**, the effect would be reduced.

Project Actions have the potential to interfere with pinniped feeding routes. However, the Santa Barbara Channel measures over 20 miles wide and the Project Action Area would be under 2 miles wide. Due to the expansive open ranges that are available for these in the greater region, the Project Actions interference with migration and feeding routes would not adversely affect this species.

#### ATTACHMENT 2 BIOLOGICAL ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

Project Actions have the potential to result in changes of pinniped feeding behavior during construction from noise or avoidance of suitable feeding areas. These species may temporarily avoid construction areas or experience more long lasting and adverse effects, as described above. Absent mitigation, construction activities may adversely affect this species. However, with incorporation of **MM BIO-3**, **MM BIO-5** and **MM BIO-6**, the effect would be reduced.

Predator control is unlikely to be needed for this project given the feeding preferences of pinnipeds in the area. However, if predator control is required, **MM BIO-13** will be incorporated.

#### **Indirect Effects**

Project Actions have the potential to result in inadvertent oil spills or other pollution. Any pinnipeds traversing through areas that contain material from oil spills may experience immediate health effects. Absent mitigation, Project Activities may adversely affect these species. However, with incorporation of **MM BIO-7**, the effect would be reduced.

Project Actions have the potential to result in the release of invasive species, parasites, and pathogens. Absent mitigation, Project Activities may adversely affect these species. However, with incorporation of **MM BIO-4** and **MM BIO-8**, the effect would be reduced.

#### **Determination of Effects**

Project Actions have the potential to result in direct and indirect effects to pinnipeds, including the California sea lion, and Pacific harbor seal. The highest risk to these species includes vessel strikes. Construction activities are anticipated to be relatively brief (several weeks) within each plot which would cause temporary changes to pinniped feeding behavior. In addition, due to the availability of feeding habitat in the Santa Barbara Channel, Project Actions are not anticipated to interfere with these species' feeding routes. Additional Project effects to these species include the release of invasive species, parasites, and pathogens from seed stock. Measures to avoid and minimize any potential adverse effects to pinnipeds are discussed above and include **MM BIO-1 through BIO-11**. With implementation of these measures, the effects of the Project Actions would not jeopardize the continued existence of these species. As such, the Project Actions **may affect**, **but are not likely to adversely affect** pinnipeds.

### 5.2 Mitigation Measures

**MM BIO-1** Marine Wildlife Entanglement Plan. No less than once per month, each grower/producer operating on a VPD lease shall visually inspect all ropes, cables, and equipment via depth/fish finders to determine if any entanglement of a marine mammal has occurred and to ensure that (a) no lines have been broken, lost or removed; (b) all longlines, anchor lines, and buoy lines remain taught and in good working condition; and (c) any derelict fishing gear or marine debris that collects in the growing gear is removed and disposed of at an identified onshore facility. All equipment and materials accidentally released or found to be missing from the facility during monthly inspections, including buoys, floats, lines, ropes, chains, cultivation trays, wires, fasteners, and clasps, shall be searched for, collected, properly disposed of onshore, and documented in the annual inspection report. Monitoring shall occur monthly for the first two years following deployment and, in the event

that there are no marine wildlife entanglements within the first two years, may be reduced to quarterly inspections thereafter.

Inspections shall include recordings by depth/fish finder or ROV surveys of lines and/or monitoring performed by SCUBA divers. Recorded video shall be provided along with the annual report described above. Any maintenance issues including wear, loosening, or fatigue of materials shall be remedied as soon as possible. All incidents of observed whale entanglement shall be immediately reported to SOS WHALe. Any other marine wildlife (i.e., other marine mammals, turtles) observed to be entangled will be immediately reported to NOAA Fisheries Marine Mammal Stranding Network Coordinator, West Coast Region, Long Beach Office. Only personnel who have been authorized by NOAA Fisheries and who have training, experience, equipment, and support will attempt to disentangle marine wildlife. If possible, the grower/producer shall document and photograph entangled wildlife and the entangling gear material so as to modify gear and avoid any future entanglements.

- **MM BIO-2** Entanglement Prevention. Grow-ropes will be attached to the head rope with a low-breakingstrength twine (4-millimeter (0.16-inch) diameter; <1,000 pounds), which will facilitate rapid detachment in the unlikely event of any interaction with the longline. A 1,100-pound breakaway link will be installed between surface marking buoys and the vertical lines.
- **MM BIO-3** Marine Wildlife Observer. A Marine Wildlife Observer shall be present on each project construction vessel during all construction activities, including the installation of long lines and anchoring systems. The observer shall monitor and record the presence of all marine wildlife (marine mammals and sea turtles) within 100 yards of the work area. The observer shall have the authority to halt operations if marine wildlife are observed or anticipated to be near a work area and construction activities have the potential to result in injury or entanglement of marine wildlife. In addition, all work (including vessel motors) will be halted if a cetacean is observed within the monitoring area or if a pinniped or sea turtle is observed within 50 yards of the work area. Work may commence after the observed individuals have moved out of the monitoring area.

Observers' reports on marine mammal monitoring during construction activities shall be prepared and submitted to NOAA Fisheries on a monthly basis. Reports shall include such information as the (1) number, type, and location of marine mammals observed; (2) the behavior of marine mammals in the area of potential sound effects during construction; (3) dates and times when observations and in-water project construction activities were conducted; and (4) dates and times when in-water construction activities were suspended because of marine mammals.

VPD shall prepare a list of qualified marine wildlife observers who meet the following minimum qualifications: visual acuity in both eyes (correction is permissible) sufficient to discern moving targets at the water's surface with ability to estimate target size and distance; (2) use of binoculars or

spotting scope may be necessary to correctly identify the target; (3) advanced education in biological science, wildlife management, mammalogy, or related fields (bachelor's degree or higher is preferred); (4) experience and ability to conduct field observations and collect data according to assigned protocols (this may include academic experience); (5) experience or training in the field identification of marine mammals (cetaceans and pinnipeds) and sea turtles; and (6) ability to communicate orally, by radio or in person, with project personnel to provide real time information on marine wildlife observed in the area, as needed.

- **MM BIO-4 Cultivation of Spat Off site.** Only hatchery-reared mussel spat grown at a facility certified by CDFW will be used in order to ensure that spat are free of introduced invasive species, parasites, and pathogens of concern; however, natural mussel spat collected on farm grow-out lines and buoys may also be harvested and cultivated.
- **MM BIO-5 Marine Wildlife Education.** Each grower/producer will be required to provide bi-annual (twice per year) marine wildlife education to its employees regarding proper procedures relating to marine wildlife. The training curriculum will include identifying the presence of specified marine wildlife and procedures for avoiding impacts to marine wildlife during operations. These procedures will include (1) reducing speed and observing the distances from marine life specified in MM BIO-6; (2) providing a safe path of travel for marine mammals that avoids encirclement or entrapment of the animal(s) between the vessel and growing apparatus; (3) if approached by a marine mammal, reducing speed, placing the vessel in neutral and waiting until the animal is observed clear of the vessel before making way; (4) avoiding sudden direction or speed changes when near marine mammals; (5) refraining from approaching, touching or feeding a marine mammal; and (6) immediately contacting their supervisor and other identified parties/agencies identified in MM BIO-1 should an employee observe an injured marine mammal.
- **MM BIO-6** Vessel Management. Vessels in transit to and from the growing area shall maintain a distance of 100 yards from any observed cetacean and 50 yards between any observed pinniped or sea turtle. If cetaceans are observed within 100 yards or pinnipeds or sea turtles observed within 50 yards, the vessel shall reduce speeds to 12 knots or less until it is the appropriate distance (as required by this condition) from the particular marine life. If a cetacean is heading into the direct path of the vessel (i.e., approaching a moving vessel directly into the bow), the vessel shall shut off the engine until the cetacean is no longer approaching the bow and until a greater separation distance is observed. If small cetaceans are observed bow-riding, and the vessel is operating at speeds of 12 knots or less, the vessel shall remain parallel to the animal's course and avoid abrupt changes in direction until the cetaceans have left the area.

Each sighting of a federally listed threatened or endangered whale or turtle shall be recorded and the following information shall be provided:

- a. Date, time, coordinates of vessel
- b. Visibility, weather, sea state

- c. Vector of sighting (distance, bearing)
- d. Duration of sighting
- e. Species and number of animals
- f. Observed behaviors (feeding, diving, breaching, etc.)
- g. Description of interaction with aquaculture facility
- MM BIO-7 Spill Prevention and Response. Discharges of feed, pesticides, or chemicals (including antibiotics and hormones) in ocean waters are prohibited. Fuel, lubricants and chemicals must be labeled, stored and disposed of in a safe and responsible manner, and marked with warning signs. Precautions shall be taken to prevent spills, fires and explosions, and procedures and supplies shall be readily available to manage chemical and fuel spills or leaks. Each grower/producer shall comply with the Spill Prevention and Response Plan (SPRP) for vessels and work barges that will be used during project construction and operations. Each grower/producer operating in the project area shall be trained in, and adhere to, the emergency procedures and spill prevention and response measures specified in the SPRP during all project operations. The SPRP shall provide for emergency response and spill control procedures to be taken to stop or control the source of the spill and to contain and clean up the spill. The SPRP shall include, at a minimum: (a) identification of potential spill sources and quantity estimates of a project specific reasonable worst case spill; (b) identification of prevention and response equipment and measures/procedures that will be taken to prevent potential spills and to protect marine and shoreline resources in the event of a spill. Spill prevention and response equipment shall be kept onboard project vessels at all times; (c) a prohibition on at-sea vessel or equipment fueling/refueling activities; and (d) emergency response and notification procedures, including a list of contacts to call in the event of a spill; (e) assurance that all hydraulic fluid to be used for installation, maintenance, planting, and harvesting activities shall be vegetable based.
- **MM BIO-8** Invasive Species. Grower/producers operating in the project area shall be required to receive training from NMFS to identify potential invasive species and how to properly dispose of such invasive species if discovered.
- **MM BIO-9** Sediment Quality Monitoring Plan. A Sediment Quality Monitoring Plan shall be developed requiring monitoring of sediment conditions within the project area, including monitoring the quantity, type, and distribution of biological materials (such as shellfish, shell material, and fouling organisms) that accumulate on the seafloor. Monitoring will also include an evaluation of any changes to oxygen demand of benthic infaunal and epifaunal communities, and changes to the chemical and biochemical conditions of seafloor sediments along with a description of performance standards to meet.

If performance standards are not met, corrective actions will be outlined. The Plan will include reporting requirements, including annual report submittals to NOAA and NMFS for review. If performance standards are met for a period of time, the plan will provide for appropriately scaling down monitoring and intervals over time.

- **MM BIO-10** Aquaculture Gear Monitoring and Escapement Plan. Include in overall management plan an aquaculture gear monitoring and escapement plan. Any farm gear that has broken loose from the farm location shall be retrieved. The farm site shall be visited at minimum twice per month to examine the aquaculture gear for potential loss or non-compliant deployment, including inspections for fouling organisms. Any organisms that have a potential to cover the sea floor will be removed and disposed of at an identified upland facility. A Marine Debris Management Plan shall also be prepared that includes (a) a plan for permanently marking all lines, ropes, buoys, and other facility infrastructure and floating equipment with the name and contact information of the grower/producer; (b) a description of the extent and frequency of maintenance operations necessary to minimize the loss of materials and equipment to the marine environment resulting from breakages and structural failures; and (c) a description of the search and cleanup measures that would be implemented if loss of shellfish cultivation facility materials, equipment, and/or infrastructure occurs.
- **MM BIO-11 Decommissioning Plan**. A decommissioning plan for the timely removal of all shellfish, structures, anchoring devices, equipment, and materials associated with the shellfish cultivation facility and documentation of completion of removal activities will be a requirement of each permit or sub-permit. Financial assurances to guarantee implementation of the plan will be in place and reviewed periodically.
- **MM BIO-12** Lighting. All growing area operations shall be completed during daylight hours. No growing area operations will be conducted at night and no permanent artificial lighting of the shellfish cultivation facility shall occur, except for that associated with the use of navigational safety buoys required by the U.S. Coast Guard.
- **MM BIO-13 Predator Control.** Potential predator species will be identified. Specified humane methods of predator deterrence will be utilized, favoring non-lethal methods. No controls, other than non-lethal exclusion, shall be applied to species that are listed as threatened or endangered.
- **MM NAV-1** Update NOAA Charts. VPD to submit to the NOAA Office of Coast Survey: (a) the geographical coordinates of the facility boundaries obtained using a different geographic position unit or comparable navigational equipment; (b) as-built plans of the facility and associated buoys and anchors; (c) each grower/producer's point of contact and telephone number; and (d) any other information required by the NOAA Office of Coast Survey to accurately portray the location of the shellfish cultivation facility on navigational charts.
- **MM NAV-2** Notice to Mariners. No less than 15-days prior to the start of in-water activities associated with the installation phase of the project, VPD shall submit to (a) the U.S. Coast Guard (for publication in a Notice to Mariners); and (b) the harbormasters (for posting in their offices of public noticeboards), notices containing the anticipated start date of installation, the anticipated installation schedule, and the coordinates of the installation sites. During installation, VPD shall also make radio broadcast announcements to the local fishers' emergency radio frequency that provide the current installation location and a phone number that can be called for additional information.

### 5.3 Cumulative Effects

Section 7 (FESA) regulations require a federal agency taking an action to provide an analysis of cumulative effects when requesting initiation of formal consultation. Cumulative effects include the effects of future state, tribal, local, or private actions, not involving a federal action, that are reasonably certain to occur in or adjacent to the project site. Future federal actions that are unrelated to the Proposed Action are not considered in this analysis, because they require separate consultation pursuant to Section 7. Federal actions may include granting a permit for a project, authorizing funds for a project, or implementing a project. For the purposes of this BA, cumulative effects are defined as environmental change that results from the incremental effects of several projects that may be individually minor, but that become significant when considered collectively. There are no known actions (Federal, State or Tribal) slated to occur in or immediately adjacent to the project area.

### 5.4 Compensatory Mitigation

No impacts requiring compensatory mitigation will result from implementation of the Project Actions.

#### INTENTIONALLY LEFT BLANK

## 6.0 CONCLUSIONS

This BA forms the basis for the conclusions presented below regarding the effects of the Project Actions on thirteen species with a potential to occur in the action area. Based on a review of the current status of these species, the effects of the Project Actions, and recommended measures to avoid and minimize effects to listed species, the Project Actions may **affect**, **but are not likely to adversely affect** each of these species. Table 2 below summarizes the effects determination for the Project Actions.

| Federally Protected Species                               | No Effect | May Affect, But Is Not<br>Likely to Adversely Affect | Is Likely to Adversely<br>Affect |
|-----------------------------------------------------------|-----------|------------------------------------------------------|----------------------------------|
| Balarnoptera acutorostrata<br>Common Minke Whale          |           | ~                                                    |                                  |
| Balaenoptera physalus physalus<br>Fin Whale               |           | ✓                                                    |                                  |
| <i>Caretta caretta</i><br>Loggerhead Sea Turtle           |           | ✓                                                    |                                  |
| <i>Chelonia mydas</i><br>Green Sea Turtle                 |           | ~                                                    |                                  |
| Delphinus capensis capensis<br>Long-beaked Common Dolphin |           | ~                                                    |                                  |
| Delphinus delphis delphis<br>Short-beaked Common Dolphin  |           | ~                                                    |                                  |
| Eschrichtius robustus<br>Gray Whale                       |           | ~                                                    |                                  |
| Lagenorhynchus obliquidens<br>Pacific White-sided Dolphin |           | ~                                                    |                                  |
| <i>Lepidochelys olivacea</i><br>Olive Ridley Sea Turtle   |           | ~                                                    |                                  |
| <i>Megaptera novaeangliae</i><br>Humpback Whale           |           | ✓                                                    |                                  |
| <i>Phoca vitulina</i><br>Pacific Harbor Seal              |           | ~                                                    |                                  |
| <i>Tursiops truncatus</i><br>Common Bottlenose Dolphin    |           | ~                                                    |                                  |
| Zalophus californianus<br>California Sea Lion             |           | ✓                                                    |                                  |

Table 2 Summary of Effects Determinations

As noted in the Nationwide Permit (NWP) 48 Decision Document (USACE 2017) recently approved by the Corps, which considered shellfish aquaculture uses nationwide, "Compared to the disturbances and degradation caused by

coastal development, pollution, and other human activities in coastal areas, commercial shellfish aquaculture activities present relatively mild disturbances to estuarine and marine ecosystems." The Decision Document concludes that impacts from most aquaculture projects would be *de minimis* on the surrounding environment. This determination is generally reaffirmed in the Corps' 2015 Programmatic Biological Assessment (USACE 2015) that considered new and existing shellfish aquaculture in Washington State, as well as the 2016 Programmatic Biological Opinions from NOAA's NMFS (NMFS 2012f) evaluating the same, which concluded that impacts would be minor upon imposition of identified conservation measures. Notably, the above analyses evaluated shellfish aquaculture at a larger scale than that proposed by the project. NWP 48 covers most shellfish aquaculture projects nationwide and the Programmatic Biological Evaluation evaluated environmental impacts associated with a total of 38,400 commercial aquaculture acres in Washington.

With implementation of the mitigation measures identified in this BA, including measures for navigational safety **MM BIO-14** and **MM BIO-15**, the Project Actions are not expected to directly or indirectly reduce, in any appreciable manner, the likelihood of survival or recovery of the species described above by reducing its reproduction, numbers, or distribution. The measures proposed to offset anticipated effects provide reasonable protections to avoid and minimize adverse effects of the Project Actions. Additionally, no designated critical habitat is present within the Action Area.

Overall, the Project Actions would not result in permanent impacts to ESA-listed or MMPA species, based on: (1) the nature and extent of the activities proposed to be implemented; (2) avoidance and minimization measures proposed in this BA; (3) the relative size of the Project Actions within the Santa Barbara Channel; and (4) the temporary nature of construction activities. See Dudek (2018) for an assessment of Essential Fish Habitat for this project.

## 7.0 REFERENCES

- Abramson, L., S. Polefka, S. Hastings, and K. Bor. 2010. Reducing the Threat of Ship Strikes on Large Cetaceans in the Santa Barbara Channel Region and Channel Islands National Marine Sanctuary: Recommendations and Case Studies.
   Marine Sanctuaries Conservation Series ONMS-11-01. U.S. Department of Commerce, National Oceanic and Atmospheric Administration. Office of National Marine Sanctuaries, Silver Spring, MD. 59pp.
- Allen, B.M. and R.P. Angliss. 2014. Alaska Marine Mammal Stock Assessments. NOAA-TM-AFSC-301. Accessed July 24, 2017. http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/alaska/2014/ak2014\_ssl-eastern.pdf.
- Barlow, J. and G.A. Cameron. 2003. Field Experiments Show That Acoustic Pingers Reduce Marine Mammal Bycatch in the California Drift Gill Net Fishery. *Marine Mammal Science*. 19(2):265-283.
- Baulch, S. and C. Perry. 2014. Evaluating the impacts of marine debris on cetaceans. *Marine Pollution Bulletin*. Accessed July 24, 2017. 80(1-2):210-221. https://doi.org/10.1016/j.marpolbul.2013.12.050
- Baumann-Pickering, S., T.M. Yack, J. Barlow, S.M. Wiggins, and J.A. Hildebrand. Baird's beaked whale echolocation signals. *Journal of the Acoustical Society of America* 133:4321-4331.
- Becker, E.A., Forney, K.A., Thayre, B.J., Debich, A.J., Campbell, G.S., Whitaker, K, Douglas, A.B., Gilles, A., Hoopes, R., and J.A. Hildebrand. 2017. Frontiers in Marine Science. 4(121): 1-14.
- Benjamins, S., Harnois, V., Smith, H.C.M., Johanning, L., Greenhill, L., Carter, C., and B. Wilson. 2014. Understanding the potential for marine megafauna entanglement risk from renewable marine energy developments. Scottish Natural Heritage Commissioned Report No. 791.
- Bennington-Castro, J. 2016. The Cost of Saving Sea Turtles from Gillnets. NOAA Fisheries. Pacific Islands Regional Office. Accessed July 24, 2017. http://www.fpir.noaa.gov/stories/04262016\_the\_cost\_of\_saving\_sea\_turtles\_from\_gillnets.html
- Berman-Kowalewski, M., F.M.D. Gulland, S. Wilkin, J. Calambokidis, B. Mate, J. Cordado, D. Rotstein, J. St. Leger, P. Collins, K. Fahy, and S. Dover. 2010. Association between blue whale (*Balaenoptera musculus*) mortality and ship strikes along the California coast. *Aquatic Mammals* 36: 59–66.
- Bullard, S.G., Lambert, G., Carman, M.R., Bymes, J., Whitlatch, R.B., Ruiz, G., Miller, R.J., Harris, L., Valentine, P.C.,
  Collie, J.S., Pederson, J., McNaught, D.C., Cohen, A.N., Asch, R.G., Dijkstra, J, and K. Heinonen. The colonial ascidian *Didemnum sp.* A: Current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America. Journal of Experimental Marine Biology and Ecology 342: 99-108.
  Accessed July 12, 2018. http://byrneslab.net/pdfs/Bullard\_et\_al\_2007\_JEMBE.pdf.

- Calambokidis, J., Steiger, G.H., Curtice, C., Harrison, J., Ferguson, M.C., Becker, E., DeAngelis, M., and S.M. Van Parijs. 2015. Biologically important Areas for Selected Cetaceans Within U.S Waters- West Coast Region. Aquatic Mammals. 41(1): 39-53
- California Bird Records Committee (CBRC). 2018. California Bird Records Committee Database. Accessed March 6, 2018. http://californiabirds.org/database\_query.asp.
- California Department of Fish and Wildlife (CDFW). 2009. Marine Mammal Haulouts and Rookeries (Map). Version 2.0. Printing date 4/13/2009. Map 3.2-1h. Accessed February 13, 2018. https://www.dfg.ca.gov/marine/pdfs/rpsc/map3\_2-1h-i.pdf.
- CDFW. 2011. Kelp Canopy Map Data-2011-California Coast. California Department of Fish and Wildlife, Marine Region. State of California Geoportal. Accessed April 15, 2018. https://map.dfg.ca.gov/arcgis/rest/services /Project\_Marine/Marine\_Kelp/MapServer.
- CDFW. 2018. California Natural Diversity Database (CNDDB). RareFind Version 5.2.14 (Commercial Subscription). Sacramento, California: CDFW, Biogeographic Database Branch. Accessed February 12, 2018. http://www.dfg.ca.gov/biogeodata/cnddb/mapsanddata.asp.
- California Fish and Game Commission (CFGC). 2018. State of California, California Natural Resources Agency, California Fish and Game Commission, Mitigated Negative Declaration for Santa Barbara Mariculture Company Continued Shellfish Aquaculture Operations on State Water Bottom Lease Offshore Santa Barbara, California. 143 pp.
- Campbell, G.S., Thomas, L., Whitaker, K., Douglas, A.B., Calambokidis, J., and J.A. Hildebrand. 2014. Inter-annual and seasonal trends in cetacean distribution, density and abundance off southern California. Deep-Sea Research Part II: Topical Studies in Oceanography. 112: 143-157.
- Carwardine, M., Fordyce, R.E., Gill, P., and E. Hoyt. 1998. Whales, Dolphins, and Porpoises. Fog City Press, San Francisco, California.
- Cascadia. 2011. Large Cetacean Analysis for the Santa Barbara Channel Region. Prepared by National Oceanic and Atmospheric Administration's Channel Islands National Marine Sanctuary Staff and Cascadia Research Collective Staff. PARS Cetacean Analysis Attachment 1. Accessed July 24, 2018. https://nmschannelislands.blob.core.windows.net/channelislands-prod/media/archive/management/ resource/pdf/pars5\_19\_11.pdf
- Clement, D. 2013. Effects of Marine Mammals. Chapter 4 in: Ministry for Primary Industries. Literature review of ecological effects of aquaculture. Report prepared by Cawthron Institute, Nelson, New Zealand.

Cornell Lab of Ornithology (CLO). 2018. eBird. Accessed February 12, 2018. https://ebird.org/home.

- Collins, P.W. 2011. Channel Islands Bird Checklist. U.S. Department of the Interior, National Park Service. November 4.
- Condor Express. 2018. Whale Watch Report. February 2018. https://condorexpress.com/captains-blog/.
- Dawson, S., Northridge, S. P., Waples, D., & Read, A. 2013. To ping or not to ping: the use of active acoustic devices in mitigating interactions between small cetaceans and gillnet fisheries. *Endangered Species Research* (19) 201-221.
- Douglas, A.B., Calambokidis, J., Munger, L.M., Soldevilla, M.S., Ferguson, M.C., Havron, A.M., Cmacho, D.L., Campbell, G.S., and J.A. Hildebrand. 2014. Seasonal distribution and abundance of cetaceans off Southern California estimated from CalCOFI cruise data from 2004 to 2008. Fish. Bull. 112: 197-220.
- Dudek. 2017a. Draft Initial Study Checklist for the Ventura Shellfish Enterprise Project. Prepared by Dudek. Prepared for Ventura Port District. September.
- Dudek. 2017b. Draft Ventura Shellfish Enterprise Environmental Impact Report. Prepared by Dudek. Prepared for Ventura Port District. May.
- Dudek. 2017c. Ventura Shellfish Enterprise: Strategic Permitting Initiative to Substantially Increase Shellfish Farming in Southern California. 2017 NOAA Sea Grant Aquaculture Extension and Technology Transfer. Task 1 Deliverable: Strategic Permitting Plan. Prepared by Dudek. May 26.
- Dudek. 2018. *In Preparation*. Essential Fish Habitat Assessment Report for the Ventura Shellfish Enterprise. Prepared by Dudek. Prepared for Ventura Port District.
- Environmental Sensitivity Index (ESI). 2010. Environmental Sensitivity Index Map. Biological Resources. Southern California: Ventura. ESI map 9 and 10. National Oceanic and Atmospheric Administration. National Ocean Service. Office of Response and Restoration. Emergency Response Division. Accessed July 20, 2018. https://response.restoration.noaa.gov/maps-and-spatial-data/environmental-sensitivity-index-esi-maps.html
- Fleming, A.H., C.T. Clark, J. Calambokidis, and J Barlow. 2016. Humpback Whale Diets Respond to Variance in Ocean Climate and Ecosystem Conditions in the California Current. Global Change *Biolog.y* 22: 1214-1224. doi: 10.1111/gcb.13171.
- Garrett, K. and J. Dunn. 1981. Birds of southern California: status and distribution. Los Angeles, CA: Los Angeles Audubon Society.
- Gentry R.R., S.E. Lester, C.V. Kappel, C. White, T.W. Bell, J. Stevens, and S.D. Gaines. 2017. "Offshore Aquaculture: Spatial Planning Principles for Sustainable Development." *Ecology and Evolution*. 7:733–743. doi: 10.1002/ece3.2637.
- Gray Whales Count. 2018. About Gray Whales Count. February 10, 2018. http://www.graywhalescount.org/ GWC/The\_Count/The\_Count.html

- R. Guza and W. O'Reilly. Wave Prediction in the Santa Barbara Channel. MMS OCS Study 2001-055. Coastal Research Center, Marine Science Institute, University of California, Santa Barbara, California. MMS Cooperative Agreement Number 14-35-0001-30758. 8 pages.
- Henrique de Carvalho, R., P.D. Lacerda, S.D. Mendes, B.C. Barbosa, M. Paschoalini, F. Prezoto, and B.M de Sousa. 2015. Marine debris ingestion by sea turtles (*Testudines*) on the Brazilian coast: an underestimated threat? *Marine Pollution Bulletin*. 101(2):746-749. https://doi.org/10.1016/j.marpolbul.2015.10.002
- Jefferson, T.A., M.A. Webber, MA, and R.L. Pitman. 2008. Marine Mammals of the World: A Comprehensive Guide to Their Identification. Second Edition. Academic Press. Elsevier. San Diego, California.
- Keeley, N., Forrest, B.M., Hopkins, G.A., Gillespie, P.A., Knight, B.R., Webb, S.C., Clement, D., and J. Gardner. 2009. Review of the ecological effects of farming shellfish and other non-finfish species in New Zealand. Cawthron Report 1476. Prepared for New Zealand's Ministry of Fisheries.
- Kemper, C.M., Pemberton, D., Cawthorn, M, Heinrich, S., Mann, J., Wursig, B., Shaughnessy, P. and R. Gales. 2003. Aquaculture and Marine Mammals: Co-existence or Conflict? Research Gate. 208-225 pp.
- Kenyon, K.W. 1971. Status of Marine Mammals in the Eastern North Pacific Ocean. Prepared for the Department of the Interior, 102 Statement Task Force B of the Task Force on Alaskan Oil Development. July 29.
- Kot, B. W., Sears, R., Anis, A., Nowacek, D. P., Gedamke, J., & Marshall, C. D. 2012. Behavioral responses of minke whales (*Balaenoptera acutorostrata*) to experimental fishing gear in a coastal environment. *Journal of Experimental Marine Biology and Ecology*. 413: 13-20.
- Laist, D.W., Knowlton, A.R., Mead, J.G., Collet, A.S. and Podesta, M. 2001. Collisions between ships and whales. *Marine Mammal Science* 17(1): 35-75.
- Leet, W.S., C.M. Dewees, R. Klingbeil, and E.J. Larson, eds. 2001. California's Living Marine Resources: A Status Report. The Resources Agency, California Department of Fish and Game. 592 pp.
- Lehman, P.E. 2018. *The Birds of Santa Barbara County, California*. Revised edition. Accessed March 12, 2018. https://sites.google.com/site/lehmanbosbc/
- Lindell, S. 2014. Santoro Fishing Corporation mussel farm biological assessment. Supplemental information for permit application (NAE-2013-1584 Santoro) submitted to the U.S. Army Corps of Engineers New England District.
- Lloyd, B.D. 2003. Potential effects of mussel farming on New Zealand's marine mammals and seabirds: a discussion paper. Department of Conservation, Wellington, New Zealand. Accessed July 10, 2018. https://www.doc.govt.nz/Documents/science-and-technical/Musselfarms01.pdf

- Lowry, M.S., and J.V. Carretta. 1999. Market Squid (*Loligo opalescens*) in the Diet of California Sea Lions (*Zalophus californianus*) in Southern California (1981-1995). CalCOFI Report 40: 196-207.
- Lowry, M.S., R. Condit, B. Hatfield, S.G. Allen, R. Berger. P.A. Morris, B.J. Le Boeuf, and J. Reiter. 2014. "Abundance, Distribution, and Population Growth of the Northern Elephant Seal (*Mirounga angustirostris*) in the United States from 1991 to 2010." *Aquatic Mammals* 40: 20-31.
- Marine Mammal Commission (MMC). 2007. Marine Mammals and Noise. A Sound Approach to Research and Management. A Report to Congress from the Marine Mammal Commission. February 10, 2018. https://www.mmc.gov/wp-content/uploads/fullsoundreport.pdf.
- MMC. 2018. North Pacific Right Whale. Accessed February 10, 2018. https://www.mmc.gov/priority-topics/species-of-concern/north-pacific-right-whale/.
- Markowitz, T.M., Harlin, A.D., Wursig B. and C.J. McFadden. 2004. Dusky dolphin foraging habitat: overlap with aquaculture in New Zeal-and. Aquatic Conservation: Marine and Fresh-water Ecosystems 14: 133149.
- Miller, M.H., J. Carlson, P. Cooper, D. Kobayashi, M. Nammack, and J. Wilson. 2013. Status Review Report: Scalloped Hammerhead Shark (*Sphyrna lewini*). National Marine Fisheries Service. National Oceanic and Atmospheric Administration. 125 pp.
- Moore, K., and D. Wieting. 1999. Marine Aquaculture, Marine Mammals, and Marine Turtles Interaction Workshop 12-13 January 1999, Silver Spring, Maryland. U.S. Dep. Commer., NOAA Tech. Memo NMFS-OPR-16, 60 pp.
- Nelson, S. K.. 1997. Marbled Murrelet (*Brachyramphus marmoratus*), version 2.0. In The Birds of North America (A. F. Poole and F. B. Gill, Editors). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/ 10.2173/bna.276.
- National Data Buoy Center. 2017. Station 46217 Anacapa Passage, CA (111). Center of Excellence in Marine Technology, NOAA. Accessed April 15, 2018. http://www.ndbc.noaa.gov/station\_history.php?station=46217.
- National Marine Fisheries Service (NMFS). 2007a. Appendix B. Current Seismic Surveys Mitigation Measures in the GOM. United States Department of the Interior, Minerals Management Service (MMS), Gulf of Mexico (GOM) OCS Region. OMB Control Number: 1010-0151. Accessed February 25, 2018. http://www.nmfs.noaa.gov/pr/pdfs/permits/boemre\_appendixb.pdf.
- NMFS. 2007b. Bocaccio (*Sebastes paucispinus*). Species of Concern. NOAA National Marine Fisheries Service. Accessed February 20, 2018. http://www.nmfs.noaa.gov/pr/pdfs/species/bocaccio\_highlights.pdf.
- NMFS. 2007c. Pink Abalone (*Haliotic corrugata*). Species of Concern. NOAA National Marine Fisheries Service. Accessed February 20, 2018. http://www.westcoast.fisheries.noaa.gov/publications/SOC /pinkabalone\_detailed.pdf.

- NMFS. 2008. Steelhead Trout (Onchorhynchus mykiss). Oregon Coast ESU. Species of Concern. NOAA National Marine Fisheries Service. Accessed February 20, 2018. http://www.westcoast.fisheries.noaa.gov/publications/SOC/steelhead\_detailed.pdf.
- NMFS. 2009a. Pacific Hake (Merluccius productus). Georgia Basin DPS. Species of Concern. NOAA National Marine Fisheries Service. Accessed February 20, 2018. http://www.nmfs.noaa.gov/pr/pdfs/species/pacifichake\_detailed.pdf.
- NMFS. 2009b. Cowcod (*Sebastes levis*). Species of Concern. NOAA National Marine Fisheries Service. Accessed February 20, 2018. http://www.nmfs.noaa.gov/pr/pdfs/species/cowcod\_detailed.pdf.
- NMFS. 2009c. Status Review Report for Black Abalone (*Haliotis cracherodii*). NMFS Southwest Region. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. Accessed February 20, 2018. http://www.westcoast.fisheries.noaa.gov/publications/status\_reviews/ other\_species/blackabalone\_status\_review\_2009.pdf.
- NMFS. 2009d. Green Abalone (*Haliotis fulgens*). Species of Concern. NOAA National Marine Fisheries Service. Accessed February 20, 2018. http://www.westcoast.fisheries.noaa.gov/publications/ SOC/greenabalone\_detailed.pdf.
- NMFS. 2009e. Template for Biological Assessments & Biological Evaluations. Provided by NMFS Pacific Island Regional Office, Protected Resources Division. Revised January 2009. Accessed February 15, 2018. http://www.fpir.noaa.gov/Library/PRD/ESA%20Consultation/Final%20Action%20Agency%20Consultati on%20Package%20Files%20for%20website%201-12-09/Template%20for%20BA-BE%20-%201-12-09.pdf.
- NMFS. 2010. Chinook Salmon (Oncorhynchus tshanytscha). Central Valley Fall, Late-Fall Run ESU. Species of Concern. NOAA National Marine Fisheries Service. Accessed February 20, 2018: http://www.nmfs.noaa.gov/ pr/pdfs/species/chinooksalmon\_highlights.pdf.
- NMFS. 2011a. Common Bottlenose Dolphin. California/Oregon/Washington Offshore Stock. NOAA National Marine Fisheries Service. Accessed August 27, 2018. https://www.fisheries.noaa.gov/ webdam/download/70099129.
- NMFS. 2011b. Pacific Cod (*Gadus microcephalus*). Salish Sea Population. Species of Concern. NOAA National Marine Fisheries Service. Accessed February 20, 2018. http://www.nmfs.noaa.gov/pr/pdfs/species/ pacificcod\_detailed.pdf.
- NMFS 2011c. Critical Habitat for the Southern Distinct Population Segment of Eulachon. Final Biological Report. Southwest Region Protected Resources Division..
- NMFS. 2011d. Final Designation of Critical Habitat for Black Abalone. Final Biological Report. Southwest Region Protected Resources Division.

- NMFS. 2014. Status Review Report for Pinto Abalone (*Haliotis kamtschatkana*). U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. Accessed February 22, 2018. http://www.westcoast.fisheries.noaa.gov/publications/protected\_species/other/ abalone\_species/ pintoabsr\_report\_final\_dec\_2014.pdf.
- NMFS. 2015a. Southern Distinct Population Segment of the North American Green Sturgeon (*Acipenser medirostris*). 5-Year Review: Summary and Evaluation. National Marine Fisheries Service. West Coast Region. Accessed February 22, 2018. http://www.nmfs.noaa.gov/pr/listing/southern\_dps\_green\_sturgeon\_5year\_review\_2015\_2\_.pdf.
- NMFS. 2015b. ESA Recovery Plan for Snake River Sockeye Salmnon (Onchorynchus nerka). National Marine Fisheries Service, West Coast Region, Portland, Oregon. Accessed February 20, 2018: http://www.nmfs.noaa.gov/ pr/recovery/plans/snake\_river\_sockeye\_recovery\_plan\_june\_2015.pdf.
- NMFS. 2016a. Recovery Plan for Oregon Coast Coho Salmon Evolutionarily Significant Unit. National Marine Fisheries Service, West Coast Region, Portland, Oregon. Accessed February 20, 2018: http://www.nmfs.noaa.gov/pr/recovery/plans/final\_oc\_coho\_recovery\_plandec\_20.pdf.
- NMFS. 2016c. Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing: Underwater Acoustic Thresholds for Onset of Permanent and Temporary Threshold Shifts. U.S. Dept. of Commerce, NOAA. NOAA Technical Memorandum NMFS-OPR-55, 178 p.
- NMFS. 2016b. 5-Year Review: Summary and Evaluation of Southern California Coast Steelhead Distinct Population Segment. National Marine Fisheries Service. West Coast Region. California Coastal Office. Long Beach, California.
- NMFS. 2016c. Minke Whale (Balaenoptera acutorostrata scammoni): California/Oregon/Washington Stock. Marine Mammal Stock Assessment Report. Revised August 16, 2016. Accessed February 15, 2018. http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/pacific/2016/po2016\_miw-cow.pdf.
- NMFS. 2017a. Pygmy Sperm Whale (Kogia breviceps): California/Oregon/Washington Stock. Marine Mammal Stock Assessment Report. Revised February 10, 2017. Accessed February 15, 2018. http://www.nmfs.noaa.gov/pr/sars/species.htm.
- NMFS. 2017b. Dwarf Sperm Whale (Kogia sima): California/Oregon/Washington Stock. Marine Mammal Stock Assessment Report. Revised February 10, 2017. Accessed February 15, 2018. http://www.nmfs.noaa.gov/pr/sars/species.htm.
- NMFS. 2017c. Striped Dolphin (*Stenella coeruleoalba*): California/Oregon/Washington Stock. Marine Mammal Stock Assessment Report. Revised February 9, 2017. Accessed February 15, 2018. http://www.nmfs.noaa.gov/pr/sars/species.htm.

- NMFS. 2017d. Chum Salmon (*Onchorhynchus keta*). NOAA Fisheries. National Oceanic and Atmospheric Administration. Accessed February 15, 2018: http://www.nmfs.noaa.gov/pr/species/fish/chum-salmon.html.
- NMFS. 2017e. Rockfish Recovery Plan: Puget Sound / Georgia Basin yelloweye rockfish (*Sebastes ruberrimus*) and bocaccio (*Sebastes paucispinis*). National Marine Fisheries Service. Seattle, WA.
- NMFS. 2017f. National Marine Fisheries Service Endangered Species Consultation Biological Opinion on U.S. Army Corps of Engineers' Nationwide Permit Program. February 2012. U.S. Department of Commerce. National Oceanic and Atmospheric Administration. National Marine Fisheries Service. Silver Spring, Maryland. Accessed February 20, 2018. http://www.nmfs.noaa.gov/pr/pdfs/consultations/ biop\_acoe\_permits2012.pdf.
- NMFS. 2017g. Common Bottlenose Dolphin (*Tursiops truncatus*): California Coastal Stock. Marine Mammal Stock Assessment Report. Revised February 9, 2017. Accessed February 20, 2018. http://www.nmfs.noaa.gov/ pr/sars/pdf/stocks/pacific/2016/po2016\_cbd-cc.pdf.
- NMFS. 2018a. Find a Species Website. NOAA Fisheries. National Oceanic and Atmospheric Administration. Accessed February 20, 2018. https://www.fisheries.noaa.gov/find-species.
- NMFS. 2018b. Species of Concern Website. NOAA Fisheries, West Coast Region, National Oceanic and Atmospheric Administration. Accessed February 20, 2018. http://www.westcoast.fisheries.noaa.gov/ protected\_species/species\_of\_concern/species\_of\_concern.html
- NMFS. 2018c. Protected Species: Marine Mammals. NOAA Fisheries, West Coast Region, National Oceanic and Atmospheric Administration. Accessed February 20, 2018. http://www.westcoast.fisheries.noaa.gov/ protected\_species/marine\_mammals/marine\_mammals.html
- NMFS. 2018d. Protected Species: Sea Turtles. NOAA Fisheries, West Coast Region, National Oceanic and Atmospheric Administration. Accessed February 20, 2018. ttp://www.westcoast.fisheries.noaa.gov/protected\_species/sea\_turtles/marine\_turtles.html.
- NMFS. 2018e. 2018 Revisions to: Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0): Underwater Thresholds for Onset of Permanent and Temporary Threshold Shifts. U.S. Dept. of Commer., NOAA. NOAA Technical Memorandum NMFS-OPR-59, 167 p.
- NMFS and USFWS (US Fish and Wildlife Service). 1998a. Recovery Plan for the U.S. Pacific Populations of the Loggerhead Turtle (*Caretta caretta*). National Marine Fisheries Service, Silver Spring, MD.
- NMFS and USFWS. 1998b. Recovery Plan for U.S. Pacific Populations of the East Pacific Green Turtle (*Chelonia mydas*). National Marine Fisheries Service, Silver Spring, MD.

- NMFS and USFWS. 1998c. Recovery Plan for U.S. Pacific Populations of the Leatherback Turtle (*Dermochelys coriacea*). National Marine Fisheries Service, Silver Spring, MD.
- NMFS and USFWS. 1998d. Recovery Plan for U.S. Pacific Populations of the Hawksbill Turtle (*Eretmochelys imbricata*). National Marine Fisheries Service, Silver Spring, MD.
- NMFS and USFWS. 1998e. Recovery Plan for U.S. Pacific Populations of the Olive Ridley Turtle (*Lepidochelys olivacea*). National Marine Fisheries Service, Silver Spring, MD.
- NMFS and USFWS. 2007. Loggerhead Sea Turtle (*Caretta caretta*) 5-Year Review: Summary and Evaluation. National Marine Fisheries Service, Silver Spring, MD. August.
- National Oceanic and Atmospheric Administration (NOAA). 2008. "Gear Modification Techniques for Complying with the Atlantic Large Whale Take Reduction Plan (ALWTRP)." Effective April 5, 2008. https://www.greateratlantic.fisheries.noaa.gov/nero/hotnews/whalesfr/Gear%20Modification%20Techniqu es%20for%20Complying%20with%20the%20ALWTRP\_vs8.pdf.
- NOAA. 2011. "National Oceanic and Atmospheric Administration Marine Aquaculture Policy." NOAA Fisheries. Accessed April 15, 2019. http://www.nmfs.noaa.gov/aquaculture/docs/policy/noaa\_aquaculture\_policy\_2011.pdf.
- NOAA. 2009. Designation of Critical Habitat for the threatened Southern Distinct Population Segment of North American Green Sturgeon. Final Biological Report. National Oceanic and Atmospheric Administration. U.S. Department of Commerce. Accessed July 20, 2018. http://www.westcoast.fisheries.noaa.gov/publications/ protected\_species/other/green\_sturgeon/g\_s\_critical\_habitat/gschd\_finalbiologicalrpt.pdf.
- NOAA. 2011. "National Oceanic and Atmospheric Administration Marine Aquaculture Policy." NOAA Fisheries. Accessed July 20, 2018. https://www.fisheries.noaa.gov/topic/aquaculture/regulation-policy.
- NOAA. 2012. Cetacean & Sound Mapping. Metadata. National Oceanic and Atmospheric Administration. U.S. Department of Commerce. Accessed July 20, 2018. https://cetsound.noaa.gov/metadata/swfsc\_stratified\_graywhale\_2012.html.
- NOAA. 2013a. "National Shellfish Initiative." Fact sheet. NOAA Fisheries. Accessed March 15, 2018. http://www.nmfs.noaa.gov/aquaculture/docs/policy/natl\_shellfish\_init\_factsheet\_ summer\_2013.pdf.
- NOAA. 2013b. Gray Whale Stranding and Marine Debris. Grey Whale Outreach Activity Informational Flyer. Accessed March 15, 2018. http://www.westcoast.fisheries.noaa.gov/publications/education/ graywhalestrandingmarinedebrisactivitypacket.pdf

- NOAA. 2014. U.S. west coast large whale entanglement information sharing workshop report. The National Marine Fisheries Service. West Coast Regional Office. National Oceanic and Atmospheric Administration. U.S. Department of Commerce. Accessed July 20, 2018. http://www.opc.ca.gov/webmaster/ftp/project\_pages/ dctf/ec-meeting-10/finalentanglementwsreport.pdf.
- NOAA. 2017a. United States West Coast, California. Port Hueneme to Santa Barbara. Mercator Projection. Nautical Chart. Washington, DC. U.S. Department of Commerce, NOAA, National Ocean Science, Coast Survey. 30th Ed. June 2013. Last correction 7/3/2017.
- NOAA. 2017b. Reducing Ship Strike Risk to Whales. Resource Protection. National Marine Sanctuaries. National Oceanic and Atmospheric Administration. Accessed February 20, 2018. https://sanctuaries.noaa.gov/ protect/shipstrike/welcome.html.
- NOAA. 2017c. 2016 West Coast Entanglement Summary. Overview of Entanglement Data. NOAA Fisheries. West Coast Region. National Oceanic and Atmospheric Administration. U.S. Department of Commerce. Accessed July 20, 2018. http://www.westcoast.fisheries.noaa.gov/mediacenter/WCR%202016%20Whale%2 0Entanglements\_3-26-17\_Final.pdf.
- NOAA. 2018a. California Species List Tools. NOAA Fisheries West Coast Region. Accessed February 20, 2018. http://www.westcoast.fisheries.noaa.gov/maps\_data/california\_species\_list\_tools.html
- NOAA. 2018b. Endangered Species Act, Section 6 Program Website. Accessed February 20, 2018. http://www.nmfs.noaa.gov/pr/conservation/states/california.htm
- NOAA. 2018c. Critical Habitat Maps. Accessed February 20, 2018. http://www.nmfs.noaa.gov/pr/species/criticalhabitat.htm
- NOAA. 2018d. Water Temperature Table of the Southern Pacific Coast. NOAA National Centers for Environmental Information. Last update on March 7, 2018. Accessed February 20, 2018. https://www.nodc.noaa.gov/ dsdt/cwtg/all\_meanT.html
- NOAA. 2018e. Cetacean and Sound Mapping. Biologically Important Areas. National Oceanic and Atmospheric Administration. Accessed May 29, 2018. <u>https://cetsound.noaa.gov/biologically-important-area-map</u>
- NOAA. 2018f. Olive Ridley. Protected Resources Division, Sea Turtles. Pacific Islands Regional Office. NOAA Fisheries. National Oceanic and Atmospheric Administration. Accessed September 19, 2018. https://www.fpir.noaa.gov/PRD/prd\_olive\_ridley.html
- National Ocean Council. 2013. National Ocean Policy Implementation Plan. Accessed April 15, 2019. https://obamawhitehouse.archives.gov/sites/default/files/national\_ocean\_policy\_ implementation\_plan.pdf.

- National Park Service (NPS). 2013. Viewing Elephant Seals. Point Reyes National Seashore, California. National Park Service. Accessed February 20, 2018. https://www.nps.gov/pore/planyourvisit/wildlife\_viewing\_elephantseals.htm
- Okumus, I., Bascinar, N., and M. Ozkan. 2002. The effects of phytoplankton concentration, size of mussel and water temperature on feed consumption and filtration rate of the Mediterranean Mussel (*Mytilus galloprovincialis Lmk*). Turkish Journal of Zoology. 26: 167-172.
- OSPAR (OSPAR Commission). 2009. Assessment of the environmental impact of underwater noise. Biodiversity Series. Prepared by F. Thomsen and the Intersessional correspondence group on underwater noise. OSPAR Commission. ISBN : 978-1-906840-76-1. Publication Number: 436/2009.
- Pearson, T., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review 16: 229–311.
- Point Blue Conservation Science (PBCS). 2018. Whale Alert Map. Point Blue Conservation Science. Accessed February 15, 2018. https://geo.pointblue.org/whale-map/index.php
- Price, C.S., E.Keane, D. Morin, C. Vaccaro, D. Bean, and J.A. Morris, Jr. 2016. Protected Species & Longline Mussel Aquaculture Interactions. NOAA Technical Memorandum NOS NCCOS 211. 85 pp.
- Ritter, F. 2012. Collisions of sailing vessels with cetaceans worldwide: First insights into a seemingly growing problem. Journal of Cetacean Research and Management 12(1): 119-127.
- Santa Barbara Channelkeeper. 2017. About the Santa Barbara Channel. Accessed April 14, 2017 from the ChannelKeeper website: http://www.sbck.org/about-the-santa-barbara-channel/.
- Silber, G.K., Slutsky, J. and Bettridge, S. 2010. Hydrodynamics of a ship/whale collision. Journal of Experimental Marine Biology and Ecology 391: 10-19.
- Stadmark J., and D.J. Conley. 2011. Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles. Mar Pollut Bull 62:1385–1388.
- Southern California Coastal Water Research Project (SCCWRP). 2016. Bight '13 Regional Monitoring. Regional Monitoring. SCCWRP: A Public Agency for Environmental Research. Accessed August 27, 2018. http://sccwrp.org/ResearchAreas/RegionalMonitoring/Bight13RegionalMonitoring.aspx.
- Souchu, P, Vaquer, A., Collos, Y., Landrein, S., Deslous-Paoli, J., and B. Bibent. 2001. Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon. Inter-Research. Marine Ecology Progress Series. 218: 141-152.

- The Orange County Register (OC Register). 2018. Rare Pilot Whale Surface off Dana Point. Written by Kelly Zhou. October 30, 2014 at 7:05am. Accessed February 20, 2018. https://www.ocregister.com/2014/10/30/rare-pilot-whales-surface-off-dana-point/.
- USACE (U.S. Army Corps of Engineers). 2015. Programmatic Biological Assessment. Shellfish Activities in Washington State Inland Marine Waters. U.S. Army Corps of Engineers Regulatory Program. U.S. Army Corps of Engineers, Seattle.
- USACE. 2017. Decision Document. Nationwide Permit 48. Sections 10 and 404. Accessed February 20, 2018. https://www.usace.army.mil/Missions/Civil-Works/Regulatory-Program-and-Permits/Nationwide-Permits/2017\_NWP\_FinalDD/.
- USFWS (U.S. Fish and Wildlife Service). 1985. Revised California Least Tern Recovery Plan. *Sterna antillarum brownii*. U.S. Fish and Wildlife Service, Portland, Oregon. 112. pp.
- USFWS. 1997. Recovery Plan for the Threatened Marbled Murrelet (*Brachyramphus marmoratus*) in Washington, Oregon, and California. Portland, Oregon. 203 pp.
- USFWS. 2005. Recovery Plan for the Tidewater Goby (Eucyclogobius newberryi). Region 1. Ecological Services.
- USFWS. 2006. California least tern (*Sternula antillarum browni*) 5-Year Review Summary and Evaluation. U.S. Fish and Wildlife Service, Carlsbad Fish and Wildlife Office, Carlsbad, California. September.
- USFWS. 2011. Santa Ana Sucker (Catostomus santaanae). 5-Year Review: Summary and Evaluation. Carlsbad Fish and Wildlife Office.
- USFWS. 2015. Southern Sea Otter (*Enhydra lutris nereis*) 5-Year Review: Summary and Evaluation. U.S. Fish and Wildlife Service, Ventura Fish and Wildlife Office, Ventura, California. September 15.
- USFWS. 2018a. Information for Planning and Consulting. Accessed February 20, 2018. https://ecos.fws.gov/ipac/.
- USFWS. 2018b. Environmental Conservation Online System (ECOS). Accessed February 20, 2018. https://ecos.fws.gov/ecp/.
- USFWS. 2018c. International Affairs CITES Informational Website. Oceanic Whitetip Shark (*Carcharbinus longimanus*). Accessed February 20, 2018. https://www.fws.gov/international/cites/cop16/oceanic-whitetip-shark.html.
- USFWS. 2018d. Short-tailed albatross. Oregon Fish and Wildlife Offices. U.S. Fish and Wildlife Service. Accessed February 20, 2018. https://www.fws.gov/oregonfwo/articles.cfm?id=149489452.

- Ventura County Star (VCS). 2017. Humpback Whale Gets Stuck in Ventura Harbor. Ventura County Star. February 15, 2018. http://www.vcstar.com/story/news/local/communities/ventura/2017/05/20/humpback-whale-stuck-ventura-harbor/101946876/.
- Weise, M.J., Costa, D.P., and R.M. Kudela. 2006. Movement and diving behavior of male California sea lion (*Zalophus californianus*) during anomalous oceanographic conditions of 2005 compared to those of 2004. Geophysical Research Letters. 33: L22S10. Accessed July 20, 2018. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2006GL027113.
- Whale and Dolphin Conservation (WDC). 2018. Blainville's Beaked Whale (*Mesoplodon densirostris*). Accessed February 20, 2018. http://us.whales.org/species-guide/blainvilles-beaked-whale.
- Wilding T.A., and T.D. Nickell. 2013. Changes in Benthos Associated with Mussel (*Mytilus edulis L.*) Farms on the West-Coast of Scotland. PLoS ONE 8(7): e68313. doi:10.1371/journal.pone.0068313.
- Wilding, T.A. 2012. Changes in Sedimentary Redox Associated with Mussel (*Mytilus edulis L.*) Farms on the West-Coast of Scotland. PLoS ONE 7(9): e45159. doi:10.1371/journal.pone.0045159.
- Woods Hole Science Center. 2007. *Didemnum* sp. California Coast Locations. Marine Nuisance Species. Accessed July 20, 2018. https://woodshole.er.usgs.gov/project-pages/stellwagen/didemnum/images/pdf/page12.pdf.
- Yen, P.P.W., W.J. Sydeman, and K.D. Hyrenbach. 2004. "Marine birds and Cetacean Associations with Bathymetric Habitats and Shallow-Water Topographies: Implications for Trophic Transfer and Conservation." *Journal of Marine Systems*. 50: 79–99.

#### INTENTIONALLY LEFT BLANK

# APPENDIX A

**Essential Fish Habitat Assessment** 

## **ESSENTIAL FISH HABITAT ASSESSMENT** FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

PREPARED FOR:

## **VENTURA PORT DISTRICT**

1603 Anchors Way Ventura, California 93001 Contact: Brian Pendleton

PREPARED BY:

## DUDEK

621 Chapala Street Santa Barbara, California 93101 Contact: John H. Davis IV, Senior Coastal Ecologist jdavis@dudek.com .805. 252.7996

## SEPTEMBER 2018

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## TABLE OF CONTENTS

### SECTION

## PAGE

| 1.0 | INTRO                                                                                     | ристіо           | N                                                                                                 | . 1          |  |
|-----|-------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------|--------------|--|
|     | 1.1                                                                                       | Project Location |                                                                                                   |              |  |
| 2.0 | DESCF<br>2.1                                                                              | Project A        | OF PROJECT ACTIONS<br>Actions<br>Project Construction                                             | 5            |  |
|     |                                                                                           | 2.1.2            | Project Operation                                                                                 | 6            |  |
|     | 2.2                                                                                       | Project A        | Action Area                                                                                       | 23           |  |
| 3.0 | REGUL                                                                                     | ATORY            | SETTING                                                                                           | 29           |  |
|     | 3.1                                                                                       | Magnusc          | on-Stevens Fishery Conservation and Management Act                                                | 29           |  |
|     |                                                                                           | 3.1.1            | Habitat Areas of Particular Concern (HAPC)                                                        | 30           |  |
| 4.0 | MANA                                                                                      | 4.1.1 4.1.2 g    | HERIES AND HABITAT AREAS OF PARTICULAR CONCERN<br>Salmon<br>groundfish<br>Coastal Pelagic Species | . 33<br>. 33 |  |
|     |                                                                                           |                  | Highly Migratory Species                                                                          |              |  |
|     | 4.2                                                                                       |                  | Areas of Particular Concern                                                                       |              |  |
|     |                                                                                           | 4.2.1            | Seagrass                                                                                          | 47           |  |
|     |                                                                                           | 4.2.2            | Canopy Kelp                                                                                       | 48           |  |
|     |                                                                                           | 4.2.3            | Rocky Reefs                                                                                       | 49           |  |
|     |                                                                                           |                  | Estuaries                                                                                         |              |  |
|     |                                                                                           | 4.2.5            | Areas of interest                                                                                 | 50           |  |
| 5.0 | ANALYSIS OF THE POTENTIAL ADVERSE EFFECTS OF THE ACTION ON EFH AND<br>THE MANAGED SPECIES |                  |                                                                                                   |              |  |
|     | 5.2                                                                                       | Tempora          | ary Loss of Habitat and Increased Turbidity due to Anchor Installation                            | 53           |  |
|     | 5.3                                                                                       | Construc         | ction Noise                                                                                       | 54           |  |
|     | 5.4                                                                                       |                  | us Contaminants from Oil Spills                                                                   |              |  |
|     | 5.5                                                                                       |                  | Prey Resources due to Fouling Organisms                                                           |              |  |
|     | 5.6                                                                                       | Disturba         | nce to the Benthic Environment from Project Operations                                            | 55           |  |
| 6.0 | CONCL                                                                                     | USION            |                                                                                                   | 57           |  |
| 7.0 | REFER                                                                                     | RENCES           |                                                                                                   | 59           |  |

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### APPENDICES

- B Final California Commercial Landings for 2017
- C Commercial Fisheries Data for Blocks 0664 and 0665
- D Best Management Practices

### FIGURES

| 1  | Project Location                                            |    |
|----|-------------------------------------------------------------|----|
| 2  | Detailed Plan for Shellfish Longlines                       | 9  |
| 3a | Parcel Array Overview                                       | 11 |
| 3b | Backbone Details                                            |    |
| 4  | Simulated View of Parcel Array at the Surface 100 Acre Plot |    |
| 5  | Simulated View of Parcel Array at the Surface               |    |
| 6  | Simulated View of Parcel Array Underwater                   |    |
| 7  | Simulated View of Parcel Array Underwater with Anchor Line  |    |
| 8  | Ventura Shellfish Enterprise Action Area                    |    |
| 9  | NOAA Nautical Chart                                         |    |
| 10 | CDFW Trawl Blocks for Santa Barbara Channel                 |    |
| 11 | CDFW Trawl Blocks 0664 and 0665                             |    |
|    |                                                             |    |

## TABLES

| 1 | Groundfish EFH in the Action Area                              | 34 |
|---|----------------------------------------------------------------|----|
| 2 | California Halibut Regional and Trawl Block Landings in Pounds | 45 |
| 3 | Coastal Pelagic Species in the Action Area                     | 46 |
| 4 | Highly Migratory Species in the Action Area                    | 46 |

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## 1.0 INTRODUCTION

This Essential Fish Habitat (EFH) Assessment has been prepared for the Ventura Port District (VPD, project applicant) to evaluate the effects of the Ventura Shellfish Enterprise (VSE) Project (project) on species regulated under a Fisheries Management Plan (FMP), pursuant to the requirements of the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA). The project, supported in part through the NOAA 2015 Sea Grant Aquaculture Extension and Technology Transfer to California Sea Grant (NOAA Sea Grant Program), will establish a commercial offshore bivalve aquaculture operation. VPD is applying for a U.S. Army Corps of Engineers (Corps) authorization under Section 10 of the Rivers and Harbors Act. The Corps will act as the federal lead agency on the project. The MSFCMA requires consultation with the National Marine Fisheries Service (NMFS) on all actions or proposed actions that may adversely affect EFH. This EFH Assessment analyzes how the project would affect EFH for species regulated under a FMP and supports the National Environmental Policy Act environmental analysis. A Biological Assessment has also been prepared, which will determine whether any federally protected species or habitats are likely to be adversely affected by the project pursuant to Section 7 of the Endangered Species Act (ESA) and its implementing regulations (50 CFR § 402.01 et seq.) (Dudek 2018).

### 1.1 Project Location

The project will consist of twenty 100-acre plots (total of 2,000 acres) located in open federal waters of the Santa Barbara Channel (Channel) in the Southern California Bight (SCB), northwest of Ventura Harbor (Figure 1), with approximate depths ranging from between 13 - 19 fathoms (78 – 114 feet) mean lower low water (MLLW). The plots are 3.53 miles from the shore. The closest distance to the 3-mile nautical line is 2,900 feet from the plots, with an average closest distance of over 3,000 feet. The closest distance to the City of Ventura limit is 4.5 miles. Ventura harbor is 4.1 miles from the closest plot (8 miles in distance to the most distant plot). The lease sites are located on sandy bottom habitat outside of any rocky reef habitat, as evaluated in Gentry et al. 2017 and illustrated by NOAA United States West Coast nautical charts (NOAA 2017a).

The project site is characterized by a gradually sloping sandy/soft bottom. The SCB is located along the curved coastline of Southern California from Point Conception south to Cape Colnett in Baja California and includes the Channel Islands and the Pacific Ocean. The habitats and biological communities of the SCB are influenced by dynamic relationships among climate, ecology, and oceanography (e.g., currents) (Leet et al. 2001). The SCB provides essential nutrients and marine habitats for a range of species and organisms. Submarine canyons, ridges, basins, and seamounts provide unique deep water habitats within the region. The basins provide habitats for a significant number of mid-water and benthic deep-sea fish near the Channel Islands, whereas nearshore areas provide habitats for kelp and seagrass communities. Nearshore geology includes a variety of bottom types, including soft sediments and rocky bottoms. Hard-substrates environments, such as the rocky intertidal, shallow subtidal reefs, and deep rock reefs, are a key component

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

of the high productivity found near the project area. Due to linkages among ecosystems, the impacts of ecosystem dynamics contained within the project area extend to interactions with species in the greater Eastern Pacific Ocean. The Santa Barbara Channel is located within the SCB and extends from Point Conception to Point Mugu.

The waters of the Santa Barbara Channel form one of the most biologically productive ecosystems found on Earth. Unlike most of coastal California, which faces due west and the open ocean, the coastal waters of the Santa Barbara Channel are on a south-facing coast and caught between two land masses, the South Coast and the Northern Channel Islands. The project site is 9.1 miles from the Channel Islands National Marine Sanctuary, a Federal Marine Protected Area, and 13.5 miles from the Channel Islands National Park boundary. The western section of the Santa Barbara Channel is a meeting place of the cool Northern California Current and warm Southern California Countercurrent. This type of ecosystem is called a "transition zone." Transition zones are known to promote large concentrations of both biomass and species diversity, as they are the confluence between two or more ecologically distinct systems. In addition, upwelling provides unusually high concentrations of nutrients, especially macrozooplankton, which are one of the primary driving forces behind the Santa Barbara Channel's biological productivity and diversity. Wind patterns around Point Conception and in the Santa Barbara Channel create frequent seasonal upwelling, which force deep nutrient-laden ocean waters to rise up the water column into the biologically rich euphotic zone (Santa Barbara Channelkeeper 2017). Data from last year, for the closest oceanographic buoy to the project site (Station 46217 Anacapa Passage), shows the following average wave action conditions for the project area: an average wave height of 1.04, with a dominant wave period of 10.1, and an average wave period of 6.49, with surface currents generally moving in a SW (249 degrees) direction and an average temperature of 16 °C (National Data Buoy Center 2017). The Ventura area is known to be an area of high swell height, particularly in the winter (Guza and O'Reilly 2001). Wave action is focused by the large fan of sediment deposited on the shelf from the Ventura and Santa Clara rivers. When deep water swell comes in from a WSW direction, these bathymetric features can focus the wave energy northward into the Ventura area. Wave action is slightly less in the summer months when the Channel Islands block southward swells (Guza and O'Reilly 2001).



DUDEK 🌢

6,250 12,500

0

Project Location Essential Fish Habitat Assessment for the Ventura Shellfish Enterprise Project

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

## 2.0 DESCRIPTION OF PROJECT ACTIONS

The project will establish a commercial offshore bivalve aquaculture operation based from the Ventura Harbor in Ventura, California, focused on the cultivation of Mediterranean mussels (*Mytilus galloprovincialis*). Please refer to the Biological Assessment for the Ventura Shellfish Enterprise (Dudek 2018) and Proposed Best Management Practices to Mitigate Potential Adverse Project Impacts for additional project details.

### 2.1 Project Actions

## 2.1.1 PROJECT CONSTRUCTION

The proposed plots will be used for growing Mediterranean mussels via submerged longlines (Figures 2 and 3).

Installation of anchors, longlines, and other facilities will be performed by permitted shellfish companies, in compliance with all permit requirements. Submerged longlines consist of a horizontal structural header line, or "backbone," that is attached to the seafloor by sand screw anchors at each end and is marked and supported by a series of buoys along the central horizontal section. Sand screw anchors have been shown to exhibit superior holding power as compared to other anchoring systems and are removable. Sand screw anchors will be installed by a hydraulic drill with a drill head that operates from a rig lowered to the ocean floor. The sand screw anchors would be screwed into the sandy bottom ocean floor approximately 10 to 20 feet (3 to 6 meters) deep. Each 100-acre plot will contain up to 48 anchors for a total of 960 anchors at full project build out.

Buoys marking the corners of each parcel will identify the cultivation area for navigational safety and will comply with all regulations for height, illumination, and visibility, including radar reflection. As shown in Figure 2 and Figure 3, surface buoys for each longline would consist of two 16 inch surface corner buoys (one corner buoy supporting and marking either end of the backbone), as well as one 16 inch buoy supporting and marking the center pickup line, for a total of three surface buoys per longline. Simulated views of parcel arrays at the surface and underwater are provided in Figures 4 through 7. All surface buoys would be uniquely colored for each operator and marked with the grower/producer name and phone number. Buoys attached to the central horizontal portion of the backbone line support the line, provide a means of lifting the backbone line to access the cultivation ropes, and determine the depth of the submerged backbone, which will vary seasonally from 15 to 45 feet below the surface. Additionally, a combination of surface and submerged buoys attached to the backbone line will be used during the mussel production cycle to maintain tension on the structural backbone line as the weight of the mussel crop increases. These will consist of 24-inch (or equivalent, with greater than 200 L buoyancy) buoys attached at required intervals along the surface and connecting to the backbone line, in combination with smaller submerged buoys affixed directly to the backbone line. The combination of surface and submerged buoyancy is designed to create a tensioned but flexible structure that is capable of responding dynamically to surface waves and storms.

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

The longlines that will be utilized are thick (1-inch diameter), tensioned (to approximately 800 pounds) rope that is not conducive to wrapping around or entangling protected species. The longline configuration produces a fairly rigid tensioned structure from which the cultivation ropes, or "fuzzy ropes" are attached. Fuzzy ropes are characterized by extra filaments that provide settlement substrate for mussels to attach. Fuzzy ropes may be attached to and suspended from the backbone rope either as individual lengths or as a continuous looping single length that drapes up and down over the backbone. The length of each section or loop of fuzzy rope would be approximately 20 feet but would depend on the lifting capacity of the servicing vessel. The length of the central horizontal section of backbone line would be 575 feet, which would support approximately 8,000 feet of fuzzy cultivation line.

The shape of each of the 100-acre cultivation parcels would be a function of the geometry of the submerged backbone line and anchoring. Each horizontal section of the longline will be approximately 575 feet and will require an anchor scope of approximately 2.5 times depth. Therefore, in 100 feet of water depth, scope from the horizontal section of backbone to the helical screw anchor will require 250 feet on each end of the line, making a total length of 1,075 feet from anchor screw to anchor screw. A 100-acre parcel with rectangular dimensions of 1,899.5 feet by 2,299.5 feet will therefore accommodate up to 24 individual longlines. The submerged longline growing gear configuration would be specifically engineered for open ocean conditions with respect to size and strength of all lines, anchoring, hardware, and buoyancy.

Construction in each individual growing plot will take place only after VPD approval of a sub-permits with the individual grower/producer. While project development is dependent on market demand, VPD estimates that full build out would occur within three to five years after project approval.

## 2.1.2 PROJECT OPERATION

The mussels will be grown and harvested by permitted growers/producers and landed at Ventura Harbor. Initial plantings of juvenile seed mussels, commonly referred to as spat, will be purchased from onshore hatcheries certified by the CDFW. At the hatcheries, mussels adhere directly to special textured ropes that promote mussel attachment and growth. When the seed are firmly settled to ropes, the ropes are covered with cotton socking material to protect them from shaking off the ropes during transport to the offshore growing site and deployment. The socks hold the spat next to the rope until the mussels naturally attach with their byssal threads, after which the cotton material naturally degrades. These ropes are then attached to the longlines and buoys, as described above.

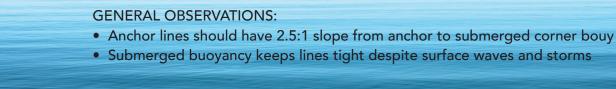
The mussel grow-out ropes themselves are typically planted with seed 3-inches thick and may grow to be stiff with byssus at diameters of 10-inches or more at harvest, thus making them very unlikely sources of entanglement. As an additional precaution, grow ropes will be attached to the headrope with a low-breakingstrength twine (4-millimeter (0.16-inch diameter), which will facilitate rapid detachment in the unlikely event of any interaction with the longline. To further minimize entanglement potential, a 1,100 pound breakaway

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

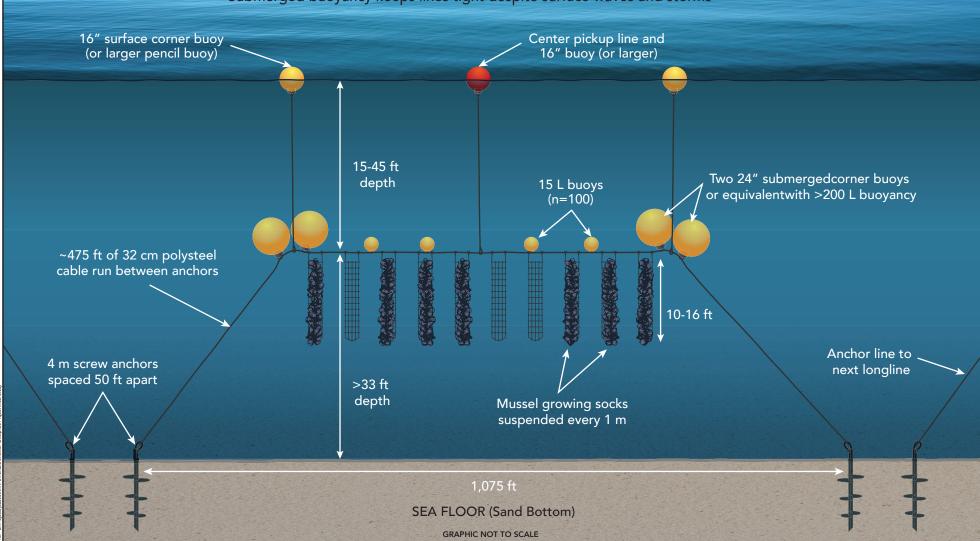
link will be installed between the surface buoys and vertical lines, similar to strategies used to mitigate potential entanglement in trap fisheries in the northeastern United States (NOAA 2008). Buoy lines between the surface and headrope are generally under tension partially equivalent (0 to 10 kilograms (0 to 22 pounds)) to their full buoyancy (42 kilograms (93 pounds)).

Cultivated mussels grow by filtering naturally occurring phytoplankton from the ocean. Harvesting involves separating the mussels from the ropes, followed by cleaning, sorting, and bagging. All of these activities will take place aboard the harvesting vessel. Juvenile mussels will grow on lines until an intermediate size where the density of mussels on the fuzzy rope becomes limiting. At this point, a servicing vessel will lift the backbone line in order to access the fuzzy rope stocked with juvenile mussels and pull the fuzzy rope through vessel-based equipment designed to strip the mussels from the fuzzy rope and then clean, separate, and grade the juvenile mussels by size. Juvenile mussels then will be restocked to clean fuzzy rope at a reduced density for their second stage of grow out to market size. Maintenance and inspection of the longlines is proposed to be carried out on a monthly basis, which consists of lifting the longlines out of the water and adding additional buoys as necessary to account for increased mussel weight. Inspections of the anchor ropes, anchors, and connecting ropes shall take place at a minimum of twice per month. Inspections shall include recordings by depth/fish finder or ROV surveys of lines and/or monitoring performed by SCUBA divers.

When the mussels reach market size, which is expected to occur after about one year of total production time, the submerged backbone lines again will be lifted in order to access the fuzzy cultivation ropes, and mussels again will be stripped from the line, cleaned, and separated, and this time size-graded and bagged for landing at the Ventura Harbor as market-ready product. The bagged mussels will be transported to Ventura Harbor for offloading, sale, and distribution. All husbandry activities related to harvesting, grading, and restocking of mussels to cultivation lines will occur onboard the servicing vessel using specialized equipment for that purpose.


Watercraft used for planting, inspections, and harvesting would be home ported at Ventura Harbor. On average, between 20 to 40 boats would be traveling to the specific lease sites to conduct these activities on a three times per week to daily basis. The maximum distance traveled would be between the harbor and the farthest potential lease area, which could be up to approximately 8.7 miles. Once constructed, it is projected that each sub-permit site will generate an estimated 150 trips per year to accomplish the tasks outlined above.

Landed product will comply with all testing and labeling regulations as part of the California Department of Public Health (CDPH) Shellfish Sanitation plan and the National Shellfish Sanitation Program (NSSP) guidelines for shellfish grown in federal waters. NOAA-Seafood Inspection Program (NOAA-SIP), in collaboration with the Food and Drug Administration (FDA), recently began the process of developing NSSP-compliant sanitation protocols for bivalve shellfish cultivated in Federal waters.


#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

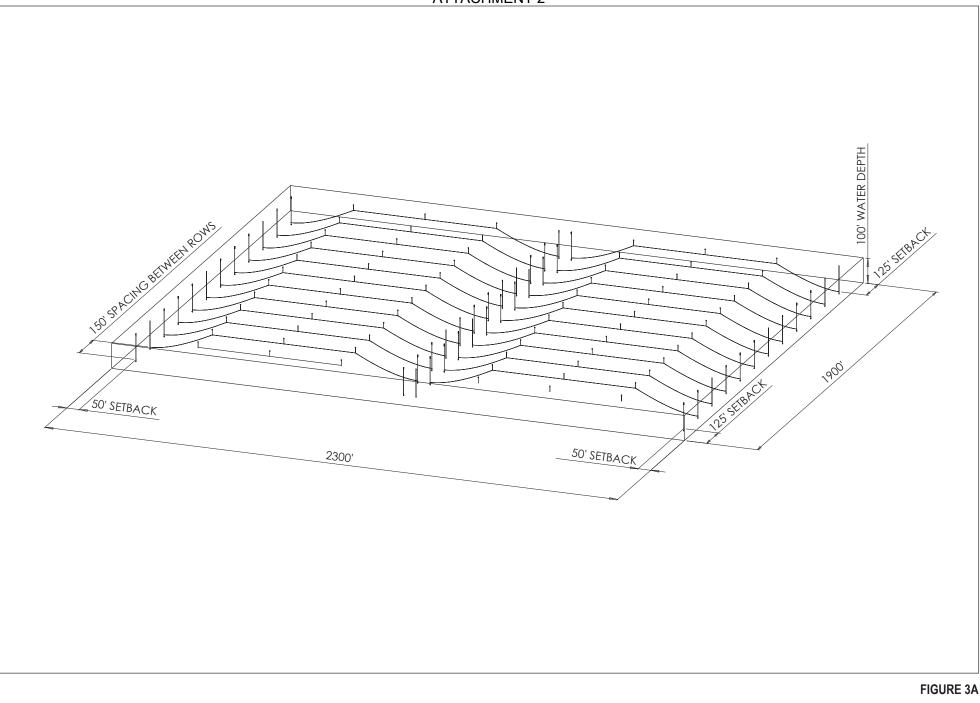
Qualified researchers affiliated with universities (i.e., U.C. Santa Barbara - Bren School, or University of Southern California, etc.), or qualified marine research institutes (i.e., Woods Hole Oceanographic Institute, Scripps Institution of Oceanography, etc.) will have access to aquaculture plots to conduct research and monitoring approved by the Ventura Port District; however, access may be limited in certain circumstances to respect grower/producer proprietary data or technology or to accommodate a grower/producer's operational and logistical needs in operating the farm. The Ventura Port District will review and approve research projects in consultation with USACE, NMFS, NOAA, and any affected grower/producers. Grower/producers will be fairly compensated for the use of their vessels, equipment, and fair market value of any mussels produced or generated as part of approved research projects.

## General Plan for Submerged Longlines



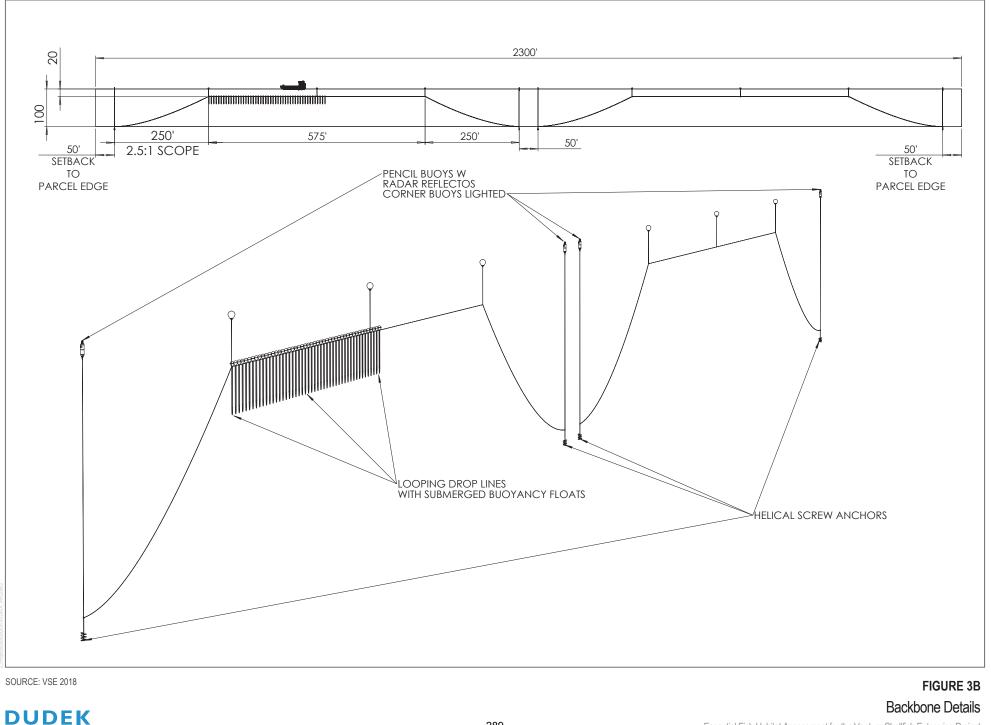
DUDEK



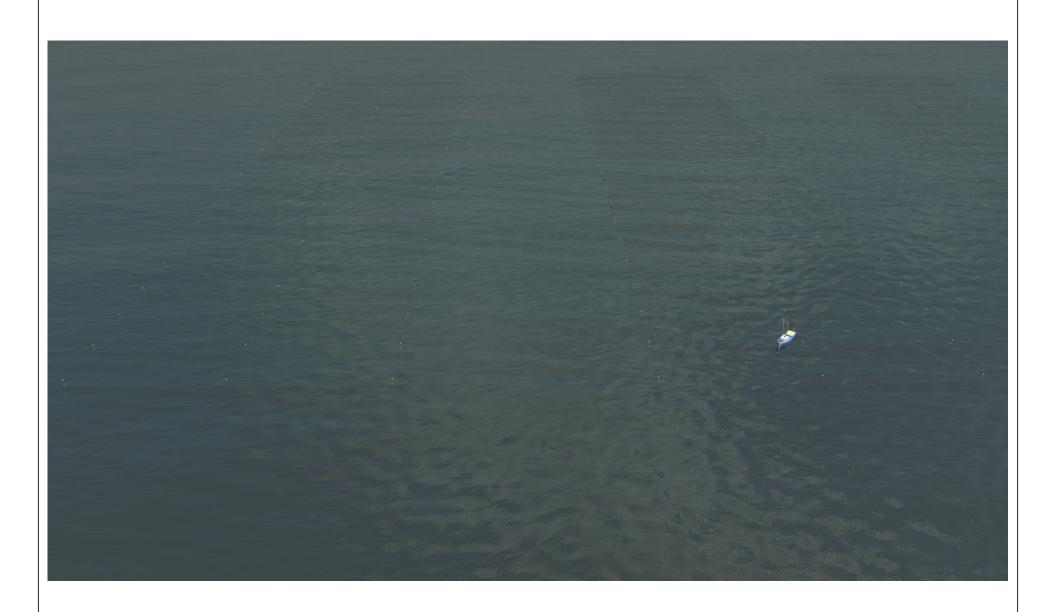

#### FIGURE 2

#### Detailed Plan for Shellfish Longlines

Essential Fish Habitat Assessment for the Ventura Shellfish Enterprise Project


#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

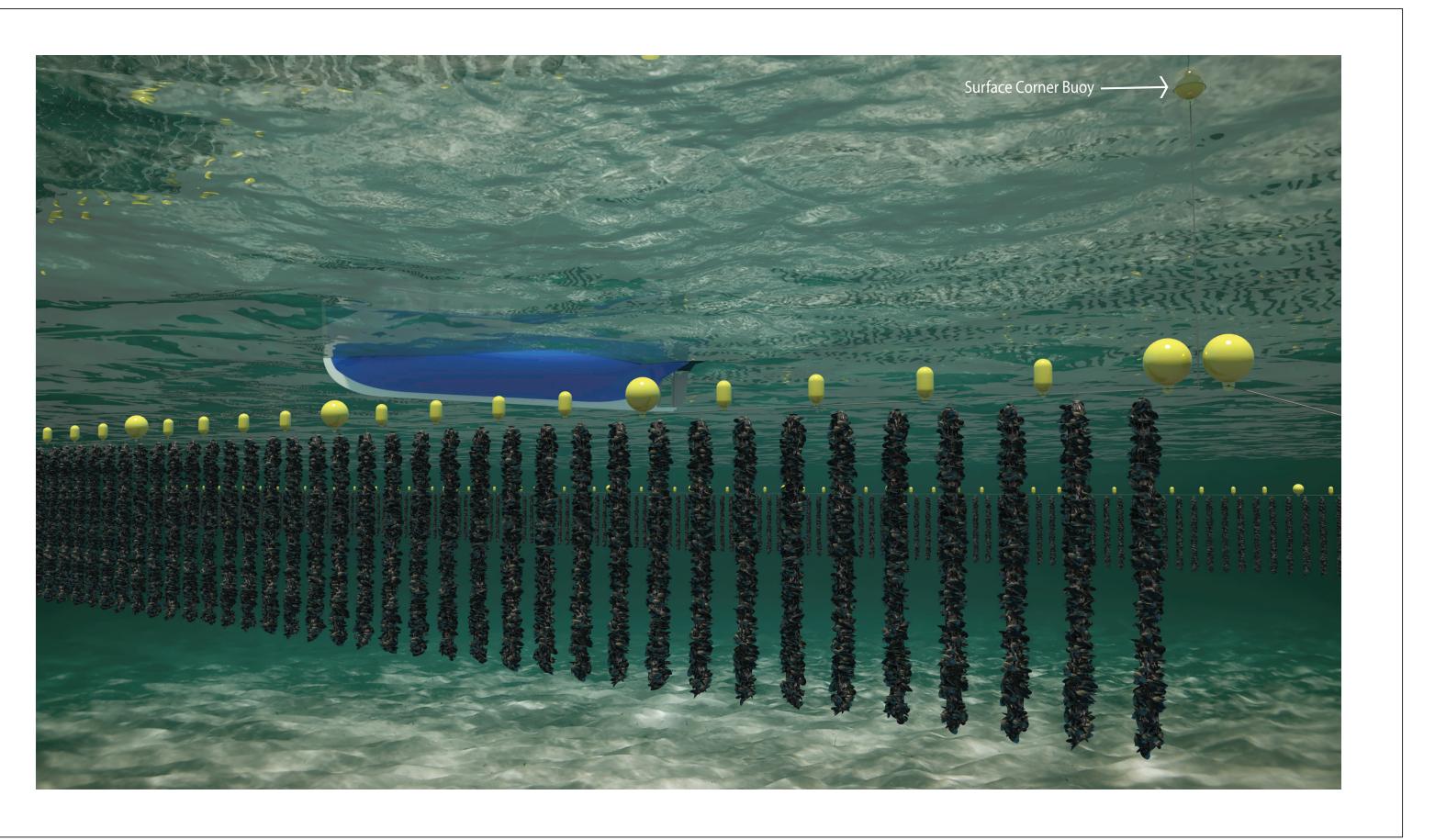



#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK



#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT




#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT



FIGURE 5 Simulated View of Parcel Array at the Surface Essential Fish Habitat Assessment for the Ventura Shellfish Enterprise Project

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT



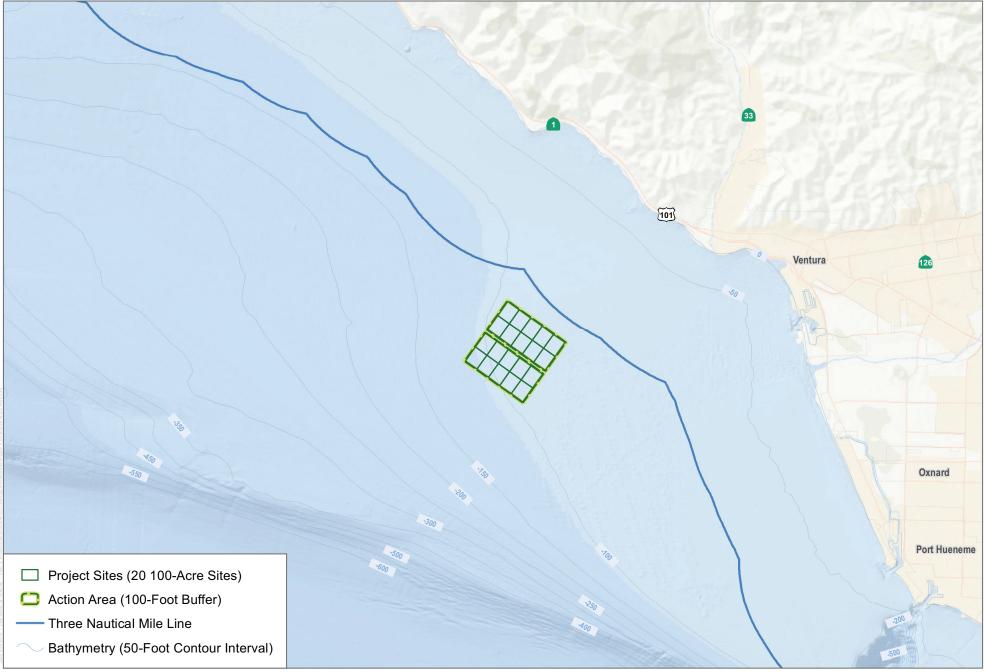
# DUDEK

FIGURE 6 Simulated View of Parcel Array Underwater Essential Fish Habitat Assessment for the Ventura Shellfish Enterprise Project

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT



#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT


#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 2.2 Project Action Area

The Action Area for this project includes the project site (twenty 100-acre growing sites occupying a total project area of 2,000 acres) and all areas within 100 feet of the Project Actions (Figure 8). This Action Area was defined based upon several factors, including the project location and components, the potential noise impacts and disturbance areas for project components, and the properties of underwater acoustics. It is anticipated that the potential noise impacts from the initial installation of the sand screw anchors using a hydraulic drill will be minimal. Helical anchors for mussel farms in open ocean habitats have been installed all over the world, including at Catalina Island. They are drilled into the seabed using a hydraulic auger controlled at the surface. The drill is submersible and is lowered with the anchor. Noise levels are very low in the water, with a 50 hp hydraulic power pack on the boat (Fielder Marine Services, New Zealand, pers.comm.). Rotation speeds are very low, which minimizes entanglement of marine species. The anchor installation disturbs less than 1 square meter of sea bed on installation and once installed no rope or chain touches the sea floor which also minimizes seabed disturbance (Fielder Marine Services, New Zealand, Pers.comm). Marine wildlife, especially cetaceans, are known to be sensitive to noise effects (eNMFS 2007a). However, construction noise levels will be well within acceptable thresholds for both marine mammals and fish (ICF Jones & Stokes and Illingworth and Rodkin, Inc. 2009; NMFS 2007a). Due to the minimal noise level and area of disturbance on the sea floor, we believe an action area of 100 feet is sufficient.

The Action Area is host to numerous human activities that interact with the natural environment. Human activities occurring in and near the Action Area potentially affecting listed species include both consumptive (removal, harvesting, or depletion risk of resources) and non-consumptive activities. Consumptive activities potentially affecting listed species include oil and gas development, vessel transportation within the busy shipping lanes in nearby waters, non-point source pollution (resulting from many sources of pollution), and commercial and recreational fishing. Recreational fishing charters use the area for baitfish collection. Commercial fishing occurring in the area includes trawling. The California Halibut Trawl Grounds are a designated area located offshore beginning approximately 1 nautical mile from the mainland shore between Point Arguello in Santa Barbara County and Point Mugu in Ventura County. California halibut (*Paralichthys californicus*) is a commercially important flatfish species caught in shallow waters off the Southern California coast.

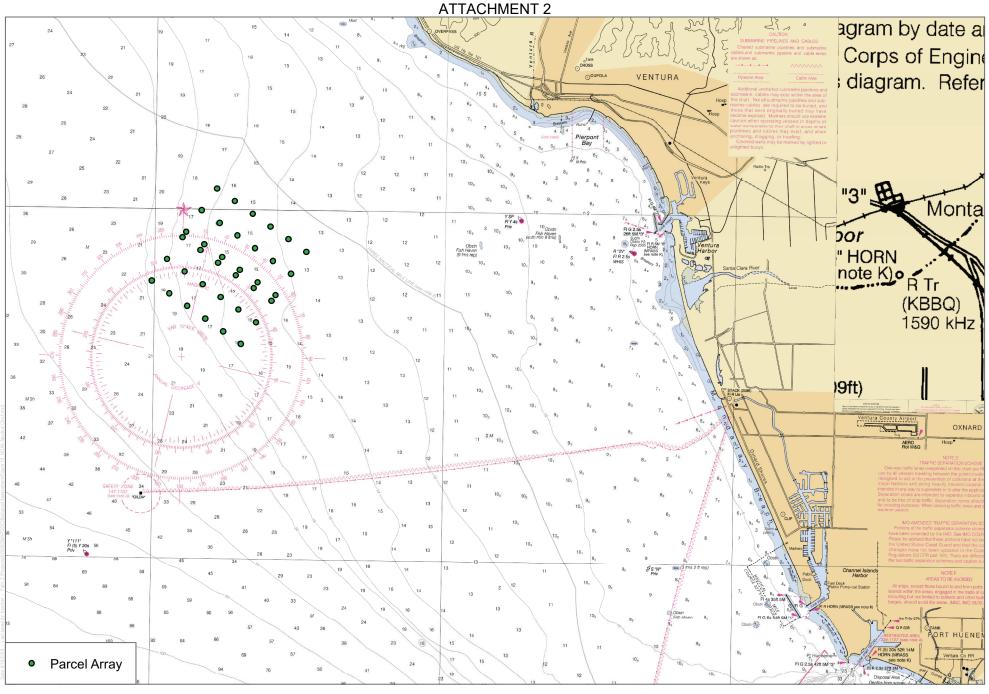
#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT



SOURCE: ESRI ArcGIS Online: World Ocean Base

DUDEK

2 1 -Miles


0

# Ventura Shellfish Enterprise Action Area

FIGURE 8

Essential Fish Habitat Assessment for the Ventura Shellfish Enterprise Project

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT



SOURCE: NOAA Raster Nautical Charts (RNC)

**DUDEK** 

0.75

1.5

Miles

# FIGURE 9 NOAA Nautical Chart

Essential Fish Habitat Assessment for the Ventura Shellfish Enterprise Project

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 3.0 REGULATORY SETTING

Essential Fish Habitat is regulated under the Magnuson-Stevens Fishery Conservation and Management Act of 1976, 16 U.S.C. 1801 *et seq.* (MSFCMA) protecting waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity.

# 3.1 Magnuson-Stevens Fishery Conservation and Management Act

The MSFCMA has jurisdiction over marine fishery resources in the United States. The MSFCMA was reauthorized and amended by the Sustainable Fisheries Act (SFA) of 1996 (Public Law 104-297) to include the EFH mandate. The SFA set forth a number of new directives for the NMFS, regional Fishery Management Councils (FMCs), and other federal agencies to identify and protect important marine, estuarine, and anadromous fish habitat. To that end, the SFA requires that regional FMCs prepare Fishery Management Plans (FMPs) for the identification, protection, and enhancement of EFH for federally "managed species." The goals of FMPs include the development and sustainability of an efficient and profitable fishery, optimal yield, adequate forage for dependent species, and long-term monitoring. The MSFCMA requires that all federal agencies consult with NMFS on all proposed actions permitted, funded, or undertaken by the agency that may adversely affect EFH. The main purpose of the EFH provisions is to avoid loss of fisheries due to disturbance and degradation of the fisheries habitat.

The Pacific Fishery Management Council (PFMC) is one of eight regional fishery management councils established by the MSFCMA. Under the MSFCMA, the federal government has jurisdiction to manage fisheries in the Exclusive Economic Zone (EEZ), which extends from the outer boundary of state waters (3 nautical miles [NM] from shore) to a distance of 200 NM from shore. With jurisdiction over the 822,817 km<sup>2</sup> (317,690 square miles) of EEZ off Washington, Oregon and California, the PFMC manages fisheries for approximately 120 species, including salmon, groundfish, coastal pelagic species (sardines, anchovies, and mackerel), and highly migratory species (tunas, sharks, and swordfish). The PFMC is also active in international fishery management organizations that manage fish stocks that migrate through the PFMC's area of jurisdiction, including the International Pacific Halibut Commission, the Western and Central Pacific Fisheries Commission (for albacore tuna and other highly migratory species), and the Inter-American Tropical Tuna Commission (for yellowfin tuna and other highly migratory species) (PFMC 2018). Management measures developed by the PFMC are recommended to the Secretary of Commerce through NMFS. Management measures are implemented by NMFS West Coast Regional offices and enforced by the National Oceanic and Atmospheric Administration (NOAA) Office of Law Enforcement, the 11th and 13th Coast Guard Districts, and local enforcement agencies (PFMC 2018).

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

Congress defined EFH to mean those waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity. In 2002, NMFS further clarified EFH with the following definitions (50 Code of Federal Regulations [CFR] §§ 600.05–600.930):

- "Waters" include aquatic areas and their associated physical, chemical, and biological properties that are used by fish and may include aquatic areas historically used by fish where appropriate.
- "Substrate" includes sediment, hard bottom, structures underlying the waters, and associated biological communities.
- "Necessary" means the habitat required to support a sustainable fishery and the managed species' contribution to a healthy ecosystem; and "spawning, breeding, feeding, or growth to maturity" covers a species' full life cycle (50 CFR 600.10).

# 3.1.1 HABITAT AREAS OF PARTICULAR CONCERN (HAPC)

Habitat areas of particular concern (HAPC) are considered high priority areas for conservation, management, or research because they are rare, sensitive, stressed by development, or important to ecosystem function. The HAPC designation does not necessarily mean additional protections or restrictions are required for an area, but the designation helps to prioritize and focus conservation efforts. EFH guidelines identify HAPC as types or areas of habitat that are identified based on one or more of the following considerations:

- the importance of the ecological function provided by the habitat;
- the extent to which the habitat is sensitive to human-induced environmental degradation;
- whether, and to what extent, development activities are or will be stressing the habitat type; and
- the rarity of the habitat type.

These areas are detailed in EFH sections of FMPs and are summarized within the Regional Council Approaches to the Identification and Protection of Habitat Areas of Particular Concern. Current HAPC types are estuaries, canopy kelp, seagrass, rocky reefs, as well as Marine Protected Areas (MPAs) or Areas of Interest (such as banks, seamounts, and canyons). MPA's are further defined below.

# 3.1.1.1 Marine Protected Areas

The Southern California MPAs, from Point Conception to the California-Mexico border, cover areas of the Southern California Bight within state waters and islands. The 50 MPAs in this region cover approximately 356 square miles, or about 15% of Southern California state waters (CDFW 2016). The definition of the different MPA's are as follows:

**State Marine Reserve** (CCR Title 14, Section 632(a)(1)(A)): In a State Marine Reserve, it is unlawful to injure, damage, take, or possess any living, geological, or cultural marine resource, except under a scientific

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

collecting permit issued by the department pursuant to Section 650 or specific authorization from the commission for research, restoration, or monitoring purposes.

State Marine Conservation Area (CCR Title 14, Section 632(a)(1)(C)): In a State Marine Conservation Area, it is unlawful to injure, damage, take, or possess any living, geological, or cultural marine resource for commercial or recreational purposes, or a combination of commercial and recreational purposes except as specified in individual MPA regulations. The department may issue scientific collecting permits pursuant to Section 650. The commission may authorize research, education, and recreational activities, and certain commercial and recreational harvest of marine resources, provided that these uses do not compromise protection of the species of interest, natural community, habitat, or geological features.

**Special Closure**: An area designated by the Fish and Game Commission that prohibits access or restricts boating activities in waters adjacent to sea bird rookeries or marine mammal haul-out sites (restrictions vary).

The closest state or federal marine protected area is the Channel Islands National Marine Sanctuary, a Federal Marine Protected Area, located approximately 9.1 miles from the project site.

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 4.0 MANAGED FISHERIES AND HABITAT AREAS OF PARTICULAR CONCERN

The PFMC has approved FMPs for salmon, groundfish, coastal pelagic species, and highly migratory species. The species that have designated EFH in the Action Area may occur in any of several life stages, from larvae to adults, and may include presence at depths or distances beyond the direct influence of the project actions.

# 4.1.1 SALMON

Salmon EFH for estuarine and marine areas is identified in an area north of the project site that extends from north of Point Conception, California to the northern Washington boarder (PFMC 2008) (Appendix A: Groundfish EFH and HAPC Maps); therefore, no Pacific salmon EFH is designated in the Action Area. Chinook and coho salmon are the main salmon species managed by the PFMC. Chinook salmon are caught commercially and recreationally as far south as Santa Barbara County, located north of the project site. Appendix B: California Commercial Landing for 2017 provides a summary of total fish landed (in pounds) and value (in USD) for the Santa Barbara Area defined as all ports in San Luis Obispo, Santa Barbara, and Ventura Counties. Southern California coast steelhead (steelhead; *Oncorhynchus mykissis*), a salmonid, is federally endangered and managed under the ESA by NMFS. No commercial or recreation landing is permitted for steelhead in the Santa Barbara Area.

# 4.1.2 GROUNDFISH

The Pacific Coast Groundfish Fishery Management Plan (Groundfish FMP) manages 90-plus species over a large and ecologically diverse area from the Pacific coast border with Mexico to the Pacific coast border with Washington and Canada (PFMC 2016). Information on the life histories and habitats of these species varies in completeness, so while some species are well studied, there is relatively little information on certain other species. Information about the habitats and life histories of the species managed by the Groundfish FMP will certainly change over time, with varying degrees of information improvement for each species. For these reasons, it is impractical for the PFMC to include descriptions identifying EFH for each life stage of the managed species in the body of the FMP (PFMC 2016).

The Action Area is located in designated EFH as defined in the Groundfish FMP (PFMC 2016a) (Appendix A: Groundfish EFH and HAPC Maps). Because the EFH determination from this FMP addresses such a large number of species, it covers areas out to 3,500 meters in depth, shoreline areas up to the MHHW line, and areas up coastal rivers where ocean-derived salinity is at least 0.5 parts per thousand during average annual low flows. The FMP also identifies HAPCs.

The PFMC defines EFH for groundfish as the aquatic habitat necessary to allow for groundfish production to support long-term sustainable fisheries for groundfish and for groundfish contributions to a healthy

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

ecosystem. The overall EFH for adult and juvenile groundfish, as well as for the pelagic eggs and larvae of groundfish, is designated as the water column and all bottom habitat extending from the shoreline to a depth of 400 meters (m) (200 fathoms) encompassing the steep drop-offs and high relief habitats (i.e., seamounts) that are important for bottomfish (PFMC 1998).

This EFH identification is precautionary because it is based on the currently known maximum depth distribution of all life stages of federally managed species (PFMC 2016).

**Potential for Occurrence.** EFH is present in the Action Area for over 79 species of groundfish; however, no HAPC for these species is known to occur based on available literature. The Action Area is soft-bottom habitat between 13 – 19 fathoms (78 – 114 feet) MLLW. The Groundfish EFH are shown in Table 1 below. Groundfish that has a high potential to utilize the habitat within the Action Area are flatfish, including sand flounders (Family Paralichthyidae): Pacific sanddab and California halibut; as well as righteye flounders (Family Pleuronectidae): English sole and dover sole. There is low potential for suitable habitat for roundfish to utilize the sandy bottom habitat found in the Action Area. These species are primarily found over hard substrate, rocky reef, and/or kelp forest habitats, which are not found within the Action Area (please refer to Table 1).

|                     |                             | Fish Species<br>Present in Santa | Commercial<br>Landings in | General Habitat                      | Potential to<br>Occur in |  |  |
|---------------------|-----------------------------|----------------------------------|---------------------------|--------------------------------------|--------------------------|--|--|
| Common Name         | Species Name                | Barbara Area                     | Pounds6                   | Preference                           | Action Area              |  |  |
|                     | ELASMOBRANCHS               |                                  |                           |                                      |                          |  |  |
| Big skate           | Raja binoculata             | Yes                              | 0                         | Soft bottom habitats <sup>2, 5</sup> | Yes                      |  |  |
| California<br>skate | Raja inornata               | Yes                              | 32                        | Soft bottom habitats <sup>2, 5</sup> | Yes                      |  |  |
| Leopard shark       | Triakis<br>semifasciata     | Yes                              | 3,523                     | Soft bottom habitats <sup>2, 5</sup> | Yes                      |  |  |
| Longnose<br>skate   | Raja rhina                  | Yes                              | 2,710                     | Soft bottom habitats <sup>2, 5</sup> | Yes                      |  |  |
| Spiny dogfish       | Squalus suckleyi            | Yes                              | 347                       | Soft bottom habitats <sup>2, 5</sup> | Yes                      |  |  |
|                     |                             | GRENA                            | DIERS                     |                                      |                          |  |  |
| Pacific rattail     | Coryphaenoides<br>acrolepis | Yes                              | 0                         | Soft bottom habitats                 | No                       |  |  |
|                     |                             | MOR                              | RIDS                      |                                      |                          |  |  |
| Finescale codling   | Antimora<br>microlepis      | Yes                              | 0                         | Unknown                              | No                       |  |  |
|                     |                             | RATH                             | -ISH                      |                                      |                          |  |  |
| Ratfish             | Hydrolagus colliei          | Yes                              | 0                         | Soft and hard substrate              | Yes                      |  |  |

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## Table 1

| Common Name                  | Species Name                  | Fish Species<br>Present in Santa<br>Barbara Area | Commercial<br>Landings in<br>Pounds6 | General Habitat<br>Preference                 | Potential to<br>Occur in<br>Action Area |
|------------------------------|-------------------------------|--------------------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------------|
|                              |                               | ROUN                                             | DFISH                                |                                               |                                         |
| Cabezon                      | Scorpaenichthys<br>marmoratus | Yes                                              | 5,989                                | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Kelp greenling               | Hexagrammos<br>decagrammus    | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Lingcod                      | Ophiodon<br>elongatus         | Yes                                              | 45,688                               | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Pacific cod                  | Gadus<br>macrocephalus        | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Pacific whiting (hake)       | Merluccius<br>productus       | Yes                                              | 148                                  | Open water and hard substrate <sup>3, 5</sup> | No                                      |
| Sablefish                    | Anoplopoma<br>fimbria         | Yes                                              | 328,296                              | Hard substrate and kelp <sup>1,3,5</sup>      | No                                      |
|                              |                               | ROCK                                             | KFISH                                |                                               |                                         |
| Aurora rockfish              | Sebastes aurora               | Yes                                              | 71                                   | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Bank rockfish                | S. rufus                      | Yes                                              | 561                                  | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Black rockfish               | S. melanops                   | Yes                                              | 4                                    | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Black and<br>yellow rockfish | S. chrysomelas                | Yes                                              | 492                                  | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Blackgill rockfish           | S. melanostomus               | Yes                                              | 8,638                                | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Blue rockfish                | S. mystinus                   | Yes                                              | 2,293                                | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Bocaccio                     | S. paucispinis                | Yes                                              | 6,563                                | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Bronzespotted rockfish       | S. gilli                      | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Brown rockfish               | S. auriculatus                | Yes                                              | 121                                  | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Calico rockfish              | S. dallii                     | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Canary<br>rockfish           | Sebastes<br>pinniger          | Yes                                              | 1,363                                | Hard substrate and kelp <sup>1, 3, 5</sup>    | No                                      |
| Chilipepper                  | S. goodei                     | Yes                                              | 326                                  | Hard substrate and                            | No                                      |

## ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# Table 1

| Common Name              | Species Name           | Fish Species<br>Present in Santa<br>Barbara Area | Commercial<br>Landings in<br>Pounds6 | General Habitat<br>Preference              | Potential to<br>Occur in<br>Action Area |
|--------------------------|------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------------|-----------------------------------------|
| rockfish                 | -                      |                                                  |                                      | kelp <sup>1, 3, 5</sup>                    |                                         |
| China rockfish           | S. nebulosus           | Yes                                              | 1                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Copper<br>rockfish       | S. caurinus            | Yes                                              | 8,903                                | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Cowcod                   | S. levis               | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Darkblotched<br>rockfish | S. crameri             | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Dusky rockfish           | S. ciliatus            | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Flag rockfish            | S. rubrivinctus        | Yes                                              | 96                                   | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Gopher<br>rockfish       | S. carnatus            | Yes                                              | 989                                  | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Grass rockfish           | S. rastrelliger        | Yes                                              | 9,899                                | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Greenblotched rockfish   | S. rosenblatti         | Yes                                              | 59                                   | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Greenspotted rockfish    | S. chlorostictus       | Yes                                              | 2,481                                | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Greenstriped<br>rockfish | S. elongatus           | Yes                                              | 185                                  | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Harlequin<br>rockfish    | S. variegatus          | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Honeycomb<br>rockfish    | S. umbrosus            | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Kelp rockfish            | S. atrovirens          | Yes                                              | 409                                  | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Mexican<br>rockfish      | Sebastes<br>macdonaldi | Yes                                              | 8                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Olive rockfish           | S. serranoides         | Yes                                              | 63                                   | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Pink rockfish            | S. eos                 | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Pacific ocean perch      | S. alutus              | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Quillback<br>rockfish    | S. maliger             | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |

## ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## Table 1

| Common Name            | Species Name            | Fish Species<br>Present in Santa<br>Barbara Area | Commercial<br>Landings in<br>Pounds6 | General Habitat<br>Preference              | Potential to<br>Occur in<br>Action Area |
|------------------------|-------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------------|-----------------------------------------|
| Redbanded<br>rockfish  | S. babcocki             | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Redstripe<br>rockfish  | S. proriger             | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Rosethorn<br>rockfish  | S.<br>helvomaculatus    | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Rosy rockfish          | S. rosaceus             | Yes                                              | 20                                   | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Rougheye<br>rockfish   | S. aleutianus           | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Sharpchin<br>rockfish  | S. zacentrus            | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Shortbelly rockfish    | S. jordani              | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Shortraker<br>rockfish | S. borealis             | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Silvergray<br>rockfish | Sebastes<br>brevispinis | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Speckled rockfish      | S. ovalis               | Yes                                              | 586                                  | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Splitnose<br>rockfish  | S. diploproa            | Yes                                              | 29                                   | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Squarespot<br>rockfish | S. hopkinsi             | Yes                                              | 22                                   | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Starry rockfish        | S. constellatus         | Yes                                              | 720                                  | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Stripetail rockfish    | S. saxicola             | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Tiger rockfish         | S. nigrocinctus         | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Treefish               | S. serriceps            | Yes                                              | 375                                  | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Vermilion<br>rockfish  | S. miniatus             | Yes                                              | 63,684                               | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Widow rockfish         | S. entomelas            | Yes                                              | 88                                   | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Yelloweye<br>rockfish  | S. ruberrimus           | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# Table 1

| Common Name                        | Species Name                  | Fish Species<br>Present in Santa<br>Barbara Area | Commercial<br>Landings in<br>Pounds6 | General Habitat<br>Preference              | Potential to<br>Occur in<br>Action Area |
|------------------------------------|-------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------------|-----------------------------------------|
| Yellowmouth<br>rockfish            | S. reedi                      | Yes                                              | 0                                    | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Yellowtail<br>rockfish             | S. flavidus                   | Yes                                              | 1,277                                | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Speckled<br>rockfish               | S. ovalis                     | Yes                                              | 586                                  | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
|                                    |                               | SCORPI                                           | ONFISH                               |                                            |                                         |
| California<br>scorpionfish         | Scorpaena<br>gutatta          | Yes                                              | 673                                  | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
|                                    |                               | THORN                                            | YHEAD                                |                                            |                                         |
| Longspine<br>thornyhead            | Sebastolobus<br>altivelis     | Yes                                              | 19,336                               | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
| Shortspine thornyhead              | Sebastolobus<br>alascanus     | Yes                                              | 260,605                              | Hard substrate and kelp <sup>1, 3, 5</sup> | No                                      |
|                                    |                               | FLAT                                             | FISH                                 |                                            |                                         |
| Arrowtooth<br>flounder<br>(turbot) | Atheresthes<br>stomias        | Yes                                              | 0                                    | Soft bottom habitats 2,<br>5               | Yes                                     |
| Butter sole                        | Isopsetta isolepis            | Yes                                              | 2,078                                | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |
| Curlfin sole                       | Pleuronichthys decurrens      | Yes                                              | 25                                   | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |
| Dover sole                         | Microstomus<br>pacificus      | Yes                                              | 323                                  | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |
| English sole                       | Parophrys<br>vetulus          | Yes                                              | 2,538                                | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |
| Flathead sole                      | Hippoglossoides<br>elassodon  | Yes                                              | 0                                    | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |
| Pacific<br>sanddab                 | Citharichthys<br>sordidus     | Yes                                              | 3,126                                | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |
| Petrale sole                       | Eopsetta jordani              | Yes                                              | 2,322                                | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |
| Rex sole                           | Glyptocephalus<br>zachirus    | Yes                                              | 0                                    | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |
| Rock sole                          | Lepidopsetta<br>bilineata     | Yes                                              | 865                                  | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |
| Sand sole                          | Psettichthys<br>melanostictus | Yes                                              | 228                                  | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |
| Starry flounder                    | Platichthys<br>stellatus      | Yes                                              | 0                                    | Soft bottom habitats <sup>2, 5</sup>       | Yes                                     |

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### Table 1

#### Groundfish EFH in the Action Area

| Common Name                        | Species Name              | Fish Species<br>Present in Santa<br>Barbara Area | Commercial<br>Landings in<br>Pounds6 | General Habitat<br>Preference        | Potential to<br>Occur in<br>Action Area |
|------------------------------------|---------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|
| California<br>halibut <sup>7</sup> | Paralichthys californicus | Yes                                              | 148,763                              | Soft bottom habitats <sup>2, 5</sup> | Yes                                     |

<sup>1</sup> Kelp Canopy/Forest

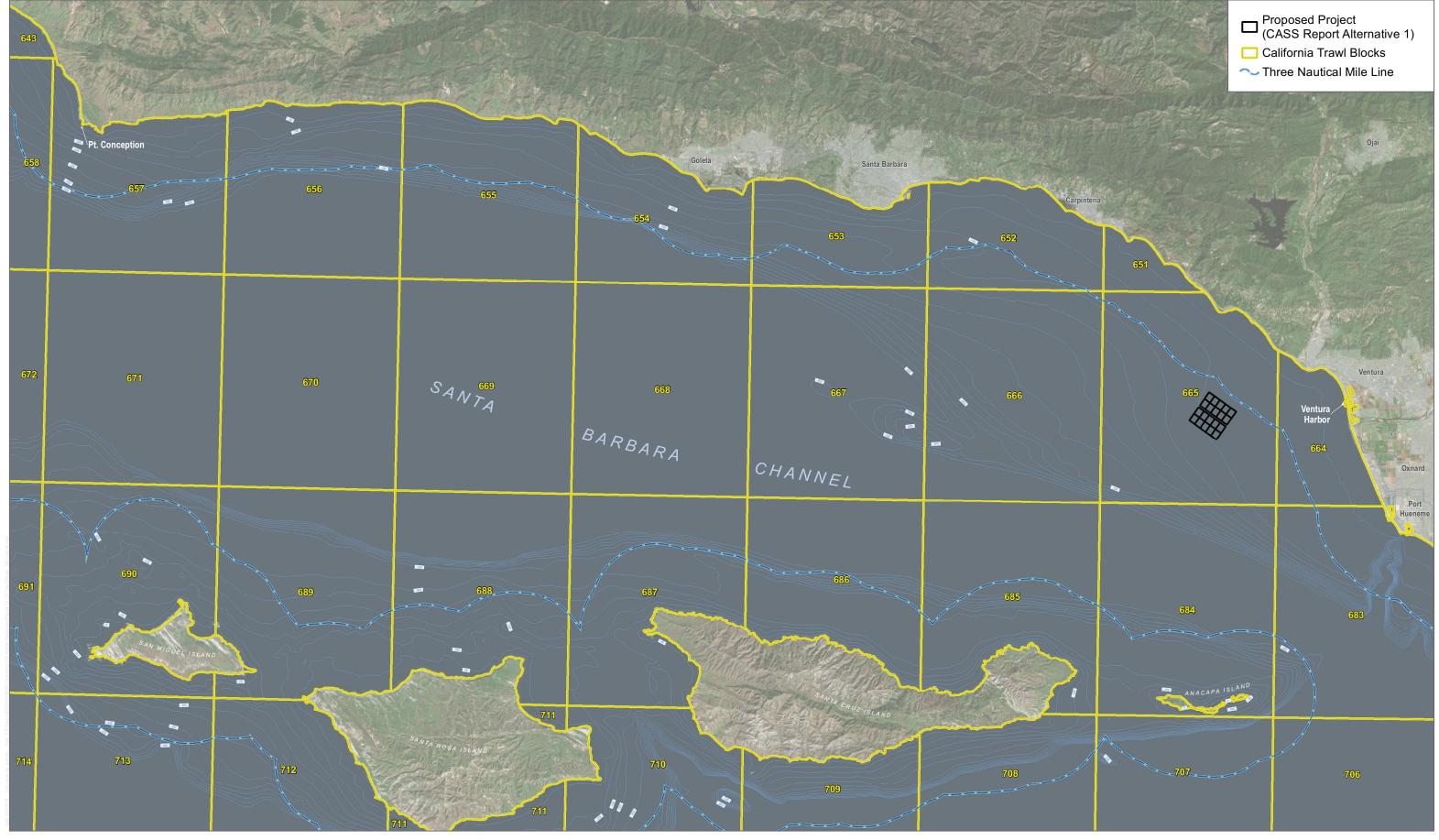
<sup>2</sup> Seagrass

<sup>3</sup> Rocky Reefs

<sup>4</sup> Estuaries

5 AOI/MPAs

<sup>6</sup> CDFW Commercial Landings Data for 2017 (Appendix B)


7 Non-MSFCMA species. Managed by the California Department of Fish and Wildlife.

Of the flatfish, California halibut, a state regulated species, is the most important commercial fishery for the Santa Barbara Area with 148,763 lbs. landed in 2017 (Table 1, CDFW 2017). More specifically, commercial catch for the California halibut in two blocks that overlap the Action Area, Blocks 0664 and 0665, were reviewed for landings between 2010 to 2016 (Appendix B and C). During those years, an approximate total of 84,524 lbs., or 1.12% of the total catch of all landings from these two blocks, were landed for California halibut; however, for the Santa Barbara Area, California halibut caught in Blocks 0664 and 0665 represent approximately 26 % to 37% of halibut landed for the area (Table 2; Figures 10 and 11). Further, based upon CDFW trawl data from 2012 through 2016, which provided the location (i.e., latitude and longitude) of where each trawl started and stopped:

- The total trawl length within the Santa Barbara Channel during that time period was 40,480 nautical miles.
- The total trawl length within the area of interest evaluated by NOS was 1,508 nautical miles.
- The total trawl length within the proposed project area was 145 nautical miles.

While the approximately 2,000 acre proposed site location does overlap with some known halibut trawl fishery activity in Block 0664 (21,363 acres) and 0665 (66,613 acres) it avoids the known area of highest trawl fishing activity, which is located in a portion of the Santa Barbara Channel northwest of the project site. Given the small amount of existing usage and conversion of approximately 2.27% of the blocks into a viable commercial mussel aquiculture, the impact to the halibut trawl fishery is considered to be negligible. In the Aquaculture Siting Analysis Results for Ventura Shellfish Enterprise (NOAA/National Ocean Services /National Centers for Coastal Ocean Science (NOS/NCCOS)), halibut trawling data was used along with other variables to determine the most suitable project location and layout. This Siting Analysis utilized the best available, high-resolution spatial data to represent key potential environmental and use conflicts that constrain the siting of an aquaculture operation within the Santa Barbara Channel region of interest. The Siting Analysis confirmed that the proposed site location is in the area that minimizes use conflicts, including fishery conflicts, to the greatest extent possible.

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT



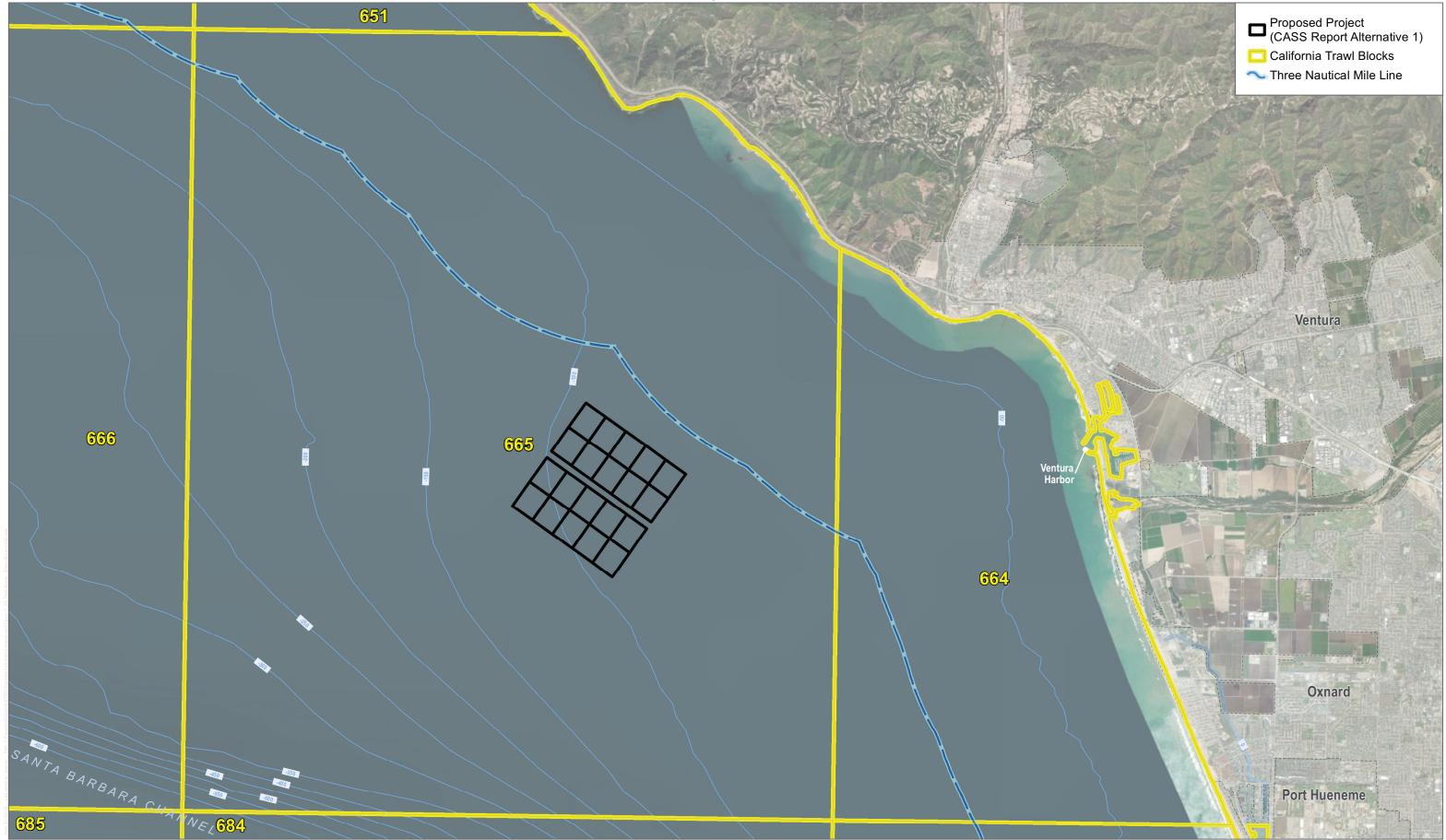

SOURCE: California Department of Fish and Game, Marine Region



FIGURE 10 California Trawl Blocks - Santa Barbara Channel

Essential Fish Habitat Assessment for the Ventura Shellfish Enterprise Project

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT



SOURCE: California Department of Fish and Game, Marine Region

2 3 Nautical Miles FIGURE 11 California Trawl Blocks - Blocks 664 and 665 Essential Fish Habitat Assessment for the Ventura Shellfish Enterprise Project

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

| Year | Santa Barbara Area <sup>1</sup> | Blocks 0664 and 0665 <sup>2</sup> | Percentage of Regional<br>Landings |
|------|---------------------------------|-----------------------------------|------------------------------------|
| 2016 | 125,684                         | 35,263                            | 28%                                |
| 2015 | 99,977                          | 36,326                            | 36%                                |
| 2014 | 77,603                          | 21,253                            | 27%                                |
| 2013 | 94,593                          | 34,643                            | 37%                                |
| 2012 | 111,497                         | 28,629                            | 26%                                |

# California Halibut Regional and Trawl Block Landings in Pounds

Table 2

<sup>1</sup> Santa Barbara Area includes ports located in San Luis Obispo, Santa Barbara, and Ventura Counties

<sup>2</sup> California halibut caught in Blocks 0664 and 0665 are primarily landed in Santa Barbara Area, but may be landed in ports outside of the Santa Barbara Area.

# 4.1.3 COASTAL PELAGIC SPECIES

Coastal pelagic species (CPS) include finfish (northern anchovy, Pacific sardine, Pacific mackerel, and jack mackerel) and California market squid as well as krill (PFMC 2016). Pacific herring (*Chipea pallasii pallasii*) and jacksmelt (*Atherinopsis californiensis*) are also included in the Coastal Pelagic FMP as Ecosystem Component Species. EFH designation for CPS is based on a thermal range bordered within the geographic area where a species occurs at any life stage, where the species has occurred historically during periods of similar environmental conditions, or where environmental conditions do not preclude colonization by the species. The east-west geographic boundary of EFH for each individual CPS finfish and California market squid is defined to be all marine and estuarine waters from the shoreline along the coasts of California, Oregon, and Washington to offshore to the limits of the U.S. EEZ and above the thermocline where sea surface temperatures range between 10°C to 26°C (50°F to 78.8°F). The southern extent of EFH for CPS finfish is the United States–Mexico maritime boundary. The northern EFH extent is the position of the 10°C (50°F) isotherm varying both seasonally and annually (PFMC 1998).

The northern anchovy historically ranged from the Queen Charlotte Islands, British Columbia, south to Cabo San Lucas, Baja California. More recently, populations have moved into the Gulf of California, Mexico. Larvae and juveniles are often abundant in nearshore areas and estuaries with adults being more pelagic; however, adults may also be found in shallow nearshore areas and estuaries. Anchovy are non-migratory but do make extensive inshore-offshore and along-shore movements (Emmett et al. 1991). During historic periods of high abundance (from the early part of the 20th century into the 1940s) Pacific sardines ranged from the Gulf of California north to Washington State before the fishery crashed in the 1950s. Today, large populations still occur south of Point Conception into Baja California. The Pacific sardine is epipelagic, occurring in loosely aggregated schools. When abundant, this species can occur up to 150 miles offshore (Wolf et al. 2001). Jack mackerel and Pacific mackerel occur from Santa Maria Bay, Mexico to Yaquina Bay, Oregon. They occur in California bays, estuaries and coastal pelagic ocean waters throughout the year. Both species are schooling fish which prefer shallow water less than 100 feet deep and are most common at depths of 5 to 50 feet deep (CDFW 2013). All coastal pelagics are associated

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

with the water column except for the female market squid, which lays egg masses on sandy bottoms at depths of about 15–180 feet. The market squid ranges coastally from Baja California to Alaska and can be found within 200 miles of the shore (PFMC 2008).

The Ventura Harbor plays a substantial role in California's commercial fishing industry. Market squid remains California's largest and most lucrative commercial fishery, valued at over \$73 million in 2010. In 2011, nearly 33 thousand tons of squid, representing 28% of the state's total catch limit, was unloaded at the Ventura Harbor, making it one of the largest squid landings on the West Coast. Squid generated \$16 million in revenues for the fishing companies that operate at the harbor (The California Economic Forecast, 2012).

# Table 3 Coastal Pelagic Species in the Action Area

| Common Name      | Scientific Name        | Commercial Landing in<br>Pounds <sup>1</sup> | General Habitat    |
|------------------|------------------------|----------------------------------------------|--------------------|
| Northern Anchovy | Engraulis mordax       | 93,862                                       | Open water         |
| Pacific Sardine  | Sardinops sagax        | 203,780                                      | Open water         |
| Pacific Mackerel | Scomber japonicus      | 534,813                                      | Open shallow water |
| Jack Mackerel    | Trachurus symmetricus  | 8,697                                        | Open shallow water |
| Market Squid     | Doryteuthis opalescens | 87,461,026                                   | Open water         |

<sup>1</sup> CDFW Landing Data for 2017 for the Santa Barbara Area (caught in California water) (Appendix B)

**Potential for Occurrence.** All coastal pelagic species are found in the Action Area. The market squid is the most important of these fisheries. Using the NOS Siting Analysis discussed above, the project site was located in an area that avoids key market squid fishing areas, which occur significantly south of the proposed project site.

# 4.1.4 HIGHLY MIGRATORY SPECIES

The Highly Migratory Species (HMS) FMP includes important species of tunas, billfish, and sharks, which are harvested by West Coast HMS fisheries. HMS managed under the HMS FMP include tunas (North Pacific albacore, yellowfin tuna, bigeye tuna, skipjack tuna, and pacific bluefin tuna), sharks: common thresher shark, shortfin mako shark, and blue shark), billfish/swordfish (striped marlin and swordfish), and dorado or dolphinfish (Table 4).

# Table 4Highly Migratory Species in the Action Area

| Common Name               | Scientific Name   | Commercial Landing in<br>Pounds <sup>1</sup> | EFH Present | General Habitat |  |
|---------------------------|-------------------|----------------------------------------------|-------------|-----------------|--|
| Tunas                     |                   |                                              |             |                 |  |
| Northern Pacific Albacore | Thunnus alalunga  | 1,528                                        | No          | Open water      |  |
| Yellowfin Tuna            | Thunnus albacares | 351                                          | No          | Open water      |  |

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

| Common Name           | Scientific Name     | Commercial Landing in<br>Pounds <sup>1</sup> | EFH Present | General Habitat |  |  |  |
|-----------------------|---------------------|----------------------------------------------|-------------|-----------------|--|--|--|
| Bigeye tuna           | Thunnus obesus      | 0                                            | No          | Open water      |  |  |  |
| Skipjack tuna         | Katsuwonus pelamis  | 0                                            | No          | Open water      |  |  |  |
| Pacific bluefin tuna  | Thunnus thynnus     | 242                                          | No          | Open water      |  |  |  |
|                       |                     | Sharks                                       |             |                 |  |  |  |
| Blue shark            | Prionace glauca     | 37                                           | No          | Open water      |  |  |  |
| Common thresher shark | Alopias vulpinus    | 26,035                                       | Yes         | Open water      |  |  |  |
| Shortfin mako         | Isurus oxyrinchus   | 7,571                                        | Yes         | Open water      |  |  |  |
|                       | Marlir              | n and Swordfish                              |             |                 |  |  |  |
| Striped marlin        | Kajikia audax       | 0                                            | No          | Open water      |  |  |  |
| Swordfish             | Xiphias gladius     | 81,890                                       | No          | Open water      |  |  |  |
| Other                 |                     |                                              |             |                 |  |  |  |
| Dorado                | Coryphaena hippurus | 0                                            | Yes         | Open water      |  |  |  |

#### Table 4

### Highly Migratory Species in the Action Area

<sup>1</sup> CDFW Landing Data for 2017 for the Santa Barbara Area (caught in California water) (Appendix B)

**Potential for Occurrence.** Thresher shark, shortfin mako shark, and dorado EFH are found in the Action Area. These are highly migratory and mobile species that have large ranges and could seasonally move through the Action Area.

# 4.2 Habitat Areas of Particular Concern

In the Southern California Bight, there are seven EFHs in state waters: Point Conception, Potato Bank, Hidden Reef Kidney Bank, Catalina Island, Cherry Bank, Cowcod Conservation Area- west, and Cowcod Conservation Area- east.

In the Santa Barbara Channel area, there are five types of HAPCs: Seagrass, Canopy Kelp, Rocky Reefs, Estuaries, and Areas of Interest. Areas of Interest can correspond to a variety of submarine features such as seamounts, canyons and banks. However, for the Santa Barbara Channel region, Areas of Interest correspond to Marine Protected Areas.

# 4.2.1 SEAGRASS

Seagrasses are one of the only flowering plants, or angiosperms, that can grow in a marine environment. These plants support a diversity of life and can form extensive beds in shallow, protected, estuarine, or other nearshore environments. Two common seagrasses that occur in the west coast region are eelgrass (genus *Zostera*) and surfgrass (genus *Phyllospadix*), with eelgrass being the most prevalent in California (NOAA 2018a). Eelgrass (*Zostera marina and Z. pacifica.*) beds are located in soft, sandy sheltered seafloor environments,

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

typically in shallow bays and estuaries. Eelgrass beds function as nursery grounds and provide habitat for juvenile fish, snails, sea stars, anemones, crabs and clams (NPS 2018a), and further serve as potential foraging habitat for sea turtles (NOAA 2018b). In particular, the federally endangered green sea turtle may utilize eelgrass beds as foraging habitat (CDFW 2018). Surfgrass (*Phyllospadix* sp.) beds are located in the rocky intertidal and subtidal zones with turbulent surf. Surfgrass beds are habitat for several species of invertebrates, juvenile fish, and epiphytic algae (NPS 2018b).

Areas of Seagrass HAPC occur along the coast between Point Conception and Campus Point, and at two of the northern Channel Islands: Anacapa Island and Santa Cruz Island. Specific locations of Seagrass HAPC along the coast occur in three areas coinciding with three Marine Protected Areas: Point Conception SMR, Kashtayit SMCA, and Campus Point SMCA (approximately 59, 48, and 26 miles respectively from the project site). An additional area of Seagrass HAPC occurs at Point Mugu, which is approximately 23 miles from the project site.

At the Channel Islands, Seagrass HAPC occurs at Prisoners Harbor on Santa Cruz Island (approximately 22 miles from the project site), and around the entire perimeter of Anacapa Island, corresponding with the Anacapa Island Special Closure area (approximately 17 miles from the project site).

Seagrass HAPC is not present within the action area and seagrasses and eelgrass are not anticipated in or near the project site, given that the project site is located at a depth not suitable for seagrass and eelgrass growth due to light limitations. Therefore, Project Actions are not expected to have a negative effect on Seagrass HAPC or the species that utilize these habitats.

# 4.2.2 CANOPY KELP

Giant kelp, perhaps the most recognized species of brown macroalgae, forms the more southern kelp forests, from the southern Channel Islands, California to northwestern Baja. In California, there are two dominant species: Giant kelp (*Macrocystis pyrifera*) and bull kelp (*Nereocystis leutkeana*) (NOAA 2018a). Considered an ecosystem engineer, kelp provides a physical substrate and habitat for kelp forest communities (Jones et al. 1997). A wide range of sea life uses kelp forests for protection or food, including fish (particularly rockfish) and many invertebrates, such as amphipods, shrimp, marine snails, bristle worms, and brittle stars. Many marine mammals and birds are also found, including seals, sea lions, whales, sea otters, gulls, terns, snowy egrets, great blue herons, and cormorants, as well as some shore birds (NOAA 2013). In California, *Macrocystis pyrifera* forests, the nudibranch (*Melibe leonina*), and skeleton shrimp (*Caprella californica*) are closely associated with surface canopies; the kelp perch (*Brachyistius frenatus*), rockfish (*Sebastes* spp.), and many other fishes are found within the stipitate understory; brittle stars and turban snails(*Tegula* spp.) are closely associated with the kelp holdfast, while various herbivores, such as sea urchins and abalone, live under the prostrate canopy; many seastars, hydroids, and benthic fishes live among the benthic assemblages; solitary corals, various gastropods, and echinoderms live over the encrusting coralline algae (Foster and Schiel 1985). In addition,

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

pelagic fishes and marine mammals are loosely associated with kelp forests, usually interacting near the edges as they visit to feed on resident organisms.

In the Santa Barbara Channel area, Canopy Kelp HAPC occurs in nearshore waters along the coastline from Point Conception to the City of Ventura. Canopy Kelp HAPC also occurs around the perimeter of the northern Channel Islands: Anacapa, Santa Cruz, Santa Rosa and San Miguel Islands. The nearest Canopy Kelp HAPC is directly shoreward, approximately 3 miles north of the project site.

Canopy Kelp HAPC is not present at the action area. Project Actions are not expected to have a negative effect on Canopy Kelp HAPC or the species that utilize these habitats.

# 4.2.3 ROCKY REEFS

Rocky reefs are submerged rock outcrops with varying relief, known to be rich in both fish abundance and species diversity (NOAA 2018a). In these systems, rocky reefs provide prey, shelter, and refuge for recruiting, juvenile and adult fishes. Rocky reefs also provide surface area for colonization of algae and invertebrates. It is the physical structure itself of rocky reefs that is the most beneficial to the marine ecosystem. Nearshore rocky reefs in deeper waters do not receive enough light for photosynthesis and are inhabited by algae, invertebrates, and groundfishes. Rocky reefs in deeper waters do not receive enough light for photosynthesis and are therefore dominated by sessile invertebrates, deepsea corals, and groundfishes. Several species of groundfish such as lingcod, many species of rockfish, and cabezon prefer rocky reefs (NOAA 2018a). These species inhabit rocky reefs because they can find shelter from predators inside the structure they provide. In reefs close to the surface, algae can attach to the rocks and provide the base of a food chain, making rocky reefs highly productive. When reefs exist at depth below where sunlight can penetrate, invertebrate filter feeders dominate the community, capturing prey as they pass by in the current. Deep-sea corals also form on these reefs (NOAA 2018a).

Rocky Reef HAPC in the Santa Barbara Channel region is found in various locations around San Miguel, Santa Rosa, Santa Cruz and Anacapa Islands, as well as well as two main locations along the Santa Barbara County coastline: Point Conception (approximately 58 miles from the project site) and Carpinteria (approximately 10 miles from the project site, the closest Rocky Reef HAPC to the project site).

Rocky Reefs HAPC is not present at the project site. Project Actions are not expected to have a negative effect on Rocky Reefs HAPC or the species that utilize these habitats.

### 4.2.4 ESTUARIES

Estuaries are semi-enclosed regions where salt and freshwater mix, leading to a unique and biodiverse community of plant and animal species. Estuaries are characterized by high productivity, sediment deposition, varying salinity, and high biodiversity. Due to the variable salinity, tides, outflow and water properties, many organisms have adapted in a myriad of ways to exploit the environment. Estuaries are vital habitats for marine

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

fishes that use the shallow protected habitat as rearing zones for juveniles (NOAA 2018a). Without these important habitats, juveniles would be exposed to physical forces beyond their swimming capabilities as well as high predatory pressure from lack of shelter. The nutrient input, calm waters, and sedimentation of estuaries allow many plant species to thrive, forming the base of a very productive ecosystem that influences many habitats and species beyond its borders (NOAA 2018a). Estuaries also provide habitat for a variety of seabirds, invertebrates, marine mammals, and turtles. These habitats are typically classified into intertidal, subtidal, and pelagic communities defined by the occurring depths and associated tidal exposure and include rocky reef, dry reef, the intertidal zone, subtidal sandy bottom (inshore), eelgrass and surfgrass beds, kelp forest, rock jetties, piers, submarine canyon, and bay/harbor.

In the Santa Barbara Channel Area, there are several estuaries that are HAPC along the coastline. In Goleta, there are two estuaries: Devereux Slough and Goleta Slough. Devereux Slough is adjacent to the Campus Point SMCA and is approximately 30 miles from the project site. The Goleta Slough estuary is also designated as an MPA. The Goleta Slough SMCA and is approximately 27 miles from the project site. Another important area for estuaries is located along the coast from Pierpont Bay at the City of Ventura, and continues south down the coast to Mugu Canyon, by Point Mugu. The closest location of Estuaries HAPC is located shoreward, northwest approximately 5 miles from the project site in Pierpont Bay.

Estuaries HAPC is not present at the project site. Project Actions are not expected to have a negative effect on Estuaries HAPC or the species that utilize these habitats.

# 4.2.5 AREAS OF INTEREST

### 4.2.5.1 Marine Protected Areas

The Southern California MPAs, from Point Conception to the California-Mexico border, cover the Southern California Bight. The 50 MPAs in this region cover approximately 356 square miles, or about 15% of Southern California state waters (CDFW 2016). There are 19 marine protected areas in the Santa Barbara Channel area, along the coastline and at the Channel Islands. These include:

- 1. Point Conception SMR, located south of Lompoc along the Gaviota coastline. It is located approximately 59 miles west of the project site.
- 2. Kashtayit SMCA, located south of Gaviota in Santa Barbara County. It is located approximately 48 miles west of the project site.
- Naples SMCA, located south of the unincorporated areas of Santa Barbara County known as Naples. It is located approximately 32 miles west of the project site.
- 4. Campus Point SMCA, located along the Gaviota coastline between Coal Oil Point and Goleta Point, adjacent to the Goleta Slough Ecological Preserve. It is located approximately 26 miles west of the project site.

- 5. Goleta Slough SMCA, located northeast of Goleta Point and includes the slough adjacent to the Goleta Slough Ecological Reserve. It is located approximately 27 miles west of the project site.
- 6. Richardson Rock State and Federal Marine Reserve (San Miguel Island), located just off the northwest corner of San Miguel Island, the most westerly island of the Channel Islands. It is located approximately 62 miles southwest of the project site.
- 7. San Miguel Island Special Closure, located on San Miguel Island, wrapping around Point Bennett to Judith Rock, including the Judith Rock SMR. It is located approximately 61 miles southwest of the project site.
- 8. Harris Point State and Federal Marine Reserve (San Miguel Island), located on the northern side of San Miguel Island. It is located approximately 52 miles southwest of the project site.
- 9. Judith Rock SMR (San Miguel Island), located on the southern side of San Miguel Island. It is located approximately 61 miles southwest of the project site.
- 10. Carrington Point SMR (Santa Rosa Island), located on the northern side of Santa Rosa Island. It is located approximately 38 miles southwest of the project site.
- 11. Skunk Point SMR (Santa Rosa Island), located on the northeastern corner of Santa Rosa Island. It is located approximately 38 miles southwest of the project site.
- 12. South Point State and Federal Marine Reserve (Santa Rosa Island), located on the south side of Santa Rosa Island. It is located approximately 48 miles southwest of the project site.
- 13. Painted Cave SMCA (Santa Cruz Island) is located on the north wide of Santa Cruz Island near the most western point. It is located approximately 28 miles southwest of the project site.
- 14. Gull Island State and Federal Marine Reserve (Santa Cruz Island), located on the south side of Santa Cruz Island. It is located approximately 31 miles southwest of the project site.
- 15. Scorpion State and Federal Marine Reserve (Santa Cruz Island), located on the north side of Santa Cruz Island near the eastern point. It is located approximately 12 miles southwest of the project site.
- 16. Anacapa Island Special Closure encompasses the entire immediate perimeter of Anacapa Island. It is located approximately 17 miles south of the project site.
- 17. Anacapa Island State and Federal Marine Reserve, located on the northern side of Anacapa Island, is the closest MPA to the project site, located approximately 11 miles away to the south. This area includes Anacapa Island State Marine Reserve and the adjoining federal Anacapa Island Marine Reserve. It covers approximately 11.54 square miles of ocean in State waters and extends for approximately 3.5 miles. At Anacapa Island State and Federal Marine Reserve, it is unlawful to injure, damage, take, or possess any living, geological, or cultural marine resource.
- 18. Anacapa Island State and Federal Marine Conservation Area, located on the north side of west Anacapa Island abutting a federal marine conservation area located three nautical miles from Anacapa Island. It is located approximately 12 miles south of the project site.

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

19. Footprint State and Federal Marine Reserve (Anacapa Channel), located southwest of Anacapa Island between Anacapa and Santa Cruz Islands. It is located approximately 19 miles southwest of the project site.

Given the significant distance between the project site and the MPAs, there are no anticipated effects to the MPA ecosystems due to project actions.

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 5.0 ANALYSIS OF THE POTENTIAL ADVERSE EFFECTS OF THE ACTION ON EFH AND THE MANAGED SPECIES

An adverse effect is defined in the MSA as "any impact which reduces quality and/or quantity of EFH, and may include direct (e.g., contamination or physical disruption), indirect (e.g., loss of prey or reduction in species fecundity), site-specific or habitat-wide impacts, including individual, cumulative, or synergistic consequences of actions" (50 CFR 600.810). EFH is present for groundfish, coastal pelagic species, and highly migratory species. The project is not located in an area designated as an HAPC.

The potential adverse effects of the proposed project actions evaluated in this EFH Assessment would be:

- Entanglement in loose fishing gear that becomes caught in longlines;
- Temporary loss of sandy softbottom seafloor habitat from anchor installation and associated turbidity;
- Increased noise during construction;
- Hazardous contaminants from potential oil spills;
- Loss of prey resources due to fouling organisms; and
- Disturbance of the benthic environment from project operations.

# 5.1 Entanglement

Groundfish, coastal pelagic species, and highly migratory species could become entangled in loose fishing nets, debris, and other ghost gear that could become attached to mussel aquaculture gear. Absent mitigation, entanglement may adversely affect these species. However, with incorporation of MM BIO-1 through BIO-5 and MM BIO-10, which pertain to effective management, maintenance, and oversight of aquaculture gear, this effect is considered insignificant.

# 5.2 Temporary Loss of Habitat and Increased Turbidity due to Anchor Installation

Installation of the anchors associated with the project has the potential to temporarily increase turbidity and displace groundfish that may be utilizing the soft sediment habitat. However, these temporary impacts would be minimal. Each anchor would only have a footprint of less than one square meter and once installed no rope or chain touches the sea floor which also minimizes seabed disturbance. The total habitat area that would be disturbed by the proposed project would be small and regionally insignificant when compared to the overall

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

amount of habitat available in the area. Further, groundfish would be able to utilize the area soon after installation of the anchors. Therefore, impacts associated with benthic disturbance are considered insignificant.

## 5.3 Construction Noise

Project Activities will temporarily disturb and alter the seafloor habitat from the placement of screw anchors used to hold the lines, ropes, floats, and buoys. Construction-related noise with the installation of sand screw anchors is very low in the water, with only a 50-horsepower hydraulic power pack on the boat. Construction noise levels will be well within acceptable thresholds for fish species (ICF Jones & Stokes and Illingworth and Rodkin, Inc. 2009; NMFS 2007a). The fish species that may utilize the project area are highly mobile and have the ability to temporarily avoid the project site during construction activities. Therefore, noise impacts associated with installation of equipment are considered insignificant.

## 5.4 Hazardous Contaminants from Oil Spills

Construction and harvesting operations (and the use of any heavy equipment) could result in water-quality effects due to chemical-compound pollution (fuel, oil, lubricants, inadvertent spills, and other materials) in the event of an oil spill. As with any mechanized machinery, there is a small risk of accidental discharge of fuel, lubricants, or hydraulic fluids, which could affect marine wildlife in the area and result in injury and/or mortality to wildlife in the area of the contaminant through ingestion, physical contact that reduces survival functions (e.g., oiled wildlife), or a reduction in suitable feeding habitat. Although spills of this nature are detrimental to aquatic organisms, it is expected that the impacts would be negligible because of the limited occurrence of spills and corrective actions. Incorporation of Mitigation Measure BIO-7 would effectively mitigate risk associated with potential oil spills.

# 5.5 Loss of Prey Resources due to Fouling Organisms

Groundfish could potentially lose prey resources in the event that the substrate in or near the project site becomes populated with invasive "fouling organisms." The submerged structures of the Project Actions can provide hard substrate habitat for such organisms. Fouling organisms, such as invasive algae, sea squirts, and mussels, can pose economic and ecological risks to the marine environment. For example, the invasive carpet sea squirt (*Didemnum vexillum*) reproduces rapidly and fouls marine habitats (including shellfish aquaculture operations and fishing grounds), ship's hulls, and maritime structures. Like other fouling organisms, they are found on hard substrates that include floats, moorings and ropes, steel chain and ship hulls. They overgrow other marine organisms such as tunicates, sponges, macro algae, hydroids, anemones, bryozoans, scallops, mussels, and oysters. Where these colonies occur on the seabed, they likely cover the siphons of infaunal bivalves and serve as a barrier between groundfish and their prey. However, the invasive carpet sea squirt is not present in the Channel Islands area. The nearest known occurrences are in Monterey Bay and Mission Bay in San Diego (Woods Hole Science Center 2007). Further, there is a lack of

available substrate within or near the project site suitable for colonization by fouling organisms, as these invasive species cannot attach themselves to the sandy bottom substrate at the project site.

### 5.6 Disturbance to the Benthic Environment from Project Operations

Effects on sediment quality underneath shellfish aquaculture gear could be impacted from biodeposits and changes to the benthic invertebrate species composition that can adversely affect groundfish habitat. The Project Actions have the potential to disturb or alter the seafloor habitat by the deposition of biological materials resulting from dislodged or discharged shells, shell fragments, and deposits from the growing operation accumulating on the seafloor beneath the aquaculture structures. Such material typically includes feces and pseudofeces from the cultivated shellfish, as well as fouling organisms such as algae, barnacles, sponges, and other invertebrates that accumulate on the project equipment and subsequently become dislodged by natural processes, or due to harvesting or cleaning operations. Cultivated shellfish or shells from can also be dislodged from the structure during growth, storm events, predation by marine wildlife, and cleaning and harvesting activities. The accumulation of material including shell fragments, intact shells, fouling organisms, and feces can alter the physical and chemical characteristics of the bottom substrate, and can affect the benthic community and sediment-dwelling organisms that may be sensitive to conditions such as substrate composition and chemistry. Accumulation of material could also attract organisms that would change the composition of the benthic community. Other potential benthic impacts can include increased loads on sediment dissolved oxygen and redox conditions, and changes to nutrient cycling resulting in a decrease in benthic species abundance and sediment porosity (Pearson and Rosenberg 1978; Wilding and Nickell 2013; Wilding 2012). The effect on benthic nitrogen cycling is determined by biogeochemical and physical variables, such as water depth, current velocities, and bottom type and composition (CFGC 2018). Shellfish are able to alter the biogeochemical process in the water column by stimulating nitrification (Souchu et al. 2001). Mussel farms that are located in areas with greater water depths and current speeds spread bio-deposits over a larger area without posing the risk of enhanced sediment nutrient release (Stadmark & Conley 2011). A local mussel farm operated by the Santa Barbara Mariculture Company, with thirteen years in operation, conducted benthic analysis testing. This sediment analysis testing examined grain size, and levels of benthic epifaunal and infaunal biodiversity both within the farm and outside of the farm, and found no significant benthic impact (CFGC 2018). Given the conditions at the project site, with the significant depth, wave action and mixing, this potential impact is unlikely to be significant and bioaccumulation is expected to be dispersed over a larger area. To confirm this conclusion, Mitigation Measure BIO-9 has been incorporated, which requires monitoring of sediment quality and composition to evaluate any benthic impacts associated with the project.

Based on the foregoing, no adverse effects to essential fish habitat or habitat of particular concern are anticipated to occur from development and operation of the project.

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 6.0 CONCLUSION

This EFH Assessment represents the assessment of the effects of the proposed project actions on managed fisheries in accordance with legal requirements set forth in the MSFCMA . Implementation of the project could result in temporary impacts associated with construction activities and impacts from project operations associated with entanglement, changes in sediment composition, and potential oil spills. However, implementation of the proposed mitigation measures are expected to fully compensate for project impacts and reduce potential impacts on EFH species to negligible levels (Appendix D). The project as proposed may affect, but is not likely to adversely affect EFH and will not reduce the overall value of the EFH of managed groundfish, coastal pelagic, or highly migratory species.

#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

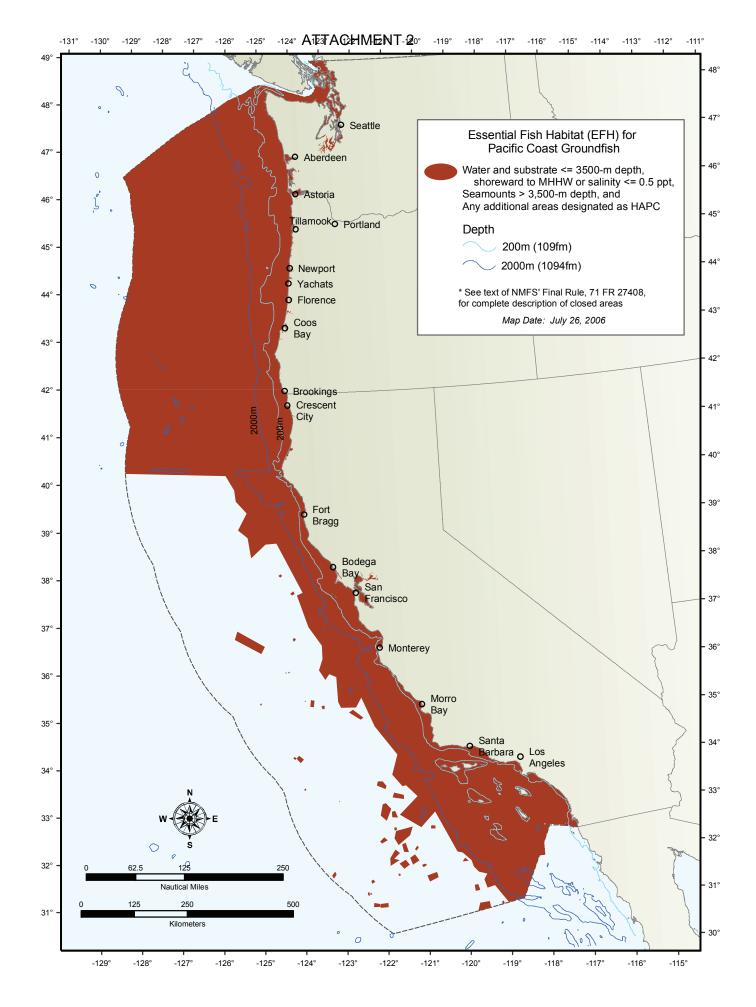
#### ESSENTIAL FISH HABITAT ASSESSMENT FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

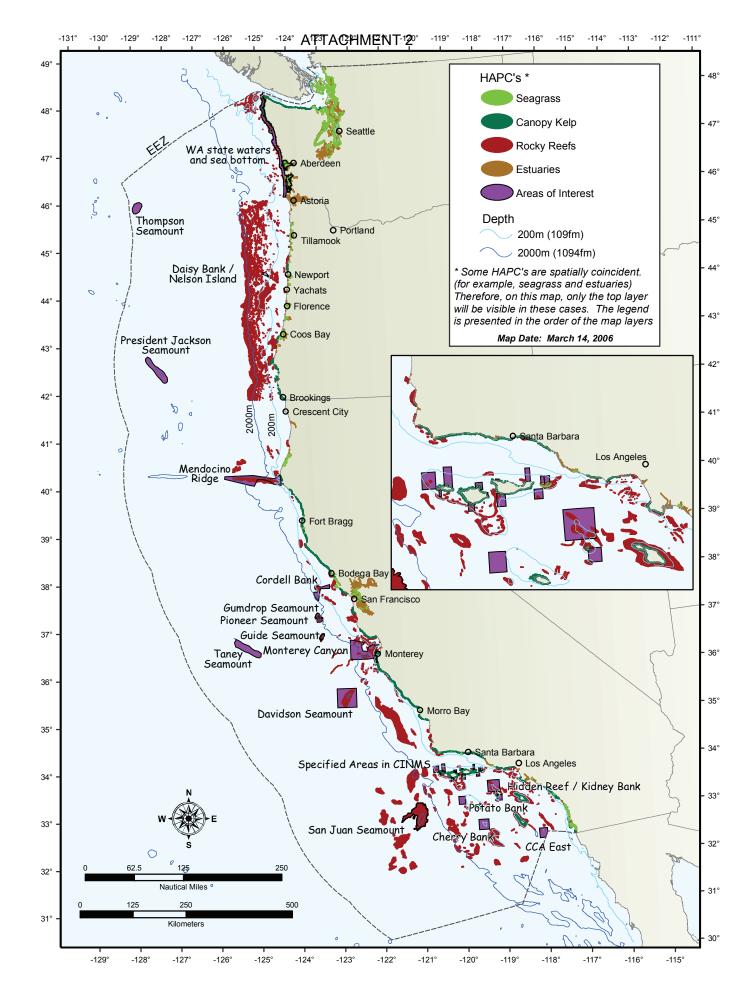
# 7.0 REFERENCES

- California Department of Fish and Wildlife (CDFW). 2018. Final California Commercial Landings for 2017. Published June 2018.
- CDFW. 2011. Kelp Canopy Map Data-2011-California Coast. California Department of Fish and Wildlife, Marine Region. Accessed April 2018 from the State of California Geoportal. https://map.dfg.ca.gov/arcgis/rest/services/Project\_Marine/Marine\_Kelp/MapServer
- CDFW. 2016. Southern California Marine Protected Areas. Marine Region (Region 7), State of California. Accessed August 29, 2018. https://www.wildlife.ca.gov/Conservation/Marine/MPAs/Network/ Southern-California#27158540-point-conception-state-marine-reserve
- Dudek. 2018. Biological Assessment for the Ventura Shellfish Enterprise.
- Dudek. 2017a. Draft Initial Study Checklist for the Ventura Shellfish Enterprise Project. Prepared by Dudek. Prepared for Ventura Port District. September.
- Dudek. 2017b. Draft Ventura Shellfish Enterprise Environmental Impact Report. Prepared by Dudek. Prepared for Ventura Port District. May.
- Dudek. 2017c. Ventura Shellfish Enterprise: Strategic Permitting Initiative to Substantially Increase Shellfish Farming in Southern California. 2017 NOAA Sea Grant Aquaculture Extension and Technology Transfer. Task 1 Deliverable: Strategic Permitting Plan. Prepared by Dudek. May 26.
- Gentry R.R., S.E. Lester, C.V. Kappel, C. White, T.W. Bell, J. Stevens, and S.D. Gaines. 2017. "Offshore Aquaculture: Spatial Planning Principles for Sustainable Development." *Ecology and Evolution*. 7:733– 743. doi: 10.1002/ece3.2637.
- Leet, W.S., C.M. Dewees, R. Klingbeil, and E.J. Larson, eds. 2001. California's Living Marine Resources: A Status Report. The Resources Agency, California Department of Fish and Game. 592 pp.
- NMFS. 2008. Steelhead Trout (Onchorhynchus mykiss). Oregon Coast ESU. Species of Concern. NOAA National Marine Fisheries Service. Accessed February 2018. http://www.westcoast.fisheries.noaa.gov/publications/SOC/steelhead\_detailed.pdf
- NMFS. 2009b. Cowcod (*Sebastes levis*). Species of Concern. NOAA National Marine Fisheries Service. Accessed February 2018. http://www.nmfs.noaa.gov/pr/pdfs/species/cowcod\_detailed.pdf

- NMFS. 2010. Chinook Salmon (Oncorhynchus tshamytscha). Central Valley Fall, Late-Fall Run ESU. Species of Concern. NOAA National Marine Fisheries Service. Accessed February 2018: http://www.nmfs.noaa.gov/pr/pdfs/species/chinooksalmon\_highlights.pdf
- NMFS. 2011a. Pacific Cod (*Gadus microcephalus*). Salish Sea Population. Species of Concern. NOAA National Marine Fisheries Service. Accessed February 2018. http://www.nmfs.noaa.gov/pr/pdfs/ species/pacificcod\_detailed.pdf
- NMFS. 2016a. Recovery Plan for Oregon Coast Coho Salmon Evolutionarily Significant Unit. National Marine Fisheries Service, West Coast Region, Portland, Oregon. Accessed February 2018: http://www.nmfs.noaa.gov/pr/recovery/plans/final\_oc\_coho\_recovery\_plandec\_20.pdf
- NMFS. 2016b. 5-Year Review: Summary and Evaluation of Southern California Coast Steelhead Distinct Population Segment. National Marine Fisheries Service. West Coast Region. California Coastal Office. Long Beach, California.
- NMFS. 2017e. Rockfish Recovery Plan: Puget Sound / Georgia Basin yelloweye rockfish (*Sebastes ruberrimus*) and bocaccio (*Sebastes paucispinis*). National Marine Fisheries Service. Seattle, WA.
- National Data Buoy Center. 2017. Station 46217 Anacapa Passage, CA (111). Center of Excellence in Marine Technology, NOAA. Accessed April 2018. http://www.ndbc.noaa.gov/ station\_history.php?station=46217
- National Ocean Council. 2013. National Ocean Policy Implementation Plan. April 2013. https://obamawhitehouse.archives.gov/sites/default/files/national\_ocean\_policy\_ implementation\_plan.pdf.
- NOAA NOS/NCCOS. 2018. Draft Ventura Shellfish Enterprise: Aquaculture Siting Analysis Results. Draft for Review 8/17/2018.
- NOAA. 2013a. "National Shellfish Initiative." Fact sheet. NOAA Fisheries. http://www.nmfs.noaa.gov/ aquaculture/docs/policy/natl\_shellfish\_init\_factsheet\_summer\_2013.pdf.
- NOAA. 2017a. United States West Coast, California. Port Hueneme to Santa Barbara. Mercator Projection. Nautical Chart. Washington, DC. U.S. Department of Commerce, NOAA, National Ocean Science, Coast Survey. 30th Ed. June 2013. Last correction 7/3/2017.
- NOAA. 2018a. California Species List Tools. NOAA Fisheries West Coast Region. Accessed February 2018. http://www.westcoast.fisheries.noaa.gov/maps\_data/california\_species\_list\_tools.html

- NOAA. 2018b. Endangered Species Act, Section 6 Program Website. Accessed February 2018. http://www.nmfs.noaa.gov/pr/conservation/states/california.htm
- NOAA. 2018d. Water Temperature Table of the Southern Pacific Coast. NOAA National Centers for Environmental Information. Last update on March 7, 2018: <u>https://www.nodc.noaa.gov/dsdt/cwtg/all\_meanT.html</u>
- NOAA. 2006. EFH- Groundfish (HAPCs). Essential Fish Habitat Maps & Data. West Coast Region. NOAA Fisheries. National Oceanic and Atmospheric Administration. Accessed August 20, 2018. http://www.westcoast.fisheries.noaa.gov/maps\_data/essential\_fish\_habitat.html
- NOAA. 2013. Kelp forests provide habitat for a variety of invertebrates, fish, marine mammals, and birds. National Ocean Service, National Oceanic and Atmospheric Administration. Accessed August 20, 2018. https://oceanservice.noaa.gov/facts/kelplives.html
- NOAA. 2018a. Essential Fish Habitat. West Coast Region. NOAA Fisheries. National Oceanic and Atmospheric Administration. Accessed August 28, 2018. http://www.westcoast.fisheries.noaa.gov/habitat/fish\_habitat/efh\_consultations\_go.html
- NOAA. 2018b. Fisheries West Coast Region. "The Importance of Eelgrass." NOAA Fisheries West Coast Region. Accessed August 28, 2018. http://www.westcoast.fisheries.noaa.gov/ stories/2014/04\_11072014\_eelgrass\_mitigation.html.
- NPS. 2018a. Channel Islands National Park. Eelgrass. Accessed August 27, 2018. https://www.nps.gov/ articles/eelgrass.htm
- NPS. 2018b. Channel Islands National Park. Surfgrass. Accessed August 27, 2018. https://www.nps.gov/ articles/surfgrass.htm
- OSPAR (OSPAR Commission). 2009. Assessment of the environmental impact of underwater noise. Biodiversity Series. Prepared by F. Thomsen and the Intersessional correspondence group on underwater noise. OSPAR Commission. ISBN : 978-1-906840-76-1. Publication Number: 436/2009.
- Pacific Fisheries Management Council. 2018. https://www.pcouncil.org/
- PFMC. 2016. Pacific Coast Groundfish Fishery Management Plan for the California, Oregon, and Washington Groundfish Fishery.


- Pacific Fishery Management Council (PFMC). 1998. Amendment 8 (to the Northern Anchovy Fishery Management Plan) Incorporating a Name Change to the Coastal Pelagic Species Fishery Management Plan. Appendix D: Description and Identification of Essential Fish Habitat for the Coastal Pelagic Species Fishery Management Plan.
- PFMC. 2005. Pacific Coast Groundfish Fishery Management Plan. Appendix B.
- PFMC. 2008. Management of Krill as an Essential Component of the California Current Ecosystem. Amendment 12 to the Coastal Pelagic Species Fishery Management Plan.
- PFMC. 2011. Fishery Management Plan for U.S. West Coast Fisheries for Highly Migratory Species. Appendix F: U.S. West Coast Highly Migratory Species: Life History Accounts and Essential Habitat Descriptions.
- PFMC. 2012. Pacific Coast Groundfish 5-year Review of Essential Fish Habitat.
- PFMC. 2014. Pacific Coast Salmon Fishery Management Plan. Appendix A: Identification and Description of Essential Fish Habitat, Adverse Impacts, and Recommended Conservation Measures for Salmon.
- Ritter, F. 2012. Collisions of sailing vessels with cetaceans worldwide: First insights into a seemingly growing problem. *Journal of Cetacean Research and Management* 12(1): 119-127.
- Santa Barbara Channelkeeper. 2017. About the Santa Barbara Channel. Accessed April 14, 2017 from the ChannelKeeper website: http://www.sbck.org/about-the-santa-barbara-channel/.
- USACE (U.S. Army Corps of Engineers). 2015. Programmatic Biological Assessment. Shellfish Activities in Washington State Inland Marine Waters. U.S. Army Corps of Engineers Regulatory Program. U.S. Army Corps of Engineers, Seattle.
- USACE. 2017. Decision Document. Nationwide Permit 48. Sections 10 and 404. February 2018. http://www.usace.army.mil/Portals/2/docs/civilworks/nwp/2017/NWP\_48\_2017\_final\_Dec2016. pdf?ver=2017-01-06-125513-060
- USFWS. 2018a. Information for Planning and Consulting. Accessed February 2018. https://ecos.fws.gov/ipac/
- USFWS. 2018b. Environmental Conservation Online System. Accessed February 2018. https://ecos.fws.gov/ecp/
- USFWS. 2018c. International Affairs CITES Informational Website. Oceanic Whitetip Shark (*Carcharhinus longimanus*). Accessed February 2018. https://www.fws.gov/international/cites/cop16/oceanic-whitetip-shark.html


- USFWS. 2018d. Environmental Conservation Online System (ECOS). Accessed February 2018. https://ecos.fws.gov/ecp/
- Ventura Shellfish Enterprise. 2018. Proposed Best Management Practices to Mitigate Potential Adverse Project Impacts
- Foster, M.S. and D.R. Schiel. 1985. The ecology of giant kelp forests in California: a community profile. US Fish and Wildlife Service Report 85: 1-152

### INTENTIONALLY LEFT BLANK

# APPENDIX A

# Groundfish EFH and HAPC Maps





# APPENDIX B

Final California Commercial Landings for 2017

# California Department of PistPand Wildlife

Page: 1

#### Table 12 - Monthly Landings In Pounds In The Santa Barbara Area During 2017

|                              |         | i di     |        |        | 55 m r Guin |        |        |        | 2017      |         |          |          | Total    |
|------------------------------|---------|----------|--------|--------|-------------|--------|--------|--------|-----------|---------|----------|----------|----------|
| Species                      | January | February | March  | April  | Мау         | June   | July   | August | September | October | November | December | Landings |
| California Waters            |         |          |        |        |             |        |        |        |           |         |          |          |          |
| Fishes                       |         |          |        |        |             |        |        |        |           |         |          |          |          |
| Anchovy, northern            | 0       | 0        | 0      | 0      | 32,056      | 60,027 | 0      | 0      | 0         | 640     | (        | ) 1,139  | 93,862   |
| Barracuda, California        | 0       | 0        | 0      | 0      | 34          | 348    | 102    | 0      | 0         | 3       | C        | 0 0      | 486      |
| Bass, giant sea              | 0       | 0        | 237    | 236    | 19          | 863    | 2,083  | 705    | 21        | 0       | 130      | ) 121    | 4,416    |
| Bonito, Pacific              | 821     | 28       | 203    | 236    | 0           | 0      | 71     | 124    | 15        | 221,332 | 134      | 154      | 223,120  |
| Butterfish (Pacific pompano) | 352     | 472      | 587    | 196    | 45          | 3      | 51     | 3      | 2         | 48      | 121      | 199      | 2,078    |
| Cabezon                      | 291     | 254      | 0      | 0      | 805         | 890    | 1,211  | 531    | 1,139     | 40      | 402      | 426      | 5,989    |
| Croaker, unspecifed          | 16      | 0        | 0      | 0      | 30          | 0      | 6      | 0      | 0         | 0       | C        | 0 0      | 53       |
| Croaker, white               | 2,468   | 2,971    | 2,123  | 869    | 2,003       | 187    | 93     | 38     | 89        | 7,944   | 7,639    | 9 1,746  | 28,170   |
| Eel, California moray        | 0       | 8        | 0      | 0      | 0           | 0      | 0      | 0      | 0         | 0       | C        | 0 0      | 8        |
| Fish, unspecified            | 101     | 135      | 9      | 0      | 0           | 0      | 0      | 0      | 5         | 85      | 85       | 5 0      | 420      |
| Grenadier                    | 46      | 0        | 0      | 0      | 0           | 0      | 0      | 0      | 0         | 0       | 385      | 5 320    | 751      |
| Guitarfish, shovelnose       | 48      | 0        | 23     | 1,821  | 40          | 0      | 0      | 0      | 14        | 5       | 410      | ) 15     | 2,376    |
| Hagfishes                    | 0       | 0        | 10,571 | 12,775 | 12,205      | 2,523  | 0      | 0      | 0         | 0       | (        | ) 0      | 38,074   |
| Halibut, California          | 12,417  | 8,202    | 14,010 | 12,907 | 11,448      | 13,754 | 24,871 | 19,111 | 9,956     | 7,918   | 6,159    | 8,011    | 148,763  |
| Halibut, unspecified         | 0       | 0        | 0      | 40     | 0           | 14     | 23     | 0      | 54        | 282     | (        | ) 0      | 413      |
| Kelpfish, giant              | 0       | 0        | 0      | 0      | 4           | 0      | 0      | 0      | 0         | 0       | (        | ) 0      | 4        |
| Lingcod                      | 552     | 374      | 0      | 0      | 1,689       | 1,548  | 2,095  | 1,060  | 1,149     | 944     | 1,704    | 1,383    | 12,499   |
| Lizardfish, California       | 1,431   | 2,888    | 5,607  | 1,603  | 7,959       | 98     | 77     | 59     | 52        | 9,480   | 13,696   | 5 2,738  | 45,688   |
| Louvar                       | 0       | 0        | 0      | 0      | 0           | 0      | 0      | 0      | 0         | 0       | (        | ) 28     | 28       |
| Mackerel, Pacific            | 67,798  | 0        | 18     | 1,170  | 0           | 4      | 15     | 20     | 5         | 311,731 | 80,358   | 3 73,693 | 534,813  |
| Mackerel, jack               | 3,233   | 2        | 50     | 440    | 0           | 0      | 15     | 0      | 0         | 0       | 2,161    | 2,797    | 8,697    |
| Mackerel, unspecified        | 1       | 17       | 20     | 96     | 21          | 3      | 22     | 78     | 254       | 168     | 20       | ) 95     | 795      |
| Mullet, striped              | 0       | 0        | 0      | 0      | 0           | 0      | 0      | 0      | 0         | 0       | 2        | 2 0      | 2        |
| Opah                         | 1,516   | 0        | 0      | 0      | 256         | 64     | 0      | 104    | 119       | 822     | 1,734    | 3,501    | 8,116    |
| Opaleye                      | 0       | 0        | 0      | 0      | 0           | 0      | 0      | 0      | 0         | 0       | 240      | ) 0      | 240      |
| Queenfish                    | 0       | 11       | 5      | 0      | 0           | 0      | 0      | 0      | 0         | 0       | (        | ) 0      | 16       |
| Ray, Pacific electric        | 0       | 40       | 61     | 0      | 0           | 0      | 0      | 0      | 0         | 0       |          | 0 0      | 101      |
| Ray, bat                     | 1,540   | 908      | 509    | 1,015  | 2,363       | 522    | 1,471  | 953    | 1,739     | 403     | 632      | 2 668    | 12,723   |
| Ray, unspecified             | 0       | 0        | 0      | 0      | 0           | 0      | 47     | 15     | 0         | 0       | (        | 0 0      | 62       |
| Rockfish, China              | 0       | 0        | 0      | 0      | 0           | 0      | 0      | 0      | 1         | 0       | (        | ) 0      | 1        |
| Rockfish, Mexican            | 0       | 0        | 0      | 0      | 2           | 0      | 0      | 0      | 0         | 0       | (        | ) 6      | 8        |
| Rockfish, aurora             | 0       | 0        | 0      | 0      | 0           | 0      | 0      | 23     |           | 22      |          |          | 71       |
| Rockfish, bank               | 0       | 86       | 3      | 51     | 5           | 0      | 83     | 7      | 0         | 97      | 21       | 208      | 561      |
| Rockfish, black-and-yellow   | 0       | 66       | 0      | 0      | 0           | 0      | 72     | 32     | 109       | 0       | 52       | 2 98     | 429      |
| Rockfish, black              | 4       | 0        | 0      | 0      | 0           | 0      | 0      | 0      | 0         | 0       | (        | ) 0      | 4        |
| Rockfish, blackgill          | 447     | 28       | 366    | 405    | 546         | 53     | 1,608  | 1,351  | 940       | 414     | 978      | 3 1,504  | 8,638    |
|                              |         |          |        |        |             |        |        |        |           |         |          |          |          |

# California Department of PistPand Wildlife

Page: 2

#### Table 12 - Monthly Landings In Pounds In The Santa Barbara Area During 2017

|                           |         | T CIL      |            |            | gs in round |            |            |            | uning 2017 |         |          |            | Total         |
|---------------------------|---------|------------|------------|------------|-------------|------------|------------|------------|------------|---------|----------|------------|---------------|
| Species                   | January | February   | March      | April      | Мау         | June       | July       | August     | September  | October | November | December   | Landings      |
| California Waters         |         |            |            |            |             |            |            |            |            |         |          |            |               |
| Fishes                    |         |            |            |            |             |            |            |            |            |         |          |            |               |
| Rockfish, blue            | 76      | 117        | 0          | 0          | 127         | 206        | 281        | 80         | 211        | 517     | 251      | 429        | 2,293         |
| Rockfish, bocaccio        | 293     | 506        | 0          | 0          | 521         | 740        | 1,322      | 549        | 688        | 668     | 639      | 636        | 6,563         |
| Rockfish, brown           | 12      | 000        | 0          | 0          | 18          | 20         | 10         | 13         | 0          | 11      |          | 12         | 121           |
| Rockfish, canary          | 0       | 55         | 0          | 0          | 14          | 51         | 58         | 92         | 399        | 285     |          | 230        | 1,363         |
|                           | 0       | 00         | 0          | 0          | 14          | 01         | 00         | 02         | 000        | 200     |          | 200        | 1,000         |
| Rockfish, chilipepper     | 7       | 0          | 0          | 0          | 25          | 35         | 42         | 10         | 11         | 78      | 63       | 55         | 326           |
| Rockfish, copper          | 754     | 332        | 0          | 0          | 1,423       | 435        | 1,311      | 931        | 1,284      | 1,068   | 409      | 957        | 8,903         |
| Rockfish, flag            | 9       | 6          | 0          | 0          | 16          | 11         | 3          | 11         | 1          | 2       | 10       | 28         | 96            |
| Rockfish, gopher          | 66      | 5          | 0          | 0          | 50          | 51         | 107        | 35         | 247        | 220     | 38       | 171        | 989           |
| Rockfish, grass           | 492     | 238        | 0          | 0          | 2,341       | 1,037      | 1,642      | 239        | 2,207      | 139     | 951      | 614        | 9,899         |
|                           |         |            |            |            |             |            |            |            |            |         |          |            |               |
| Rockfish, greenblotched   | 0       | 4          | 0          | 0          | 0           | 21         | 6          | 0          | 9          | 16      |          | 2          | 59            |
| Rockfish, greenspotted    | 105     | 87         | 0          | 0          | 300         | 249        | 246        | 150        | 267        | 292     |          | 376        | 2,481         |
| Rockfish, greenstriped    | 5       | 0          | 0          | 0          | 15          | 14         | 13         | 11         | 1          | 24      | 73       | 29         | 185           |
| Rockfish, group nearshore | 0       | 0          | 0          | 0          | 0           | 0          | 0          | 0          | 0          | 0       |          | 58         | 58            |
| Rockfish, group red       | 0       | 0          | 0          | 0          | 0           | 0          | 0          | 0          | 0          | 523     | 0        | 0          | 523           |
| Rockfish, group shelf     | 2       | 0          | 0          | 0          | 0           | 0          | 0          | 0          | 0          | 0       | 0        | 0          | 2             |
| Rockfish, kelp            | 40      | 24         | 0          | 0          | 36          | 2          | 43         | 56         | 70         | 76      |          | 36         | 409           |
| Rockfish, olive           | 0       | 47         | 0          | 0          | 0           | 0          | 0          | 0          | 5          | 8       | 0        | 3          | 63            |
| Rockfish, rosy            | 4       | 5          | 0          | 0          | 11          | 0          | 0          | 0          | 0          | 0       | 0        | 0          | 20            |
| Rockfish, speckled        | 31      | 59         | 0          | 0          | 15          | 76         | 140        | 32         | 49         | 113     | 52       | 21         | 586           |
|                           |         |            |            |            |             |            |            |            |            |         |          |            |               |
| Rockfish, splitnose       | 0       | 0          | 2          | 2          | 0           | 0          | 13         | 6          | 0          | 6       | 0        | 0          | 29            |
| Rockfish, squarespot      | 10      | 11         | 0          | 0          | 1           | 1          | 0          | 0          | 0          | 0       | 0        | 0          | 22            |
| Rockfish, starry          | 35      | 22         | 0          | 0          | 186         | 34         | 112        | 67         | 71         | 43      | 121      | 30         | 720           |
| Rockfish, treefish        | 25      | 14         | 0          | 0          | 29          | 11         | 51         | 87         | 101        | 19      | 10       | 29         | 375           |
| Rockfish, unspecified     | 2       | 0          | 3          | 0          | 0           | 0          | 56         | 53         | 39         | 181     | 0        | 0          | 334           |
| Rockfish, vermilion       | 2,273   | 4,689      | 0          | 0          | 4,740       | 7,518      | 8,564      | 6,820      | 7,887      | 5,191   | 6,601    | 9,402      | 63,684        |
| Rockfish, widow           | 2,275   | 4,003<br>2 | 0          | 0          | -,,+0       | 15         | 45         | 0,020      | 0          | 15      | ,        | 2          | 88            |
| Rockfish, yellowtail      | 47      | 171        | 0          | 0          | 41          | 81         | 45<br>95   | 157        | 159        | 127     | 209      | 190        | 1,277         |
| Sablefish                 | 23,594  | 21,537     | 14,377     | 21,459     | 36,394      | 10,241     | 15,543     | 21,358     | 22,818     | 46,424  | 50,850   | 43,703     | 328,296       |
| Salmon, Chinook           | 23,394  | 21,557     | 0          | 21,439     | 131         | 499        | 10,040     | 21,550     | 22,010     |         |          | -3,703     | 630           |
|                           | 0       | 0          | 0          | 0          | 101         | 100        | 0          | 0          | 0          | 0       | 0        | 0          | 000           |
| Sanddab                   | 47      | 224        | 57         | 392        | 305         | 110        | 88         | 59         | 187        | 491     | 749      | 419        | 3,126         |
| Sardine, Pacific          | 1,157   | 0          | 0          | 13         | 2,305       | 107,777    | 1,538      | 0          | 0          | 58,841  | 19,786   | 12,363     | 203,780       |
| Sargo                     | 0       | 0          | 0          | 0          | 0           | 0          | 0          | 0          | 0          | 0       | 1        | 0          | 1             |
| Scorpionfish, California  | 49      | 22         | 0          | 0          | 223         | 96         | 21         | 28         | 37         | 71      | 62       | 65         | 673           |
| Seabass, white            | 782     | 448        | 8,438      | 388        | 281         | 41,420     | 54,100     | 13,132     | 55         | 1,856   | 758      | 421        | 122,078       |
| Shork Dacific angel       | 4 00 4  | 4 004      | 1 220      | 1 054      | 1 667       | 2 0 0 4    | 2 005      | 0.040      | 407        | 454     | 670      | 705        | 10 600        |
| Shark, Pacific angel      | 1,834   | 1,261      | 1,338<br>0 | 1,251<br>0 | 1,667<br>0  | 3,081<br>0 | 3,905<br>0 | 2,043<br>0 | 427        | 451     | 670<br>0 | 765<br>242 | 18,693<br>375 |
| Shark, bigeye thresher    | 0       | 0          | U          | U          | U           | U          | U          | 0          | 133        | 0       | 0        | 242        | 375           |

# California Department of PistPand Wildlife

Page: 3

#### Table 12 - Monthly Landings In Pounds In The Santa Barbara Area During 2017

| Species                   | January | February | March  | April  | Мау    | June   | July   | August | September | October | November | December | Total<br>Landings |
|---------------------------|---------|----------|--------|--------|--------|--------|--------|--------|-----------|---------|----------|----------|-------------------|
| California Waters         |         |          |        | ·      |        |        |        |        | •         |         |          |          | ¥                 |
| Fishes                    |         |          |        |        |        |        |        |        |           |         |          |          |                   |
| Shark, blue               | 0       | 0        | 0      | 0      | 25     | 0      | 12     | 0      | 0         | 0       | (        | 0 0      | 37                |
| Shark, brown smoothhound  | 31      | 19       | 18     | 26     | 164    | 34     | 18     | 3      | 0         | 0       | 0        | ) 7      | 320               |
| Shark, gray smoothhound   | 0       | 0        | 0      | 0      | 7      | 0      | 0      | 0      | 0         | 0       | C        | ) 0      | 7                 |
| Shark, leopard            | 211     | 1,444    | 470    | 201    | 439    | 65     | 64     | 283    | 104       | 38      | 21       | I 184    | 3,523             |
| Shark, pelagic thresher   | 0       | 0        | 0      | 0      | 0      | 0      | 0      | 12     | 0         | 0       | 0        | 0 0      | 12                |
| Shark, sevengill          | 0       | 0        | 0      | 0      | 0      | 0      | 0      | 38     | 35        | 0       | 0        | 0 0      | 73                |
| Shark, shortfin mako      | 170     | 0        | 131    | 0      | 286    | 1,657  | 1,257  | 331    | 594       | 585     | 1,260    | 1,300    | 7,571             |
| Shark, soupfin            | 139     | 551      | 597    | 445    | 781    | 45     | 377    | 259    | 344       | 347     | 2,041    | 2,050    | 7,977             |
| Shark, spiny dogfish      | 80      | 18       | 8      | 5      | 10     | 25     | 101    | 0      | 95        | 5       | C        | ) 0      | 347               |
| Shark, swell              | 15      | 129      | 0      | 0      | 0      | 0      | 0      | 0      | 0         | 0       | C        | 0 0      | 143               |
| Shark, thresher           | 4,973   | 0        | 0      | 238    | 1,981  | 2,459  | 4,714  | 1,035  | 596       | 341     | 4,612    | 2 5,087  | 26,035            |
| Shark, unspecified        | 506     | 708      | 285    | 275    | 140    | 190    | 671    | 427    | 490       | 415     | 230      | 0 0      | 4,336             |
| Shark, white              | 0       | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0         | 0       | C        | ) 130    | 130               |
| Sheephead, California     | 2,052   | 907      | 0      | 0      | 3,141  | 3,061  | 4,580  | 1,344  | 3,435     | 378     | 432      | 2 1,225  | 20,554            |
| Skate, California         | 9       | 0        | 11     | 0      | 0      | 0      | 0      | 0      | 12        | 0       | C        | 0 0      | 32                |
| Skate, longnose           | 331     | 103      | 202    | 302    | 262    | 245    | 244    | 277    | 125       | 329     | 116      | 6 174    | 2,710             |
| Skate, unspecified        | 619     | 163      | 270    | 118    | 240    | 215    | 270    | 127    | 760       | 520     | 473      | 3 498    | 4,273             |
| Sole, Dover               | 40      | 0        | 0      | 7      | 11     | 19     | 45     | 48     | 33        | 67      | 2        | 2 51     | 323               |
| Sole, English             | 148     | 262      | 224    | 265    | 257    | 150    | 233    | 62     | 61        | 274     | 264      | 4 339    | 2,538             |
| Sole, bigmouth            | 1       | 0        | 0      | 0      | 0      | 0      | 0      | 0      |           | 0       |          | ,        | 1                 |
| Sole, curlfin             | 0       | 0        | 0      | 0      | 0      | 0      | 0      | 0      |           | 0       | -        |          | 25                |
| Sole, fantail             | 89      | 98       | 136    | 20     | 32     | 213    | 523    | 575    |           | 34      |          |          | 2,132             |
| Sole, petrale             | 52      | 65       | 98     | 255    | 330    | 247    | 277    | 249    | 233       | 179     | 175      | 5 162    | 2,322             |
| Sole, rock                | 31      | 20       | 21     | 36     | 91     | 200    | 93     | 71     | 75        | 69      | 57       | 7 101    | 865               |
| Sole, sand                | 0       | 0        | 0      | 0      | 0      | 86     | 32     | 86     | 4         | 21      |          |          | 228               |
| Sole, unspecified         | 256     | 68       | 116    | 232    | 379    | 56     | 221    | 92     | 69        | 292     | 124      | 4 79     | 1,985             |
| Splittail                 | 0       | 601      | 0      | 0      | 0      | 0      | 0      | 0      | 0         | 0       | C        | 0 0      | 601               |
| Stingray                  | 0       | 0        | 0      | 0      | 0      | 950    | 300    | 0      | 99        | 1,062   | 17       | 22       | 2,450             |
| Surfperch, barred         | 274     | 0        | 192    | 96     | 0      | 0      | 0      | 56     |           | 57      |          |          | 808               |
| Surfperch, rainbow        | 0       | 4        | 4      | 0      | 10     | 13     | 2      | 1      | 2         | 0       |          | -        | 39                |
| Surfperch, rubberlip      | 0       | 0        | 0      | 0      | 0      | 0      | 0      | 5      | 0         | 0       | C        | 0 0      | 5                 |
| Swordfish                 | 8,807   | 0        | 0      | 0      | 0      | 0      | 4,844  | 3,139  | 4,791     | 6,894   | 11,917   | 41,499   | 81,890            |
| Thornyhead, longspine     | 2,172   | 1,262    | 1,006  | 2,062  | 3,146  | 1,251  | 2,844  | 1,846  | 725       | 875     | 1,283    | 8 865    | 19,336            |
| Thornyhead, shortspine    | 27,502  | 14,845   | 18,273 | 24,105 | 35,177 | 12,312 | 27,872 | 16,272 | 13,606    | 18,754  | 30,455   | ,        | 260,605           |
| Thornyheads               | 0       | 0        | 0      | 0      | 0      | 0      | 12     | 0      |           | 0       |          |          | 55                |
| Trawled fish, unspecified | 8       | 0        | 0      | 0      | 0      | 0      | 0      | 50     | 0         | 0       | C        | ) 0      | 58                |

# California Department of PistPand Wildlife

Page: 4

#### Table 12 - Monthly Landings In Pounds In The Santa Barbara Area During 2017

| _                                  |         | Iau      |        |        | ys in Pound | is in the S |        | ara Area D | uning 2017 |         |          |          |                   |
|------------------------------------|---------|----------|--------|--------|-------------|-------------|--------|------------|------------|---------|----------|----------|-------------------|
| Species                            | January | February | March  | April  | Мау         | June        | July   | August     | September  | October | November | December | Total<br>Landings |
| California Waters                  |         |          |        |        |             |             |        |            |            |         |          |          |                   |
| Fishes                             |         |          |        |        |             |             |        |            |            |         |          |          |                   |
| Triggerfish                        | 0       | 0        | 0      | 0      | 0           | 0           | 0      | 0          | 0          | 0       | 2        | • 0      | 4                 |
| Tuna, albacore                     | 0       | 0        | 0      | 0      | 0           | 0           | 0      | 0          |            | 1,528   |          |          | 1.528             |
|                                    | Ũ       | 0        | Ū.     | 0      | 0           | 0           | 0      | · ·        | Ū          | .,020   |          | , C      | ,,020             |
| Tuna, bluefin                      | 0       | 0        | 0      | 0      | 0           | 0           | 15     | 227        | 0          | 0       | C        | 0 0      | 242               |
| Tuna, yellowfin                    | 0       | 0        | 0      | 0      | 0           | 0           | 0      | 0          | 351        | 0       | (        | 0 0      | 351               |
| Turbot, hornyhead                  | 0       | 0        | 0      | 0      | 0           | 0           | 2      | 0          | 0          | 0       | C        | 0 0      | 2                 |
| Turbot                             | 0       | 0        | 0      | 0      | 0           | 0           | 5      | 4          | 0          | 0       | (        | 0 0      | 9                 |
| Whitefish, ocean                   | 747     | 74       | 242    | 128    | 356         | 30          | 433    | 247        | 332        | 214     | 584      | 815      | 4,203             |
| Whiting, Pacific                   | 31      | 6        | 10     | 30     | 32          | 0           | 0      | 0          | 0          | 0       | 40       | ) 0      | 148               |
| Yellowtail                         | 0       | 0        | 81     | 475    | 3,245       | 6,965       | 3,245  | 728        | 1,888      | 2,202   | 11,412   | 18,046   | 48,287            |
| Crustaceans                        |         |          |        |        |             |             |        |            |            |         |          |          |                   |
| Crab, Dungeness                    | 0       | 0        | 0      | 2,725  | 3,710       | 5,646       | 0      | 0          | 0          | 0       | (        | 794      | 12,875            |
| Crab, armed box                    | 0       | 0        | 0      | 0      | 0           | 0           | 9      | 0          | 0          | 0       | C        | 0 0      | 9                 |
| Crab, box                          | 107     | 550      | 1,210  | 1,408  | 1,958       | 4,784       | 12,744 | 10,970     | 2,289      | 2,524   | 3,846    | 5,492    | 47,882            |
| Crab, brown rock                   | 8,192   | 10,178   | 8,184  | 10,331 | 5,519       | 11,713      | 9,996  | 9,333      | 13,430     | 7,790   | 6,270    | 6,921    | 107,857           |
| Crab, claws                        | 5       | 0        | 0      | 0      | 0           | 0           | 28     | 0          | 82         | 118     | 71       | 21       | 325               |
| Crab, king                         | 0       | 0        | 0      | 28     | 470         | 17          | 137    | 22         | 472        | 492     | 408      | 617      | 2,663             |
| Crab, pelagic red                  | 0       | 0        | 0      | 0      | 0           | 0           | 1,936  | 0          | 0          | 0       | C        | ) 0      | 1,936             |
| Crab, red rock                     | 32,156  | 31,128   | 30,034 | 36,301 | 35,328      | 57,007      | 71,605 | 65,991     | 44,091     | 29,096  | 32,413   | 31,675   | 496,826           |
| Crab, rock unspecified             | 3,564   | 5,431    | 4,937  | 6,087  | 3,967       | 3,211       | 4,730  | 3,756      | 1,934      | 4,208   | 3,475    | 3,564    | 48,864            |
| Crab, southern kelp                | 0       | 0        | 0      | 0      | 0           | 0           | 0      | 0          | 6          | 5       | 20       | ) 121    | 153               |
| Crab, spider                       | 5,997   | 6,680    | 3,762  | 3,009  | 1,600       | 1,385       | 3,768  | 3,938      | 4,320      | 7,378   | 5,955    | 5 4,045  | 51,836            |
| Crab, spider/sheep claws           | 91      | 0        | 0      | 0      | 0           | 0           | 0      | 6          | 0          | 0       | (        | 0 0      | 97                |
| Crab, tanner                       | 0       | 0        | 0      | 0      | 0           | 0           | 0      | 0          | 0          | 0       | C        | ) 7      | 7                 |
| Crab, yellow rock                  | 10,294  | 8,887    | 11,763 | 13,065 | 16,238      | 23,100      | 34,678 | 35,089     | 33,708     | 22,198  | 19,317   | 23,622   | 251,956           |
| Crustacean, unspecified            | 354     | 63       | 0      | 0      | 0           | 0           | 0      | 0          | 0          | 0       | (        | ) 0      | 417               |
| Lobster, California spiny          | 70,507  | 38,129   | 32,140 | 0      | 0           | 0           | 0      | 0          | 0          | 83,099  | 54,617   | 49,720   | 328,213           |
| Prawn, golden                      | 0       | 0        | 780    | 0      | 0           | 0           | 0      | 0          | 0          | 0       | (        | 0        | 780               |
| Prawn, ridgeback                   | 45,449  | 37,985   | 66,722 | 44,149 | 32,149      | 544         | 0      | 0          | 0          | 57,894  | 40,715   | 5 43,181 | 368,787           |
| Prawn, spot                        | 10      | 17,393   | 13,631 | 5,991  | 14,621      | 10,934      | 14,828 | 16,131     | 13,554     | 29,702  | 25       | 5 106    | 136,926           |
| Shrimp, mantis                     | 0       | 0        | 11     | 14     | 0           | 0           | 0      | 0          | 0          | 0       | (        | 0 0      | 25                |
| Shrimp, unspecified<br>Echinoderms | 0       | 0        | 1,012  | 67     | 0           | 0           | 0      | 0          | 0          | 0       | C        | ) 19     | 1,098             |
| Bat star                           | 0       | 0        | 0      | 0      | 0           | 0           | 938    | 0          | 0          | 0       | (        | 0 0      | 938               |
| Sea cucumber, giant red            | 74      | 208      | 1,088  | 985    | 352         | 3,500       | 21,524 | 6,962      | 2,363      | 1,099   | 219      | ) 101    | 38,474            |
| Sea cucumber, unspecified          | 27      | 5        | 50     | 0      | 0           | 0           | 0      | 15         | 0          | 45      | 532      | 2 0      | 674               |
| Sea cucumber, warty                | 270     | 4,332    | 17,641 | 12,189 | 14,395      | 8,892       | 8,343  | 3,116      | 302        | 2       | C        | ) 110    | 69,591            |

# California Department of Pist2and Wildlife

Page: 5

#### Table 12 - Monthly Landings In Pounds In The Santa Barbara Area During 2017

| Species                   | January   | February | March   | April     | Мау       | June      | July      | August  | September | October   | November   | December   | Total<br>Landings |
|---------------------------|-----------|----------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|------------|------------|-------------------|
| California Waters         |           |          |         | •         |           |           |           |         | •         |           |            |            | ¥                 |
| Echinoderms               |           |          |         |           |           |           |           |         |           |           |            |            |                   |
| Sea urchin, purple        | 3         | 0        | 0       | 0         | 0         | 0         | 30        | 100     | 35        | 47        | 174        | i 11       | 400               |
| Sea urchin, red           | 342,621   | 227,183  | 286,516 | 142,375   | 228,540   | 67,342    | 283,626   | 248,546 | 241,964   | 170,871   | 268,727    | 259,786    | 2,768,096         |
| Mollusks                  |           |          |         |           |           |           |           |         |           |           |            |            |                   |
| Clam, unspecified         | 0         | 224      | 0       | 0         | 0         | 0         | 0         | 0       | 0         | 0         | C          | ) 0        | 224               |
| Limpet, keyhole           | 0         | 0        | 10      | 8         | 10        | 0         | 5         | 101     | 2         | 4         | C          | ) 0        | 140               |
| Mussel                    | 0         | 0        | 0       | 0         | 0         | 0         | 0         | 0       | 0         | 0         | 120        | ) 0        | 120               |
| Octopus, unspecified      | - 1       | 18       | 2       | 34        | 20        | 2         | 40        | 1       | 8         | 41        | 11         | 37         | 216               |
| Snail, top                | 0         | 0        | 0       | 0         | 0         | 0         | 160       | 405     | 0         | 8         | C          | ) 0        | 573               |
| Snails, moon              | 72        | 197      | 56      | 87        | 123       | 76        | 77        | 218     | 247       | 266       | 240        | 287        | 1,946             |
| Squid, market             | 1,053,293 | 12       | 38,971  | 8,119,115 | 2,850,369 | 5,303,390 | 968,654   | 110,710 | 543,755   | 7,079,949 | 30,182,570 | 31,210,238 | 87,461,026        |
| Whelk, Kellet's           | 6,525     | 4,359    | 4,591   | 0         | 0         | 0         | 5,843     | 4,625   | 5,294     | 5,824     | 2,876      | 3,040      | 42,975            |
| Worms                     |           |          |         |           |           |           |           |         |           |           |            |            |                   |
| Invertebrate Unspecified  | 0         | 21       | 115     | 5         | 0         | 0         | 0         | 0       | 0         | 0         | C          | 0 0        | 141               |
| Spiders, sea              | 258       | 307      | 0       | 0         | 0         | 0         | 0         | 0       | 0         | 0         | C          | 0 0        | 565               |
| Waters Area Total:        | 1,753,994 | 461,010  | 604,234 | 8,484,659 | 3,382,657 | 5,786,759 | 1,620,370 | 618,158 | 990,077   | 8,218,272 | 30,888,301 | 31,907,844 | 94,716,336        |
| Other Waters              |           |          |         |           |           |           |           |         |           |           |            |            |                   |
| Fishes                    |           |          |         |           |           |           |           |         |           |           |            |            |                   |
| Dolphin (fish)            | 53        | 0        | 100     | 0         | 90        | 0         | 0         | 0       | 0         | 0         | C          | 0 0        | 243               |
| Escolar                   | 74        | 0        | 403     | 0         | 269       | 0         | 0         | 0       | 0         | 0         | C          | 0 0        | 746               |
| Fish, unspecified         | 632       | 0        | 590     | 0         | 442       | 0         | 0         | 0       | 0         | 0         | C          | 0 0        | 1,664             |
| Goby, yellowfin           | 0         | 0        | 0       | 27        | 0         | 0         | 0         | 0       | 0         | 0         | C          | 0 0        | 27                |
| Opah                      | 5,925     | 0        | 5,349   | 0         | 7,210     | 0         | 0         | 0       | 0         | 0         | C          | ) 0        | 18,484            |
| Shark, shortfin mako      | 102       | 0        | 0       | 0         | 549       | 0         | 0         | 0       | 0         | 0         | C          | ) 0        | 651               |
| Swordfish                 | 246       | 0        | 287     | 0         | 1,506     | 0         | 0         | 0       | 0         | 0         | C          | ) 0        | 2,039             |
| Tuna, bigeye              | 3,644     | 0        | 12,833  | 0         | 26,144    | 0         | 0         | 0       | 0         | 0         | C          | ) 0        | 42,621            |
| Tuna, skipjack            | 257       | 0        | 40      | 0         | 181       | 0         | 0         | 0       | 0         | 0         | C          | ) 0        | 478               |
| Tuna, yellowfin           | 1,150     | 0        | 856     | 238       | 2,493     | 0         | 0         | 0       | 0         | 0         | C          | 0 0        | 4,737             |
| Wahoo                     | 189       | 0        | 221     | 70        | 935       | 0         | 0         | 0       | 0         | 0         | C          | 0 0        | 1,415             |
| Crustaceans               |           |          |         |           |           |           |           |         |           |           |            |            |                   |
| Crab, brown rock          | 0         | 0        | 0       | 357       | 0         | 0         | 0         | 0       | 0         | 0         | C          | 0 0        | 357               |
| Crab, red rock            | 0         | 0        | 0       | 801       | 0         | 0         | 0         | 0       | 0         | 0         | (          | ) 0        |                   |
| Lobster, California spiny | 0         | 0        | 0       | 0         | 0         | 0         | 0         | 0       | 0         | 0         | 284        | ۰<br>۱     | 284               |
| Mollusks                  |           |          |         |           |           |           |           |         |           |           |            |            |                   |
| Squid, market             | 0         | 0        | 0       | 0         | 0         | 0         | 0         | 0       | 0         | 0         | 13,950     | 178,336    | 192,286           |
| Waters Area Total:        | 12,272    | 0        | 20,679  | 1,493     | 39,819    |           | 0         | 0       | 0 -       | 0         | 14,234     | 178,336    | 266,833           |
| _                         | , _       | -        |         | ,         | - ,       |           |           |         |           |           | ,          |            |                   |

# California

Page: 6 Date: 06/13/2018

#### Table 12 - Monthly Landings In Pounds In The Santa Barbara Area During 2017

|         |              |           |          |         |           |           |           |           |         |           |           |            | <b>_</b> . | Total      |  |
|---------|--------------|-----------|----------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|------------|------------|------------|--|
| Species |              | January   | February | March   | April     | Мау       | June      | July      | August  | September | October   | November   | December   | Landings   |  |
|         | Grand Total: | 1,766,266 | 461,010  | 624,913 | 8,486,152 | 3,422,476 | 5,786,759 | 1,620,370 | 618,158 | 990,077   | 8,218,272 | 30,902,535 | 32,086,180 | 94,983,169 |  |
|         |              |           |          |         |           | ******    | ****      |           |         |           |           |            |            |            |  |

End of Report

Total Records: 24,196

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017

Page: 1 Date: 06/13/2018

| Species                   | Pounds     | Value        |  |
|---------------------------|------------|--------------|--|
| VENTURA                   |            |              |  |
| Squid, market             | 52,045,559 | \$25,988,613 |  |
| Lobster, California spiny | 78,380     | \$1,467,925  |  |
| Prawn, spot               | 85,400     | \$1,205,760  |  |
| Prawn, ridgeback          | 302,735    | \$708,534    |  |
| Halibut, California       | 52,431     | \$312,878    |  |
| Sea urchin, red           | 96,921     | \$267,961    |  |
| Tuna, bigeye              | 42,621     | \$164,006    |  |
| Swordfish                 | 29,436     | \$147,157    |  |
| Seabass, white            | 27,334     | \$108,674    |  |
| Bonito, Pacific           | 220,973    | \$66,383     |  |
| Crab, yellow rock         | 27,115     | \$50,937     |  |
| Thornyhead, shortspine    | 4,855      | \$39,374     |  |
| Crab, rock unspecified    | 23,590     | \$39,344     |  |
| Mackerel, Pacific         | 320,879    | \$34,534     |  |
| Opah                      | 21,544     | \$32,096     |  |
| Crab, Dungeness           | 5,646      | \$29,642     |  |
| Lizardfish, California    | 44,018     | \$26,141     |  |
| Sea cucumber, warty       | 4,991      | \$24,955     |  |
| Yellowtail                | 7,545      | \$24,367     |  |
| Shark, Pacific angel      | 10,154     | \$18,209     |  |
| Tuna, yellowfin           | 4,870      | \$17,999     |  |
| Sea cucumber, giant red   | 3,706      | \$17,590     |  |
| Croaker, white            | 23,552     | \$14,556     |  |
| Sheephead, California     | 3,366      | \$14,088     |  |
| Crab, red rock            | 2,934      | \$12,430     |  |
| Cabezon                   | 1,532      | \$12,011     |  |
| Sablefish                 | 3,920      | \$11,239     |  |
| Shark, shortfin mako      | 4,397      | \$6,606      |  |
| Lingcod                   | 2,187      | \$5,785      |  |
| Sanddab                   | 2,424      | \$5,139      |  |
| Rockfish, grass           | 455        | \$4,882      |  |
| Sole, petrale             | 2,247      | \$4,111      |  |
| Shark, thresher           | 2,485      | \$4,033      |  |
| Guitarfish, shovelnose    | 2,362      | \$3,793      |  |
| Bass, giant sea           | 1,148      | \$3,789      |  |

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 2 Date: 06/13/2018

| Species                      | Pounds  | Value   |  |
|------------------------------|---------|---------|--|
| VENTURA                      |         |         |  |
| Wahoo                        | 1,415   | \$3,711 |  |
| Whitefish, ocean             |         | \$3,592 |  |
| Rockfish, vermilion          | 2,814   | \$3,574 |  |
| Shrimp, unspecified          |         | \$2,477 |  |
| Ray, bat                     | 4,503   | \$2,190 |  |
| Crab, spider                 | . 2,808 | \$1,977 |  |
| Snails, moon                 | 1,946   | \$1,936 |  |
| Fish, unspecified            | . 1,697 | \$1,928 |  |
| Butterfish (Pacific pompano) |         | \$1,811 |  |
| Sole, English                |         | \$1,736 |  |
| Prawn, golden                | . 780   | \$1,716 |  |
| Skate, unspecified           | 2,873   | \$1,664 |  |
| Crab, brown rock             | . 888   | \$1,600 |  |
| Rockfish, greenspotted       |         | \$1,172 |  |
| Scorpionfish, California     | . 660   | \$1,068 |  |
| Sole, fantail                | . 1,319 | \$1,047 |  |
| Escolar                      | 746     | \$894   |  |
| Thornyhead, longspine        |         | \$832   |  |
| Whelk, Kellet's              |         | \$773   |  |
| Dolphin (fish)               |         | \$729   |  |
| Sole, rock                   | . 725   | \$725   |  |
| Rockfish, bocaccio           | 622     | \$540   |  |
| Spiders, sea                 |         | \$516   |  |
| Tuna, skipjack               | 478     | \$478   |  |
| Mackerel, jack               | . 6,030 | \$394   |  |
| Ray, Pacific electric        | 101     | \$282   |  |
| Rockfish, yellowtail         |         | \$277   |  |
| Rockfish, chilipepper        |         | \$277   |  |
| Crab, box                    | . 109   | \$264   |  |
| Sole, unspecified            | . 544   | \$263   |  |
| Crab, king                   | . 90    | \$247   |  |
| Crab, claws                  | 110     | \$247   |  |
| Rockfish, gopher             |         | \$225   |  |
| Rockfish, greenstriped       |         | \$218   |  |
| Mackerel, unspecified        |         | \$206   |  |

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 3 Date: 06/13/2018

| Species                  | Pounds  | Value |  |
|--------------------------|---------|-------|--|
| VENTURA                  |         |       |  |
| Rockfish, copper         | 72      | \$206 |  |
| Shark, swell             | 129     | \$193 |  |
| Rockfish, treefish       | 17      | \$170 |  |
| Shark, brown smoothhound | 156     | \$148 |  |
| Opaleye                  | 240     | \$144 |  |
| Octopus, unspecified     | 122     | \$128 |  |
| Mussel                   | 120     | \$120 |  |
| Rockfish, canary         | 62      | \$117 |  |
| Shrimp, mantis           | 14      | \$84  |  |
| Goby, yellowfin          | 27      | \$81  |  |
| Stingray                 | 150     | \$75  |  |
| Sardine, Pacific         | 182,677 | \$63  |  |
| Shark, unspecified       | 72      | \$61  |  |
| Rockfish, starry         | 98      | \$54  |  |
| Sea urchin, purple       | 11      | \$50  |  |
| Rockfish, flag           | 51      | \$49  |  |
| Rockfish, brown          | 22      | \$32  |  |
| Thornyheads              | 31      | \$31  |  |
| Anchovy, northern        | 998     | \$27  |  |
| Sole, Dover              | 28      | \$24  |  |
| Shark, leopard           | 78      | \$21  |  |
| Crab, pelagic red        | 1,936   | \$19  |  |
| Ray, unspecified         | 37      | \$19  |  |
| Rockfish, blue           | 9       | \$14  |  |
| Sole, curlfin            | 25      | \$13  |  |
| Barracuda, California    | 36      | \$12  |  |
| Grenadier                | 24      | \$12  |  |
| Rockfish, kelp           | 7       | \$11  |  |
| Skate, longnose          | 20      | \$8   |  |
| Crab, southern kelp      | 7       | \$7   |  |
| Crab, spider/sheep claws | 6       | \$6   |  |
| Rockfish, black          | 4       | \$4   |  |
| Rockfish, widow          | 3       | \$3   |  |
| Rockfish, speckled       | 14      | \$3   |  |
| Mullet, striped          | 2       | \$2   |  |

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 4 Date: 06/13/2018

| Species                   | Pounds     | Value        |
|---------------------------|------------|--------------|
| VENTURA                   |            |              |
| Rockfish, greenblotched   | 2          | \$2          |
| Sole, sand                | 127        | \$1          |
| Shark, soupfin            | 3          | \$1          |
| Rockfish, squarespot      | 1          | \$1          |
| Shark, spiny dogfish      | 25         | \$0          |
| Shark, gray smoothhound   | 7          | \$0          |
| Sea cucumber, unspecified | 27         | \$0<br>\$0   |
| Tuna, bluefin             | 15         | \$0<br>\$0   |
| Crustacean, unspecified   | 2          | \$0<br>\$0   |
| ciustacean, unspecineu    |            |              |
| Port Totals:              | 53,742,966 | \$30,939,138 |
| PORT HUENEME              |            |              |
| Squid, market             | 35,555,303 | \$17,775,392 |
| Prawn, spot               | 46,266     | \$645,813    |
| Anchovy, northern         | 92,864     | \$32,268     |
| Mackerel, Pacific         | 213,871    | \$20,616     |
| Thornyhead, shortspine    | 431        | \$2,997      |
| Sardine, Pacific          | 21,075     | \$1,743      |
| Sablefish                 | 515        | \$1,552      |
| Sea cucumber, giant red   | 111        | \$555        |
| Sea urchin, red           | 790        | \$395        |
| Sea dictini, red          | 2,300      | \$65         |
| Stingray                  | 2,300      | \$00         |
| Mackerel, jack            | 2,601      | \$22         |
| Bonito, Pacific           | 205        | \$21         |
| Shark, thresher           | 58         | \$1          |
| Barracuda, California     | 13         | \$0          |
| Port Totals:              | 35,936,403 | \$18,481,438 |
| SANTA BARBARA HARBOR      |            |              |
| Shark, brown smoothhound  | 164        |              |
| Lobster, California spiny | 200,909    | \$3,876,550  |
| Sea urchin, red           | 1,788,795  | \$3,064,420  |
| Thornyhead, shortspine    | 214,583    | \$1,833,995  |
| Crab, red rock            | 491,716    | \$834,274    |
| Sablefish                 | 288,662    | \$830,501    |
| Halibut, California       | 57,391     | \$326,601    |
| Crab, yellow rock         | 188,130    | \$320,362    |
| Crab, brown rock          | 106,972    | \$197,184    |
| Prawn, ridgeback          | 66,039     | \$172,532    |
| Trawn, nugeback           | 00,039     | ψ172,002     |

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 5 Date: 06/13/2018

| Species                    | Pounds | Value     |  |
|----------------------------|--------|-----------|--|
| SANTA BARBARA HARBOR       |        |           |  |
|                            |        |           |  |
| Sea cucumber, giant red    | 32,383 | \$159,158 |  |
| Crab, box                  | 47,557 | \$134,391 |  |
| Rockfish, vermilion        | 42,131 | \$130,613 |  |
| Rockfish, grass            | 9,445  | \$108,399 |  |
| Seabass, white             | 26,126 | \$103,499 |  |
| Sea cucumber, warty        | 16,945 | \$86,187  |  |
| Swordfish                  | 22,006 | \$80,663  |  |
| Yellowtail                 | 34,181 | \$76,003  |  |
| Crab, spider               | 39,321 | \$62,897  |  |
| Thornyhead, longspine      | 14,332 | \$62,189  |  |
| Rockfish, copper           | 8,690  | \$58,017  |  |
| Whelk, Kellet's            | 42,038 | \$49,641  |  |
| Hagfishes                  | 38,074 | \$39,983  |  |
| Crab, rock unspecified     | 22,587 | \$38,637  |  |
| Cabezon                    | 4,346  | \$34,829  |  |
| Lingcod                    | 8,088  | \$29,354  |  |
| Crab, Dungeness            | 6,435  | \$29,298  |  |
| Sheephead, California      | 7,105  | \$28,172  |  |
| Shark, thresher            | 10,484 | \$14,834  |  |
| Crab, king                 | 1,941  | \$12,995  |  |
| Rockfish, blackgill        | 4,730  | \$12,224  |  |
| Rockfish, bocaccio         | 4,044  | \$10,057  |  |
| Shark, soupfin             | 7,413  | \$8,454   |  |
| Rockfish, blue             | 2,110  | \$8,407   |  |
| Ray, bat                   | 8,131  | \$7,361   |  |
| Prawn, spot                | 578    | \$7,359   |  |
| Rockfish, gopher           | 909    | \$7,134   |  |
| Salmon, Chinook            | 630    | \$6,534   |  |
| Shark, Pacific angel       | 5,749  | \$6,166   |  |
| Whitefish, ocean           | 2,169  | \$4,560   |  |
| Clam, unspecified          | 224    | \$4,480   |  |
| Tuna, albacore             | 1,528  | \$4,248   |  |
| Bass, giant sea            | 817    | \$3,778   |  |
| Rockfish, black-and-yellow | 429    | \$3,416   |  |

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 6 Date: 06/13/2018

| Species                   | Pounds | Value   |  |
|---------------------------|--------|---------|--|
| SANTA BARBARA HARBOR      |        |         |  |
| Opah                      | 2,173  | \$3,162 |  |
| Rockfish, yellowtail      | 812    | \$3,014 |  |
| Rockfish, treefish        | 355    | \$2,885 |  |
| Bonito, Pacific           | 1,097  | \$2,880 |  |
| Rockfish, kelp            | 374    | \$2,615 |  |
| Croaker, white            | 4,614  | \$2,500 |  |
| Rockfish, greenspotted    | 984    | \$2,408 |  |
| Rockfish, canary          | 831    | \$2,186 |  |
| Shark, shortfin mako      | 1,409  | \$2,084 |  |
| Mackerel, unspecified     | 626    | \$1,842 |  |
| Rockfish, group red       | 523    | \$1,832 |  |
| Sole, unspecified         | 1,396  | \$1,760 |  |
| Halibut, unspecified      | 351    | \$1,704 |  |
| Sea cucumber, unspecified | 592    | \$1,659 |  |
| Sole, fantail             | 614    | \$1,530 |  |
| Sanddab                   | 540    | \$1,509 |  |
| Snail, top                | 573    | \$1,395 |  |
| Rockfish, bank            | 501    | \$1,289 |  |
| Rockfish, starry          | 499    | \$1,288 |  |
| Lizardfish, California    | 1,670  | \$1,099 |  |
| Skate, longnose           | 1,311  | \$1,047 |  |
| Spiders, sea              | 307    | \$998   |  |
| Shark, unspecified        | 4,210  | \$987   |  |
| Splittail                 | 601    | \$902   |  |
| Shark, leopard            | 813    | \$838   |  |
| Crustacean, unspecified   | 415    | \$810   |  |
| Sea urchin, purple        | 389    | \$770   |  |
| Crab, southern kelp       | 146    | \$587   |  |
| Invertebrate Unspecified  | 141    | \$423   |  |
| Limpet, keyhole           | 140    | \$411   |  |
| Squid, market             | 364    | \$364   |  |
| Rockfish, speckled        | 154    | \$363   |  |
| Octopus, unspecified      | 94     | \$304   |  |
| Grenadier                 | 727    | \$282   |  |
| Sole, rock                | 138    | \$270   |  |

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 7 Date: 06/13/2018

| Species                      | Pounds | Value |
|------------------------------|--------|-------|
| SANTA BARBARA HARBOR         |        |       |
| Rockfish, brown              | 74     | \$248 |
| Fish, unspecified            | 378    | \$236 |
| Crab, claws                  | 215    | \$215 |
| Surfperch, rainbow           | 39     | \$197 |
| Sole, sand                   | 101    | \$186 |
| Crab, spider/sheep claws     | 91     | \$159 |
| Rockfish, greenblotched      | 48     | \$156 |
| Louvar                       | 28     | \$154 |
| Shark, bigeye thresher       | 242    | \$130 |
| Shark, spiny dogfish         | 234    | \$130 |
| Skate, unspecified           | 1,349  | \$125 |
| Sole, English                | 143    | \$125 |
| Mackerel, Pacific            | 21     | \$117 |
| Sole, petrale                | 76     | \$115 |
| Rockfish, widow              | 30     | \$88  |
| Rockfish, unspecified        | 334    | \$84  |
| Rockfish, squarespot         | 22     | \$74  |
| Shark, sevengill             | 73     | \$73  |
| Sole, Dover                  | 225    | \$69  |
| Barracuda, California        | 53     | \$67  |
| Rockfish, aurora             | 70     | \$66  |
| Rockfish, flag               | 27     | \$64  |
| Rockfish, chilipepper        | 25     | \$61  |
| Mackerel, jack               | 14     | \$58  |
| Shrimp, mantis               | 11     | \$56  |
| Whiting, Pacific             | 141    | \$50  |
| Surfperch, barred            | 12     | \$42  |
| Rockfish, splitnose          | 23     | \$34  |
| Kelpfish, giant              | 4      | \$32  |
| Butterfish (Pacific pompano) | 162    | \$32  |
| Trawled fish, unspecified    | 58     | \$30  |
| Rockfish, olive              | 8      | \$26  |
| Skate, California            | 20     | \$25  |
| Thornyheads                  | 12     | \$24  |
|                              |        | ¥ 4 1 |

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 8 Date: 06/13/2018

| Species                     | Pounds          | Value                |
|-----------------------------|-----------------|----------------------|
| SANTA BARBARA HARBOR        |                 |                      |
| Shark, swell                | 15              | \$16                 |
| Ray, unspecified            | 25              | \$15                 |
| Rockfish, rosy              | 4               | \$14                 |
| Turbot                      | 9               | \$14                 |
| Rockfish, greenstriped      | 3               | \$13                 |
| Croaker, unspecifed         | 53              | \$8                  |
| Scorpionfish, California    | 2               | \$6                  |
| Rockfish, China             | 1               | \$6                  |
| Turbot, hornyhead           | 2               | \$4                  |
| Rockfish, group shelf       | 2               | \$2                  |
| Shark, blue                 | 12              | \$0                  |
| Queenfish                   | 16              | \$0                  |
| Rockfish, group nearshore   | 30              | \$0                  |
| Crab, armed box             | 9               | \$0                  |
| Sardine, Pacific            | 28              | \$0                  |
| Eel, California moray       | 8               | \$0                  |
| Port Totals                 | 3,912,104       | \$12,943,816         |
| OXNARD                      | 5,712,104       | φ12, 743,010         |
| Lobster, California spiny   | 49,049          | \$941,960            |
| Sea urchin, red             | 881,590         | \$807,390            |
| Thornyhead, shortspine      | 40,337          | \$290,334            |
| Seabass, white              | 65,925          | \$268,202            |
| Sea cucumber, warty         | 47,655          | \$242,979            |
| Halibut, California         | 36,072          | \$196,968            |
| Swordfish                   | 32,487          | \$142,887            |
| Sablefish                   | 35,199          | \$111,992            |
| Prawn, spot                 | 4,682           | \$68,761             |
| Rockfish, vermilion         | 17,216          | \$54,217             |
| Sheephead, California       | 10,084          | \$49,764             |
|                             |                 |                      |
|                             | 51.552          | \$25,776             |
| Squid, market               | 51,552<br>6,085 | \$25,776<br>\$19,877 |
| Squid, market<br>Yellowtail | 6,085           | \$19,877             |
| Squid, market               |                 |                      |

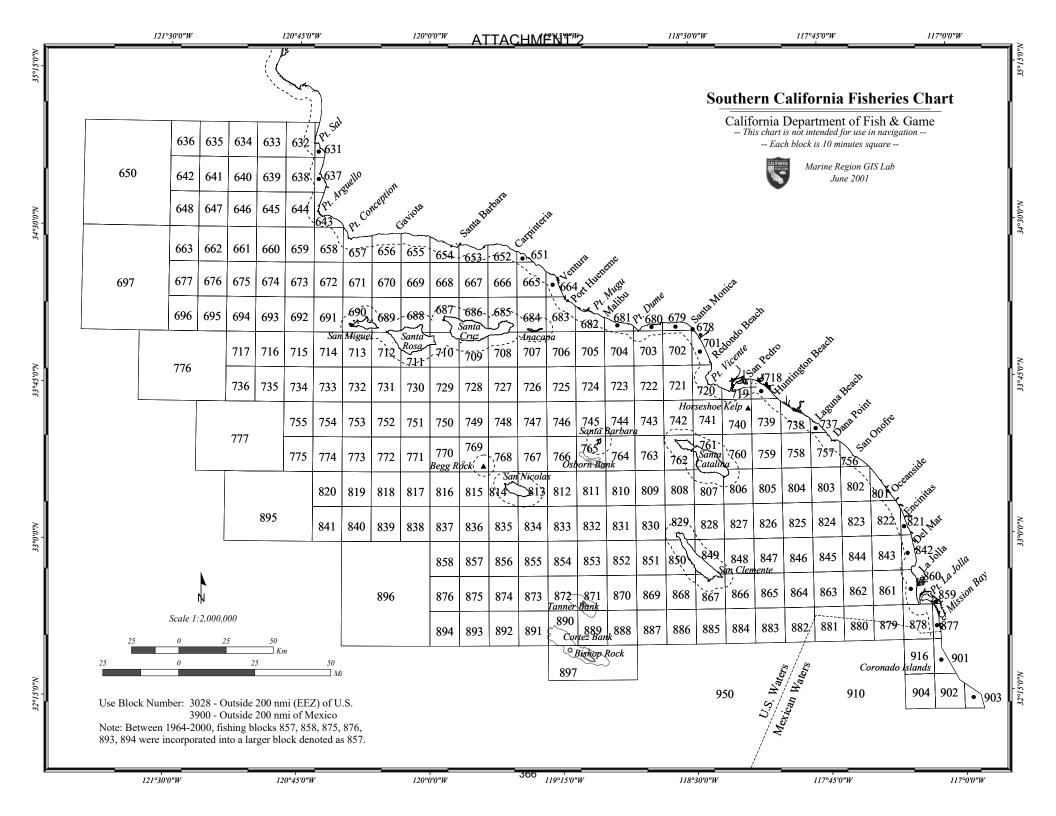
System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 9 Date: 06/13/2018

| Species                 | Pounds | Value    |  |
|-------------------------|--------|----------|--|
| OXNARD                  |        |          |  |
| Sea cucumber, giant red | 2,274  | \$11,570 |  |
| Thornyhead, longspine   | 4,550  | \$9,931  |  |
| Bass, giant sea         | 2,450  | \$7,663  |  |
| Rockfish, blackgill     | 3,908  | \$4,678  |  |
| Lingcod                 | 1,265  | \$3,994  |  |
| Crab, Dungeness         | 794    | \$3,970  |  |
| Shark, Pacific angel    | 2,790  | \$3,749  |  |
| Crab, rock unspecified  | 2,687  | \$3,633  |  |
| Crab, king              | 632    | \$3,551  |  |
| Crab, red rock          | 2,977  | \$3,405  |  |
| Opah                    | 2,883  | \$2,612  |  |
| Rockfish, bocaccio      | 1,702  | \$2,530  |  |
| Shark, shortfin mako    | 2,207  | \$2,149  |  |
| Shark, leopard          | 2,539  | \$2,037  |  |
| Rockfish, canary        | 471    | \$1,604  |  |
| Rockfish, greenspotted  | 425    | \$1,299  |  |
| Skate, longnose         | 1,378  | \$1,273  |  |
| Rockfish, speckled      | 419    | \$1,197  |  |
| Whitefish, ocean        | 279    | \$909    |  |
| Tuna, bluefin           | 227    | \$908    |  |
| Tuna, yellowfin         | 218    | \$872    |  |
| Rockfish, copper        | 141    | \$862    |  |
| Rockfish, yellowtail    | 374    | \$843    |  |
| Sanddab                 | 162    | \$658    |  |
| Crab, box               | 216    | \$648    |  |
| Cabezon                 | 112    | \$529    |  |
|                         |        | \$529    |  |
| Shark, white            | 130    |          |  |
| Bat star                | 938    | \$469    |  |
| Shark, bigeye thresher  | 133    | \$399    |  |
| Rockfish, blue          | 175    | \$376    |  |
| Sole, Dover             | 70     | \$203    |  |
| Rockfish, starry        | 50     | \$167    |  |
| Rockfish, widow         | 56     | \$167    |  |
| Rockfish, gopher        | 35     | \$166    |  |
| Shark, soupfin          | 165    | \$144    |  |

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 10 Date: 06/13/2018

| Species                   | Pounds | Value |  |
|---------------------------|--------|-------|--|
| OXNARD                    |        |       |  |
| Sole, fantail             | 199    | \$124 |  |
| Rockfish, kelp            | 28     | \$116 |  |
| Bonito, Pacific           | 121    | \$102 |  |
| Sea cucumber, unspecified | 55     | \$100 |  |
| Halibut, unspecified      | 62     | \$92  |  |
| Shark, unspecified        | 55     | \$83  |  |
| Rockfish, flag            | 18     | \$76  |  |
| Crab, brown rock          | 354    | \$75  |  |
| Rockfish, rosy            | 16     | \$73  |  |
| Mackerel, unspecified     | 21     | \$64  |  |
| Rockfish, brown           | 26     | \$63  |  |
| Rockfish, group nearshore | 28     | \$56  |  |
| Rockfish, bank            | 60     | \$49  |  |
| Scorpionfish, California  | 11     | \$44  |  |
| Barracuda, California     | 384    | \$33  |  |
| Rockfish, olive           | 55     | \$28  |  |
| Prawn, ridgeback          | 13     | \$26  |  |
| Triggerfish               | 4      | \$22  |  |
| Rockfish, chilipepper     | 11     | \$21  |  |
| Guitarfish, shovelnose    | 14     | \$21  |  |
| Mackerel, Pacific         | 20     | \$20  |  |
| Rockfish, treefish        | 3      | \$18  |  |
| Rockfish, greenblotched   | 9      | \$14  |  |
| Sole, rock                | 2      | \$11  |  |
| Sole, unspecified         | 45     | \$9   |  |
| Fish, unspecified         | 9      | \$9   |  |
| Whiting, Pacific          | 7      | \$7   |  |
| Rockfish, splitnose       | 6      | \$6   |  |
| Sargo                     | 1      | \$6   |  |
| Surfperch, rubberlip      | 5      | \$5   |  |
| Rockfish, greenstriped    | 5      | \$5   |  |
| Rockfish, aurora          | 1      | \$2   |  |
| Sole, bigmouth            | 1      | \$1   |  |
| Shark, spiny dogfish      | 88     | \$1   |  |
| Ray, bat                  | 89     | \$1   |  |

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 11 Date: 06/13/2018


| Species                             | Pounds            | Value          |
|-------------------------------------|-------------------|----------------|
| OXNARD                              |                   |                |
| Skate, California                   | 12                | \$0            |
| Thornyheads                         | 12                | \$0            |
| Shark, pelagic thresher             | 12                | \$0            |
| Shark, blue                         | 25                | \$0            |
| Crab, tanner                        | 7                 | \$0            |
| Croaker, white                      | 4                 | \$0            |
| Skate, unspecified                  | 50                | \$0            |
| Port 7                              | Totals: 1,379,011 | \$3,350,242    |
| GOLETA BEACH                        |                   |                |
| Thornyhead, shortspine              | 399               | \$3,392        |
| Seabass, white                      | 1,009             | \$3,344        |
| Shark, shortfin mako                |                   | \$225          |
| Yellowtail                          | 26                | \$105          |
| Shark, leopard                      |                   | \$96           |
| Shark, thresher                     | 33                | \$92           |
| Thornyhead, longspine               |                   | \$46           |
|                                     |                   |                |
|                                     | Fotals: 1,712     | \$7,299        |
| SURF BEACH                          |                   |                |
| Lobster, California spiny           | 158               | \$3,000        |
| Surfperch, barred                   | 546               | \$1,911        |
| Port T                              | Fotals: 704       | \$4,911        |
| ALL OTHER PORTS                     |                   |                |
| Halibut, California                 | 2,869             | \$11,993       |
| Seabass, white                      |                   | \$6,641        |
| Rockfish, vermilion                 | ,                 | \$4,478        |
| Lingcod                             |                   | \$2,953        |
| Bonito, Pacific                     |                   | \$1,935        |
| Yellowtail                          | 449               | \$1,348        |
| Whitefish, ocean                    |                   | \$1,006        |
|                                     |                   | \$839          |
| Surfperch, barred                   |                   |                |
| Shark, soupfin                      |                   | \$791<br>\$572 |
| Rockfish, bocaccio                  | 194               | \$573          |
| Squid, market                       | 534               | \$395          |
|                                     |                   | \$230          |
| Shark, thresher                     |                   | +              |
| Snark, thresher<br>Rockfish, starry |                   | \$221          |

System: CFIS Tables16\_21\_pub California Department of Fish and Wildlife Table 19PUB - Poundage And Value Of Landings By Port, Santa Barbara Area During 2017 Page: 12 Date: 06/13/2018

| Species                   | Pounds        | Value        |
|---------------------------|---------------|--------------|
| ALL OTHER PORTS           |               |              |
| Mackerel, jack            | 52            | \$139        |
| Mackerel, unspecified     | 30            | \$60         |
| Mackerel, Pacific         | 22            | \$58         |
| Shark, leopard            | 21            | \$41         |
| Port Totals:              | 10,268        | \$33,881     |
| Santa Barbara Area Totals | 94,983,169    | \$65,760,724 |
| ******                    | Total Records | 3: 24,196    |
| End of Repo               | ort           |              |

# APPENDIX C

Commercial Fisheries Data for Blocks 0664 and 0665



| Year | Block | Species | Value    | Pounds  |
|------|-------|---------|----------|---------|
| 2016 | 665   | 711     | 1583.2   | 1792    |
| 2016 | 665   | 80      | 164      | 157     |
| 2016 | 665   | 473     | 1084.2   | 1896    |
| 2016 | 665   | 803     | 1035.5   | 997.13  |
| 2016 | 665   | 238     | 6        | 15      |
| 2016 | 665   | 823     | 25       | 25      |
| 2016 | 665   | 165     | 2911.37  | 1735.12 |
| 2016 | 665   | 222     | 54.45    | 9.9     |
| 2016 | 665   | 130     | 6549.78  | 7518    |
| 2016 | 665   | 803     | 10320.25 | 7784.3  |
| 2016 | 665   | 347     | 2.19     | 219     |
| 2016 | 665   | 999     | 2.38     | 238     |
| 2016 | 665   | 803     | 1.26     | 126     |
| 2016 | 665   | 203     | 332      | 326     |
| 2016 | 665   | 211     | 71       | 81      |
| 2016 | 665   | 155     | 84       | 48      |
| 2016 | 665   | 820     | 150826.4 | 7078.9  |
| 2016 | 665   | 342     | 122      | 61      |
| 2016 | 665   | 731     | 17.5     | 17.5    |
| 2016 | 665   | 803     | 682      | 341     |
| 2016 | 664   | 712     | 0        | 3.3     |
| 2016 | 665   | 222     | 20       | 4       |
| 2016 | 664   | 204     | 4        | 4       |
| 2016 | 665   | 175     | 39       | 65      |
| 2016 | 665   | 225     | 197.6    | 464     |
| 2016 | 665   | 175     | 195.6    | 512.51  |
| 2016 | 665   | 174     | 390.7    | 242     |
| 2016 | 665   | 262     | 0        | 14      |
| 2016 | 665   | 400     | 3664.7   | 538.2   |
| 2016 | 665   | 155     | 303.7275 | 192.05  |
| 2016 | 665   | 801     | 657.955  | 427.9   |
| 2016 | 665   | 222     | 69.54    | 570     |
| 2016 | 665   | 801     | 6829     | 4551    |
| 2016 | 665   | 222     | 28.97    | 2897    |
| 2016 | 665   | 803     | 0.32     | 32      |
| 2016 | 665   | 400     | 2082.15  | 396.6   |
| 2016 | 665   | 813     | 925.6    | 356     |
| 2016 | 664   | 400     | 3572.8   | 928     |
| 2016 | 665   | 253     | 6        | 5       |
| 2016 | 664   | 40      | 22.5     | 15      |
| 2016 | 665   | 222     | 1104     | 184     |
| 2016 | 665   | 155     | 157.96   | 136     |
| 2016 | 665   | 400     | 1125     | 225     |
| 2016 | 665   | 40      | 65       | 26      |
| 2016 | 665   | 820     | 10235.5  | 660.3   |
| 2016 | 665   | 815     | 7287.5   | 549     |

| 2016 | 665 | 175 | 54       | 27       |
|------|-----|-----|----------|----------|
| 2016 | 664 | 249 | 995.4    | 199.08   |
| 2016 | 664 | 195 | 675.5    | 135.1    |
| 2016 | 665 | 222 | 102587.7 | 19817.45 |
|      |     |     |          |          |
| 2016 | 665 | 249 | 37       | 37       |
| 2016 | 665 | 809 | 23.3     | 23.3     |
| 2016 | 665 | 50  | 0.8      | 2        |
| 2016 | 665 | 100 | 6        | 15       |
| 2016 | 665 | 249 | 197.1    | 65.7     |
| 2016 | 665 | 253 | 41.2125  | 23.55    |
| 2016 | 665 | 222 | 81.15    | 14.3     |
| 2016 | 665 | 165 | 28.02    | 23.7     |
| 2016 | 665 | 343 | 651.32   | 1164     |
| 2016 | 665 | 457 | 1594     | 1594     |
| 2010 | 665 | 222 | 5580     | 984      |
| 2010 | 665 | 165 | 395.9    | 393.6    |
|      |     |     |          |          |
| 2016 | 665 | 686 | 0.38     | 38       |
| 2016 | 664 | 165 | 109.62   | 73.08    |
| 2016 | 665 | 91  | 912.75   | 182.55   |
| 2016 | 665 | 130 | 18       | 9        |
| 2016 | 665 | 400 | 156.5    | 41       |
| 2016 | 665 | 711 | 22303.5  | 44607    |
| 2016 | 665 | 165 | 46.5     | 31       |
| 2016 | 665 | 222 | 25056    | 4260     |
| 2016 | 665 | 151 | 1.75     | 175      |
| 2016 | 665 | 154 | 0.33     | 33       |
| 2010 | 664 | 803 | 246      | 123      |
| 2010 | 665 | 174 | 12       | 8        |
|      |     |     |          |          |
| 2016 | 665 | 806 | 0        | 0.5      |
| 2016 | 665 | 801 | 7787.5   | 5990.12  |
| 2016 | 665 | 260 | 176      | 107      |
| 2016 | 665 | 256 | 22.875   | 9.15     |
| 2016 | 665 | 254 | 7.2625   | 4.15     |
| 2016 | 665 | 280 | 384      | 64       |
| 2016 | 665 | 165 | 98.175   | 89.25    |
| 2016 | 665 | 153 | 114.77   | 417      |
| 2016 | 665 | 165 | 42       | 42       |
| 2016 | 664 | 711 | 6613     | 13226    |
| 2016 | 665 | 3   | 0.88     | 88       |
| 2010 | 665 | 342 | 10.83    | 1083     |
|      |     |     |          |          |
| 2016 | 665 | 222 | 2.32     | 232      |
| 2016 | 665 | 280 | 1.11     | 111      |
| 2016 | 665 | 801 | 0.27     | 27       |
| 2016 | 665 | 813 | 15398    | 7796     |
| 2016 | 665 | 473 | 0        | 20       |
| 2016 | 665 | 495 | 7        | 7        |
| 2016 | 665 | 165 | 7418.4   | 3808     |
|      |     |     |          |          |

| 2016 | 665 | 400 | 32388.16 | 5422     |
|------|-----|-----|----------|----------|
| 2016 | 665 | 400 | 438      | 73       |
| 2016 | 665 | 130 | 0.07     | 7        |
| 2016 | 665 | 206 | 400.6    | 522      |
| 2016 | 665 | 153 | 10       | 20       |
| 2016 | 665 | 222 | 13442.29 | 2425.98  |
| 2016 | 665 | 153 | 21.56    | 15.4     |
| 2016 | 665 | 341 | 397.6275 | 1728.15  |
| 2016 | 665 | 801 | 7474.5   | 4983     |
| 2016 | 665 | 151 | 0.62     | 62       |
| 2016 | 665 | 820 | 84078.19 | 4094.45  |
| 2016 | 665 | 804 | 0.2      | 20       |
| 2016 | 665 | 686 | 0.58     | 58       |
| 2016 | 665 | 222 | 0.18     | 18       |
| 2016 | 665 | 159 | 1.58     | 158      |
| 2016 | 665 | 40  | 0.16     | 16       |
| 2016 | 665 | 815 | 1227     | 102      |
| 2016 | 664 | 151 | 47.6     | 34       |
| 2016 | 664 | 155 | 22       | 22       |
| 2016 | 665 | 754 | 4504     | 2252     |
| 2016 | 665 | 754 | 8322     | 4161     |
| 2016 | 664 | 253 | 160.8    | 32.16    |
| 2016 | 665 | 150 | 22.5     | 31.5     |
| 2016 | 665 | 736 | 528.6    | 579      |
| 2016 | 665 | 712 | 14       | 10       |
| 2016 | 665 | 209 | 886.6    | 524      |
| 2016 | 665 | 200 | 2323.292 | 4132.32  |
| 2016 | 665 | 222 | 1008     | 168      |
| 2016 | 665 | 155 | 369      | 246      |
| 2016 | 665 | 155 | 579.81   | 1465     |
| 2016 | 665 | 341 | 0.62     | 62       |
| 2016 | 665 | 3   | 1.5      | 150      |
| 2016 | 665 | 151 | 0.21     | 21       |
| 2016 | 665 | 151 | 2.25     | 225      |
| 2016 | 665 | 804 | 0.02     | 2        |
| 2016 | 665 | 252 | 4        | 2        |
| 2016 | 665 | 153 | 18       | 64       |
| 2016 | 665 | 165 | 1735.5   | 890      |
| 2016 | 665 | 342 | 866.8    | 492      |
| 2016 | 665 | 802 | 6        | 6        |
| 2016 | 665 | 803 | 614      | 307      |
| 2016 | 665 | 342 | 209.6    | 131      |
| 2016 | 664 | 400 | 8396     | 2271     |
| 2016 | 665 | 813 | 98574.92 | 40702.05 |
| 2016 | 665 | 802 | 62       | 62       |
| 2016 | 665 | 159 | 20.6     | 26       |
| 2016 | 665 | 997 | 15       | 15       |
|      |     |     |          |          |

| 2016 | 665 | 250 | 12.32    | 9.8     |
|------|-----|-----|----------|---------|
| 2016 | 665 | 195 | 611.2125 | 225.7   |
| 2016 | 665 | 159 | 78.12    | 55.8    |
| 2010 |     |     |          |         |
|      | 665 | 165 | 78.76    | 71.6    |
| 2016 | 665 | 813 | 292.5    | 117     |
| 2016 | 665 | 342 | 5043.885 | 30543.5 |
| 2016 | 665 | 400 | 103482.8 | 27758   |
| 2016 | 665 | 155 | 4.24     | 424     |
| 2016 | 665 | 130 | 0.7      | 70      |
| 2016 | 665 | 155 | 2.65     | 265     |
| 2010 | 665 | 686 | 0.44     | 44      |
|      |     |     |          |         |
| 2016 | 665 | 130 | 0.6      | 60      |
| 2016 | 665 | 40  | 0.76     | 76      |
| 2016 | 665 | 171 | 313      | 313     |
| 2016 | 665 | 51  | 13.5     | 9       |
| 2016 | 664 | 400 | 4495.3   | 1299    |
| 2016 | 665 | 222 | 7267     | 1236    |
| 2010 | 664 |     | 7679     | 21940   |
|      |     | 110 |          |         |
| 2016 | 665 | 155 | 1188.46  | 700     |
| 2016 | 665 | 165 | 458.25   | 235     |
| 2016 | 665 | 803 | 12       | 12      |
| 2016 | 665 | 174 | 0.17     | 17      |
| 2016 | 665 | 815 | 720      | 48      |
| 2016 | 665 | 803 | 188      | 94      |
| 2016 | 664 | 155 | 160.1    | 124     |
|      |     |     |          |         |
| 2016 | 665 | 473 | 94.2     | 157     |
| 2016 | 665 | 435 | 712.2    | 1435.5  |
| 2016 | 665 | 204 | 404.3    | 644.78  |
| 2016 | 665 | 804 | 99.5     | 50      |
| 2016 | 665 | 151 | 20       | 20      |
| 2016 | 665 | 755 | 66       | 32      |
| 2016 | 665 | 154 | 46.8     | 60      |
| 2010 | 665 | 222 | 11926.2  | 2073.75 |
|      |     |     |          |         |
| 2016 | 665 | 153 | 65.45    | 46.75   |
| 2016 | 665 | 159 | 42.98    | 30.7    |
| 2016 | 665 | 159 | 363.37   | 1044    |
| 2016 | 665 | 209 | 0.22     | 22      |
| 2016 | 665 | 400 | 1674.76  | 1093    |
| 2016 | 665 | 400 | 0.88     | 88      |
| 2016 | 665 | 435 | 0        | 15      |
|      |     |     |          |         |
| 2016 | 665 | 165 | 81.66    | 54.44   |
| 2016 | 664 | 222 | 2185.04  | 348.09  |
| 2016 | 665 | 467 | 377.6    | 94.4    |
| 2016 | 664 | 165 | 25.5     | 17      |
| 2016 | 665 | 686 | 13       | 13      |
| 2016 | 665 | 802 | 0.02     | 2       |
| 2016 | 665 | 801 | 64       | 32      |
| 2010 | 005 | 001 | 07       | 52      |

| 2016 | 664 | 820 | 21445.8 | 1028.67 |
|------|-----|-----|---------|---------|
| 2016 | 664 | 222 | 94.5    | 21      |
| 2016 | 665 | 810 | 0       | 10      |
| 2016 | 665 | 813 | 2235    | 894     |

| Year         | Block      | Species    | Value      | Pounds   |
|--------------|------------|------------|------------|----------|
| 2015         | 665        | 206        | 260.6      | 263      |
| 2015         | 665        | 238        | 15.5       | 31       |
| 2015         | 665        | 510        | 68.25      | 39       |
| 2015         | 665        | 222        | 120.55     | 24.1     |
| 2015         | 665        | 222        | 1259.5     | 228.1    |
| 2015         | 665        | 400        | 2497.5     | 518      |
| 2015         | 665        | 155        | 3145.85    | 4880.4   |
| 2015         | 665        | 400        | 1.77       | 177      |
| 2015         | 665        | 343        | 2.82       | 282      |
| 2015         | 665        | 280        | 147.87     | 423      |
| 2015         | 665        | 222        | 0.92       | 92       |
| 2015         | 665        | 803        | 404.5      | 529      |
| 2015         | 664        | 110        | 32406.5    | 92590    |
| 2015         | 664        | 42         | 240        | 400      |
| 2015         | 664        | 110        | 3089.45    | 8827     |
| 2015         | 665        | 686        | 74         | 74       |
| 2015         | 665        | 815        | 2025       | 153      |
| 2015         | 665        | 820        | 4600       | 184      |
| 2015         | 665        | 263        | 112        | 16       |
| 2015         | 664        | 757        | 5382.75    | 1083     |
| 2015         | 665        | 813        | 453        | 151      |
| 2015         | 665        | 150        | 0          | 5        |
| 2015         | 665        | 711        | 723        | 781      |
| 2015         | 665        | 222        | 100818.5   | 19908    |
| 2015         | 665        | 204        | 29.5       | 59       |
| 2015         | 665        | 400        | 6567.9     | 1139.9   |
| 2015         | 665        | 165        | 34.54      | 31.4     |
| 2015         | 665        | 400        | 213458.4   | 52691    |
| 2015         | 665        | 400        | 38172.22   | 8768     |
| 2015         | 665        | 130        | 3.87       | 387      |
| 2015         | 665        | 803        | 104.49     | 275      |
| 2015<br>2015 | 665<br>665 | 130<br>179 | 0.05<br>66 | 5<br>66  |
| 2013         | 665        | 203        | 289        | 289      |
| 2015         | 665        | 130        | 285        | 114      |
| 2015         | 665        | 342        | 2505.99    | 1936     |
| 2015         | 665        | 820        | 305505.8   | 15195.97 |
| 2015         | 665        | 222        | 1401.25    | 295      |
| 2015         | 665        | 803        | 464.1      | 275      |
| 2015         | 665        | 820        | 19960.1    | 1030.2   |
| 2015         | 664        | 731        | 0          | 6.5      |
| 2015         | 665        | 754        | 337.5      | 75       |
| 2015         | 665        | 184        | 3          | 1        |
| 2015         | 665        | 51         | 300        | 100      |
| 2015         | 664        | 820        | 4531.8     | 215.8    |
| 2015         | 665        | 211        | 93.99      | 415.65   |
|              |            |            |            |          |

| 2015 | 665 | 813 | 461872.3 | 187003   |
|------|-----|-----|----------|----------|
| 2015 | 665 | 80  | 38       | 62       |
| 2015 | 665 | 155 | 3599.725 | 1930.15  |
| 2015 | 665 | 222 | 3230     | 595.3    |
| 2015 | 665 | 190 | 1990     | 398      |
|      |     |     |          |          |
| 2015 | 665 | 342 | 313.4774 | 25091.74 |
| 2015 | 665 | 400 | 1.69     | 169      |
| 2015 | 665 | 400 | 0.11     | 11       |
| 2015 | 665 | 731 | 0.38     | 38       |
| 2015 | 665 | 259 | 1.22     | 122      |
| 2015 | 665 | 98  | 0.22     | 22       |
| 2015 | 664 | 801 | 3770     | 3029     |
| 2015 | 665 | 155 | 26       | 13       |
|      |     |     |          |          |
| 2015 | 665 | 209 | 1016     | 515      |
| 2015 | 665 | 154 | 63       | 63       |
| 2015 | 665 | 684 | 7        | 7        |
| 2015 | 665 | 50  | 26       | 26       |
| 2015 | 665 | 165 | 104.25   | 75.5     |
| 2015 | 665 | 222 | 1025     | 205      |
| 2015 | 665 | 686 | 16.04    | 20       |
| 2015 | 665 | 110 | 1803.75  | 7215     |
| 2015 | 664 | 820 | 51898.75 | 2779.6   |
|      |     |     |          |          |
| 2015 | 665 | 200 | 30       | 20       |
| 2015 | 665 | 435 | 565.24   | 989.08   |
| 2015 | 665 | 151 | 305.12   | 253      |
| 2015 | 664 | 165 | 59.4     | 54       |
| 2015 | 665 | 40  | 23.375   | 9.35     |
| 2015 | 665 | 98  | 359.5375 | 205.45   |
| 2015 | 664 | 151 | 168.5    | 142      |
| 2015 | 665 | 151 | 187      | 187      |
| 2015 | 665 | 400 | 480      | 80       |
| 2015 | 665 | 40  | 13       | 47       |
|      |     |     |          |          |
| 2015 | 665 | 801 | 362.5    | 290      |
| 2015 | 665 | 155 | 0.14     | 14       |
| 2015 | 665 | 813 | 9692     | 4026     |
| 2015 | 665 | 171 | 108      | 108      |
| 2015 | 665 | 801 | 3012.45  | 2850     |
| 2015 | 665 | 40  | 112      | 56       |
| 2015 | 665 | 174 | 53.8     | 79       |
| 2015 | 665 | 342 | 301.63   | 217      |
| 2015 | 665 | 280 | 132.5    | 53       |
|      |     |     |          |          |
| 2015 | 665 | 809 | 90       | 50       |
| 2015 | 665 | 802 | 89.2     | 144      |
| 2015 | 665 | 473 | 4379.4   | 8132     |
| 2015 | 665 | 222 | 2574.05  | 467.1    |
| 2015 | 665 | 813 | 741.65   | 211.9    |
| 2015 | 665 | 222 | 504.6    | 99.6     |
|      |     |     |          |          |

| 2015 | 665 | 165 | 85.7      | 80      |
|------|-----|-----|-----------|---------|
| 2015 | 665 | 280 | 207       | 34.5    |
| 2015 | 664 | 400 | 17864     | 4466    |
| 2015 | 665 | 222 | 4770      | 795     |
|      |     |     |           |         |
| 2015 | 665 | 341 | 76.428    | 5054    |
| 2015 | 665 | 342 | 58.6      | 5860    |
| 2015 | 665 | 820 | 55214.16  | 2707.1  |
| 2015 | 665 | 40  | 0.22      | 22      |
| 2015 | 665 | 820 | 0.18      | 18      |
| 2015 | 665 | 342 | 0.9       | 90      |
| 2015 | 665 | 151 | 1402.55   | 832     |
| 2015 | 665 | 222 | 4443.3    | 730     |
| 2015 | 665 | 400 | 299       | 65      |
| 2015 | 665 | 711 | 18430.2   | 81912   |
| 2015 | 665 | 341 | 1.39      | 1       |
| 2015 | 664 | 820 | 17742.06  | 865.7   |
| 2015 | 665 | 652 | 407       | 37      |
| 2015 | 665 | 815 | 56688.4   | 4930.5  |
|      |     |     |           |         |
| 2015 | 665 | 809 | 0         | 1417    |
| 2015 | 665 | 712 | 3         | 5       |
| 2015 | 665 | 151 | 1079.06   | 633.5   |
| 2015 | 665 | 222 | 14134.22  | 6261.8  |
| 2015 | 665 | 40  | 5.83      | 583     |
| 2015 | 665 | 343 | 25.88     | 2588    |
| 2015 | 665 | 222 | 0.43      | 43      |
| 2015 | 665 | 130 | 0.25      | 25      |
| 2015 | 665 | 686 | 0.95      | 95      |
| 2015 | 665 | 342 | 2.12      | 212     |
| 2015 | 665 | 40  | 1.35      | 135     |
| 2015 | 665 | 804 | 1657.11   | 487     |
| 2015 | 665 | 341 | 0.2       | 20      |
| 2015 | 665 | 343 | 1.04      | 104     |
| 2015 | 665 | 343 | 845.9     | 640     |
| 2015 | 665 | 799 | 44        | 44      |
| 2015 | 664 | 341 | 44<br>0   | 5       |
|      |     |     |           |         |
| 2015 | 665 | 802 | 23        | 23      |
| 2015 | 665 | 261 | 433.5     | 51      |
| 2015 | 665 | 200 | 6107.4    | 11698   |
| 2015 | 665 | 754 | 0         | 15      |
| 2015 | 665 | 731 | 770       | 402.5   |
| 2015 | 665 | 225 | 120.6     | 205     |
| 2015 | 665 | 155 | 2018.108  | 1218.45 |
| 2015 | 665 | 153 | 11.5      | 11.5    |
| 2015 | 665 | 815 | 625.46    | 65      |
| 2015 | 665 | 222 | 28650.46  | 5379    |
| 2015 | 665 | 155 | 2544.36   | 1662    |
| 2015 | 665 | 801 | 20743.55  | 16414   |
| -010 | 000 | 001 | 20, 10.00 | 10114   |

| 2015 | 665 | 3   | 0.18     | 18     |
|------|-----|-----|----------|--------|
| 2015 | 665 | 752 | 10186.04 | 8328   |
| 2015 | 665 | 803 | 23       | 23     |
| 2015 | 665 | 803 | 3350     | 1675   |
| 2015 | 665 | 801 | 0        | 70     |
| 2015 | 665 | 222 | 313      | 59     |
| 2015 | 665 | 174 | 10       | 8      |
| 2015 | 665 | 145 | 99       | 18     |
| 2015 | 665 | 683 | 56       | 38     |
| 2015 | 665 | 420 | 3        | 1      |
| 2015 | 665 | 207 | 697.2    | 1577   |
| 2015 | 665 | 175 | 1299.64  | 2231.1 |
| 2015 | 665 | 165 | 4478     | 2687   |
| 2015 | 665 | 51  | 4.8      | 12     |
| 2015 | 665 | 400 | 5116.3   | 813.2  |
| 2015 | 664 | 222 | 2808.85  | 510.7  |
| 2015 | 665 | 40  | 186.5    | 74.6   |
| 2015 | 665 | 40  | 97.5     | 39     |
| 2015 | 665 | 222 | 3468     | 633    |
| 2015 | 664 | 400 | 3190     | 797.5  |
| 2015 | 665 | 803 | 263.07   | 2825   |
| 2015 | 665 | 341 | 15.16    | 1516   |
| 2015 | 665 | 260 | 4        | 2      |
| 2015 | 665 | 400 | 2566     | 635    |
| 2015 | 665 | 51  | 1.27     | 127    |
| 2015 | 665 | 165 | 4436.4   | 2279   |
| 2015 | 665 | 813 | 1366     | 683    |

| Species Code Common Name        | Scientific Name            |
|---------------------------------|----------------------------|
| 1 Tuna, yellowfin               | Thunnus albacares          |
| 2 Tuna, skipjack                | Katsuwonus pelamis         |
| 3 Bonito, Pacific               | Sarda chiliensis           |
| 4 Tuna, bluefin                 | Thunnus thynnus            |
| 5 Tuna, albacore                | Thunnus alalunga           |
| 6 Tuna, unspecified             | Scombridae                 |
| 8 Tuna, bigeye                  | Thunnus obesus             |
| 9 Tuna, skipjack, black         | Euthynnus lineatus         |
| 11 Tuna, longtail               | Thunnus tonggol            |
| 12 Tuna, blackfin               | Thunnus atlanticus         |
| 15 Escolar                      | Lepidocybium flavobrunneum |
| 17 Oilfish                      | Ruvettus pretiosus         |
| 19 Mackerel, bullet             | Auxis rochei               |
| 40 Yellowtail                   | Seriola lalandi            |
| 41 Jack, Pacific crevalle       | Caranx caninus             |
| 42 Jacks, unspecified           | Carangidae                 |
| 43 Jack, almaco (amberjack)     | Seriola rivoliana          |
| 50 Mackerel, unspecified        | Scomber / Trachurus        |
| 51 Mackerel, Pacific            | Scomber japonicus          |
| 52 Sierra, Pacific              | Scomberomorus sierra       |
| 55 Mackerel, jack               | Trachurus symmetricus      |
| 57 Wahoo                        | Acanthocybium solanderi    |
| 80 Butterfish (Pacific pompano) | Peprilus simillimus        |
| 81 Pomfret, Pacific             | Brama japonica             |
| 91 Swordfish                    | Xiphias gladius            |
| 92 Marlin, striped              | Tetrapturus audax          |
| 95 Sailfish                     | Istiophorus platypterus    |
| 96 Shark, white                 | Carcharodon carcharias     |
| 97 Shark, bigeye thresher       | Alopias superciliosus      |
| 98 Shark, pelagic thresher      | Alopias pelagicus          |
| 100 Sardine, Pacific            | Sardinops sagax caeruleus  |
| 101 Sardine, juvenile           | Sardinops sagax caeruleus  |
| 105 Herring, round              | Etrumeus teres             |
| 110 Anchovy, northern           | Engraulis mordax           |
| 111 Anchovy, deepbody           | Anchoa compressa           |
| 113 Anchovy, slough             | Anchoa delicatissima       |
| 121 Herring, Pacific            | Clupea pallasi             |
| 122 Herring, Pacific - roe      | Clupea pallasi             |
| 130 Barracuda, California       | Sphyraena argentea         |
| 135 Mullet, striped             | Mugil cephalus             |
| 144 Senorita                    | Oxyjulis californica       |
| 145 Sheephead, California       | Semicossyphus pulcher      |
| 146 Wrasse, rock                | Halichoeres semicinctus    |
| 147 Skate, longnose             | Raja rhina                 |
|                                 | -                          |
| 149 Shark, blacktip             | Carcharhinus limbatus      |

151 Shark, shortfin mako 152 Shark, spiny dogfish 153 Shark, leopard 154 Shark, brown smoothhound 155 Shark, thresher 156 Shark, basking 158 Shark, smooth hammerhead 159 Shark, soupfin 160 Sharks, cow 161 Shark, sixgill 162 Shark, sevengill 163 Shark, swell 164 Shark, dusky 165 Shark, Pacific angel 166 Ratfish, spotted 167 Shark, blue 168 Shark, salmon 169 Shark, horn 170 Ray, unspecified 171 Ray, bat 172 Ray, Pacific electric 173 Stingray 174 Guitarfish, shovelnose 175 Skate, unspecified 176 Skate, big 177 Skate, California 178 Skate, thornback 179 Shark, gray smoothhound 180 Smelts, true 181 Grunion, California 182 Smelt, surf 184 Jacksmelt 185 Smelt, whitebait 186 Topsmelt 187 Smelt, night 188 Eulachon **189** Silversides 190 Sablefish 191 Louvar 195 Lingcod 196 Tomcod, Pacific 197 Cod, Pacific 198 Grenadier 200 Sole, unspecified 201 Flounder, arrowtooth 202 Sole, bigmouth 203 Sole, rock

Isurus oxyrinchus Squalus acanthias Triakis semifasciata Mustelus henlei Alopias vulpinus Cetorhinus maximus Sphyrna zygaena Galeorhinus zyopterus Hexanchidae Hexanchus griseus Notorynchus cepedianus Cephaloscyllium ventriosum Carcharhinus obscurus Squatina californica Hydrolagus colliei Prionace glauca Lamna ditropis Heterodontus francisci Rajiformes Myliobatis californica Torpedo californica Dasvatidae Rhinobatos productus Rajidae Raja binoculata Raja inornata Platyrhinoidis triseriata Mustelus californicus Osmeridae Leuresthes tenuis Hypomesus pretiosus Atherinopsis californiensis Allosmerus elongatus Atherinops affinis Spirinchus starksi Thaleichthys pacificus Atherinidae Anoplopoma fimbria Luvarus imperialis **Ophiodon elongatus** Microgadus proximus Gadus macrocephalus Macrouridae Pleuronectiformes Atheresthes stomias Hippoglossina stomata Pleuronectes bilineata

204 Sole, fantail 205 Sole, sand 206 Sole, English 207 Sole, rex 208 Sole, butter 209 Sole, petrale 210 Sole, slender 211 Sole, Dover 212 Sole, tongue 220 Halibut, unspecified 221 Halibut, Pacific 222 Halibut. California 225 Sanddab 226 Sanddab, longfin 227 Sanddab, Pacific 228 Sanddab, speckled 230 Flounder, unspecified 231 Flounder, starry 235 Turbot, curlfin 236 Turbot, diamond 237 Sole, C-O 238 Turbot, hornyhead 239 Turbot, spotted 240 Turbot 245 Rockfish, cowcod 246 Rockfish, copper (whitebelly) 247 Rockfish, canary 249 Rockfish, vermilion 250 Rockfish, unspecified 251 Rockfish, black-and-yellow 252 Rockfish, black 253 Rockfish, bocaccio 254 Rockfish, chilipepper 255 Rockfish, greenspotted 256 Rockfish, starry 257 Rockfish, darkblotched 258 Rockfish, China 259 Rockfish, yellowtail 260 Scorpionfish, California 261 Cabezon 262 Thornyheads 263 Rockfish, gopher 264 Rockfish, pinkrose 265 Rockfish, yelloweye 267 Rockfish, brown 268 Rockfish, rosy 269 Rockfish, widow

**Xystreurys** liolepis Psettichthys melanostictus Pleuronectes vetulus Errex zachirus **Pleuronectes isolepis** Eopsetta jordani Eopsetta exilis Microstomus pacificus Symphurus atricauda Pleuronectiformes **Hippoglossus stenolepis** Paralichthys californicus Citharichthys spp. Citharichthys xanthostigma Citharichthys sordidus Citharichthys stigmaeus Pleuronectidae Platichthys stellatus Pleuronichthys decurrens Hypsopsetta guttulata Pleuronichthys coenosus Pleuronichthys verticalis Pleuronichthys ritteri Pleuronectidae Sebastes levis Sebastes caurinus Sebastes pinniger Sebastes miniatus Sebastes spp. Sebastes chrysomelas Sebastes melanops Sebastes paucispinis Sebastes goodei Sebastes chlorostictus Sebastes constellatus Sebastes crameri Sebastes nebulosus Sebastes flavidus Scorpaena guttata Scorpaenichthys marmoratus Sebastolobus spp. Sebastes carnatus Sebastes simulator Sebastes ruberrimus Sebastes auriculatus Sebastes rosaceus Sebastes entomelas

270 Rockfish, splitnose 271 Rockfish, Pacific ocean perch 272 Sculpin, staghorn 273 Sculpin, yellowchin 275 Bass, rock 276 Bass, spotted sand 277 Bass, kelp 278 Bass, barred sand 280 Bass, giant sea 289 Greenling, rock 290 Greenling, kelp 291 Triggerfish 292 Sunfish, ocean 300 Salmon 301 Salmon, chum 302 Salmon, Chinook 303 Salmon, pink 304 Salmon, coho 306 Salmon, Roe (Chinook, Coho) 316 Trout, rainbow 320 Catfish, unspecified 322 Bullhead, brown 324 Shad, threadfin 325 Shad, American 335 Bass, striped 340 Tilapia 341 Crab, red rock 342 Crab, yellow rock 343 Crab, brown rock 345 Carp 346 Hardhead (freshwater) 347 Splittail 348 Hitch 349 Blackfish, Sacramento 361 Stickleback, threespine 365 Squawfish 375 Sucker 400 Seabass, white 410 Seabass, totuava 415 Snapper - Mexico-420 Croaker, unspecifed 421 Croaker, black 422 Croaker, spotfin 423 Croaker, yellowfin 426 Corbina, California 427 Corvina, shortfin 430 Grouper

Sebastes diploproa Sebastes alutus Leptocottus armatus Icelinus quadriseriatus Paralabrax spp. Paralabrax maculatofasciatus Paralabrax clathratus Paralabrax nebulifer Stereolepis gigas Hexagrammos lagocephalus Hexagrammos decagrammus Balistidae Mola mola Oncorhynchus spp. Oncorhynchus keta Oncorhynchus tshawytscha Oncorhynchus gorbuscha Oncorhynchus kisutch Oncorhynchus spp. Oncorhynchus mykiss Siluriformes Ameiurus nebulosus Dorosoma petenense Alosa sapidissima Morone saxatilis Tilapia spp. **Cancer productus** Cancer anthonyi **Cancer** antennarius Cyprinus carpio Mylopharodon conocephalus Pogonichthys macrolepidotus Lavinia exilicauda Orthodon microlepidotus Gasterosteus aculeatus Ptychocheilus grandis Catostomidae Atractoscion nobilis Totoaba macdonaldi Lutianidae Sciaenidae Cheilotrema saturnum Roncador stearnsii Umbrina roncador Menticirrhus undulatus Cynoscion parvipinnis Mycteroperca / Epinephelus

431 Cabrilla, spotted 432 Grouper, broomtail 435 Croaker, white 440 Queenfish 445 Flyingfish 446 Saury, Pacific 450 Eel 451 Eel, blenny 452 Eel, California moray 453 Lamprey, Pacific 454 Eel, wolf (wolf-eel) 455 Eel, spotted cusk-456 Eel, monkeyface (prickleback) 457 Hagfishes 467 Opah 470 Sturgeons 471 Sturgeon, green 472 Sturgeon, white 473 Lizardfish, California 474 Perch-like, unspecified 475 Opaleye 476 Needlefish, California 477 Bonefish 478 Halfmoon 479 Blacksmith 480 Sargo 481 Dolphin (fish) 482 Garibaldi 483 Mudsucker, longjaw 484 Salema 485 Midshipman, plainfin 486 Goby, bluebanded 487 Goby, yellowfin 488 Goby, zebra 490 Whitefish, ocean 491 Killifish, California 495 Whiting, Pacific 501 Kelpfish, giant 510 Kelpfishes 550 Surfperch, unspecified 551 Surfperch, barred 552 Surfperch, black 553 Surfperch, redtail 554 Surfperch, shiner 555 Seaperch, striped 556 Surfperch, white 557 Surfperch, walleye

**Epinephelus** analogus Mycteroperca xenarcha Genyonemus lineatus Seriphus politus Exocoetidae spp. Cololabis saira Osteichthyes Lumpenus anguillaris Gymnothorax mordax Lampetra tridentata Anarrhichthys ocellatus Chilara taylori Cebidichthys violaceus Eptatretus spp. Lampris guttatus Acipenseridae Acipenser medirostris Acipenser transmontanus Synodus lucioceps Kyphosidae/Pomacentridae Girella nigricans Strongylura exilis Albula vulpes Medialuna californiensis Chromis punctipinnis Anisotremus davidsonii Coryphaena hippurus Hypsypops rubicundus Gillichthys mirabilis Xenistius californiensis Porichthys notatus Lythrypnus dalli Acanthogobius flavimanus Lythrypnus zebra Caulolatilus princeps Fundulus parvipinnis Merluccius productus Heterostichus rostratus Gibbonsia spp. Embiotocidae Amphistichus argenteus Embiotoca jacksoni Amphistichus rhodoterus Cymatogaster aggregata Embiotoca lateralis Phanerodon furcatus Hyperprosopon argenteum

558 Surfperch, rubberlip 559 Surfperch, pile 560 Surfperch, calico 561 Surfperch, dwarf 562 Surfperch, rainbow 563 Surfperch, pink 564 Surfperch, silver 601 Kahawai 602 Zebraperch 650 Rougheye rockfish 651 Rockfish, olive 652 Rockfish, grass 653 Rockfish, pink 654 Rockfish, greenstriped 655 Rockfish, copper 656 Blackspotted rockfish 657 Rockfish, flag 658 Rockfish, treefish 659 Rockfish, kelp 660 Rockfish, honeycomb 661 Rockfish, greenblotched 662 Rockfish, bronzespotted 663 Rockfish, bank 664 Rockfish, rosethorn 665 Rockfish, blue 666 Rockfish, squarespot 667 Rockfish, blackgill 668 Rockfish, stripetail 669 Rockfish, speckled 670 Rockfish, swordspine 671 Rockfish, calico 672 Rockfish, shortbelly 673 Rockfish, chameleon 674 Rockfish, aurora 675 Rockfish, redbanded 676 Rockfish, Mexican 677 Rockfish, shortraker 678 Thornyhead, longspine 679 Thornyhead, shortspine 680 Anemones 681 Jellyfish 682 Sea pansy 683 Limpet, keyhole 684 Snail, tegula 685 Crab, hermit 686 Crab, spider/sheep claws 687 Sand dollar

Rhacochilus toxotes Rhacochilus vacca Amphistichus koelzi Micrometrus minimus Hypsurus caryi Zalembius rosaceus Hyperprosopon ellipticum Annipis trutta Hermosilla azurea Sebastes aleutianus Sebastes serranoides Sebastes rastrelliger Sebastes eos Sebastes elongatus Sebastes caurinus Sebastes melanostictus Sebastes rubrivinctus Sebastes serriceps Sebastes atrovirens Sebastes umbrosus Sebastes rosenblatti Sebastes gilli Sebastes rufus Sebastes helvomaculatus Sebastes mystinus Sebastes hopkinsi Sebastes melanostomus Sebastes saxicola Sebastes ovalis Sebastes ensifer Sebastes dallii Sebastes jordani Sebastes phillipsi Sebastes aurora Sebastes babcocki Sebastes macdonaldi Sebastes borealis Sebastolobus altivelis Sebastolobus alascanus Anthozoa Hydrozoa Renilla koellikeri Megathura crenulata Tegula spp. Paguristes sp. Loxorhynchus spp. Dendraster excentricus

688 Bryozoan 689 Flatworm, marine 690 Hornsnail 699 Invertebrate Unspecified 700 Abalone 701 Abalone, black 702 Abalone, red 703 Abalone, green 704 Abalone, pink 705 Abalone, white 706 Abalone, threaded 707 Abalone, pinto 708 Abalone, flat 709 Limpet, unspecified 710 Squid, jumbo 711 Squid, market 712 Octopus, unspecified 717 Scallop, weathervane 718 Scallop, rock 719 Scallop, unspecified 720 Clam, unspecified 721 Clam, common littleneck 722 Clam, Pismo 723 Clam, softshell 725 Clam, northern razor 726 Clam, gaper 727 Clam, common Washington 728 Clam, California jackknife 729 Sea slug 730 Mussel 731 Whelk, Kellet's 732 Snail, sea 733 Clam, freshwater 734 Clam, purple 735 Clam, rosy razor 736 Snails, moon 737 Clam, northern quahog 740 Oyster, unspecified 741 Oyster, eastern 742 Oyster, California native 743 Oyster, giant Pacific 745 Oyster, european flat 746 Snail, bubble 747 Snail, top 749 Sea hare 750 Echinoderm, unspecified 751 Sea stars

Ectoprocta Platyhelminthes Cerithidea spp. Haliotis spp. Haliotis cracherodii Haliotis rufescens Haliotis fulgens Haliotis corrugata Haliotis sorenseni Haliotis assimilis Haliotis kamtschatkana Haliotis walallensis Archaeogastropoda Doscidicus gigas Loligo opalescens Octopus spp. Patinopecten caurinus Crassadoma gigantea Pectinidae Bivalvia Protothaca staminea Tivela stultorum Mya arenaria Siliqua patula Tresus nuttalli Saxidomus nuttalli Tagelus californianus Opisthobranchia Mytilus spp. Kelletia Kelleti Gastropoda Corbicula fluminea Nuttallia nuttallii Solen sicarius Polinices spp. Mercenaria mercenaria Ostreidae Crassostrea virginica Ostrea lurida Crassostrea gigas Ostrea edulis Bulla gouldiana Astraea undosa Aplysia spp. Echinodermata Asteroidea

752 Sea urchin, red 753 Sea urchin, purple 754 Sea cucumber, giant red 755 Sea cucumber, unspecified 756 Sea urchin, white 757 Sea cucumber, warty 760 Sponges 769 Invertebrates, colonial 781 Snail, freshwater 799 Mollusk, unspecified 800 Crab, Dungeness 801 Crab, rock unspecified 802 Crab, claws 803 Crab, spider 804 Crab, king 805 Crab, sand 806 Crab, shore 807 Crab, pelagic red 808 Crab, tanner 809 Crab, box 810 Shrimp, bay 811 Shrimp, ghost 812 Shrimp, ocean (pink) 813 Prawn, ridgeback 814 Shrimp, unspecified 815 Prawn, spot 816 Prawn, golden 817 Shrimp, coonstriped 818 Shrimp, red rock 819 Shrimp, brine 820 Lobster, California spiny 821 Shrimp, mantis 823 Crab, armed box 825 Cravfish, signal 826 Barnacle 827 Crayfish, red swamp 828 Crayfish, unspecified 830 Spiders, sea 840 Tunicates 850 Worms, marine 851 Themiste 860 Chiton, unspecified 899 Crustacean, unspecified 915 Lancelets, amphioxus 920 Frog 921 Frog, bull 930 Turtle

Strongylocentrotus franciscanu Strongylocentrotus purpuratus Parastichopus californicus Holothuroidea Lytechinus anamesus Parastichopus parvimensis Porifera Cnidaria Gastropoda Mollusca Cancer magister Cancer spp. Cancer spp. Loxorhynchus spp. Paralithodes spp. Emerita analoga Pachygrapsus crassipes **Pleuroncodes** planipes Chionoecetes tanneri Lopholithodes foraminatus Crangonidae Callianassa californiensis Pandalus jordani Eusicyonia ingentus Crustacea Pandalus platyceros Penaeus Californiensis Pandalus danae Lysmata californica Artemia salina Panulirus interruptus Hemisquilla ensigera californiensis Playmera gaudichaudi Pacifastacus leniusculus Cirripedia Procambarus clarkii Astacidae Pycnogonida Urochordata Polychaeta Themiste spp. Polyplacophora Crustacea Branchiostoma californiense Rana spp. Rana catesbiana Chelonia mydas

| <ul> <li>931 Terrapin</li> <li>950 Kelp</li> <li>951 Agar</li> <li>953 Algae, marine</li> <li>956 Rockfish, group bocaccio/chili</li> <li>957 Rockfish, group bolina</li> <li>958 Rockfish, group deepwater reds</li> <li>959 Rockfish, group red</li> <li>960 Rockfish, group red</li> <li>961 Rockfish, group small</li> <li>961 Rockfish, group gopher</li> <li>964 Rockfish, group rougheye/blackspotted</li> <li>970 Rockfish, group canary/vermili</li> <li>972 Rockfish, group black/blue</li> <li>973 Rockfish, group shelf</li> <li>975 Rockfish, group slope</li> <li>976 Rockfish, group deep nearshore</li> <li>992 Trawled fish for animal food</li> </ul> | Malaclemys spp.<br>Macrocystis spp.<br>Gelidium spp.<br>Phycophyta<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group<br>Sebastes/group |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                      |

# APPENDIX D

# **Best Management Practices**

# Ventura Shellfish Enterprise Proposed Best Management Practices to Mitigate Potential Adverse Project Impacts

| Measure                 | Description of Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Responsible Party                                                                   | Enforcing Agency                        |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|
| Seed supply –<br>1      | <b>Cultivation of Spat Offsite.</b> Only hatchery-reared mussel spat grown at a facility certified by CDFW will be used in order to ensure that spat are free of introduced invasive species, parasites, and pathogens of concern; however, natural mussel spat collected on farm grow-out lines and buoys may also be harvested and cultivated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Grower/Producer <sup>1</sup>                                                        | Ventura Port District (VPD)<br>and CDFW |
| Sediment<br>quality – 1 | Sediment Quality Monitoring Plan. A Sediment Quality Monitoring Plan shall be developed requiring monitoring of sediment conditions within the project area, including monitoring the quantity, type, and distribution of biological materials (such as shellfish, shell material, and fouling organisms) that accumulate on the seafloor. Monitoring will also include an evaluation of any changes to oxygen demand of benthic infaunal and epifaunal communities, and changes to the chemical and biochemical conditions of seafloor sediments along with a description of performance standards to meet.                                                                                                                                                                                                                                                                                                                                          | VPD to prepare plan<br>Third-party consultant hired by VPD<br>to conduct monitoring | NOAA and NMFS                           |
|                         | If performance standards are not met, corrective actions will be outlined. The Plan will include reporting requirements, including annual report submittals to NOAA and NMFS for review. If performance standards are met for a period of time, the plan will provide for appropriately scaling down monitoring and intervals over time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                         |
| Wildlife – 1            | <b>Marine Wildlife Entanglement Plan.</b> No less than once per month, each grower/producer operating on a VPD lease shall visually inspect all ropes, cables, and equipment via depth/fish finders to determine if any entanglement of a marine mammal has occurred and to ensure that (a) no lines have been broken, lost or removed; (b) all longlines, anchor lines, and buoy lines remain taught and in good working condition; and (c) any derelict fishing gear or marine debris that collects in the growing gear is removed and disposed of at an identified onshore facility. All equipment and materials accidentally released or found to be missing from the facility during monthly inspections, including buoys, floats, lines, ropes, chains, cultivation trays, wires, fasteners, and clasps, shall be searched for, collected, properly disposed of onshore, and documented in the annual inspection report. Monitoring shall occur | Grower/Producer to inspect and<br>respond<br>VPD to identify disposal facility      | VPD and NOAA Fisheries                  |

<sup>&</sup>lt;sup>1</sup> Note that all Grower/Producer responsibilities will be spelled out as conditions in grower/producer leases with VPD, thus establishing VPD enforcement authority for those conditions.

|              | <ul> <li>monthly for the first two years following deployment and, in the event that there are no marine wildlife entanglements within the first two years, may be reduced to quarterly inspections thereafter.</li> <li>Inspections shall include recordings by depth/fish finder or ROV surveys of lines and/or monitoring performed by SCUBA divers. Recorded video shall be provided along with the annual report described above. Any maintenance issues including wear, loosening, or fatigue of materials shall be remedied as soon as possible. All incidents of observed whale entanglement shall be immediately reported to SOS WHALe. Any other marine wildlife (i.e., other marine mammals, turtles) observed to be entangled will be immediately reported to NOAA Fisheries Marine Mammal Stranding Network Coordinator, West Coast Region, Long Beach Office. Only personnel who have been authorized by NOAA Fisheries and who have training, experience, equipment, and support will attempt to disentangle marine wildlife and the entangling gear material so as to modify gear and avoid any future entanglements.</li> </ul> |                                                                                                                                                                                                                                                  |                                                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Wildlife – 2 | <b>Predator Control.</b> Potential predator species will be identified. Specified humane methods of predator deterrence will be utilized, favoring non-lethal methods. No controls, other than non-lethal exclusion, shall be applied to species that are listed as threatened or endangered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VPD to identify potential predator<br>species and deterrence methods<br>Grower/Producer to implement<br>identified methods as necessary                                                                                                          | Any methods of predator<br>control are subject to prior<br>approval of VPD, U.S. Fish<br>and Wildlife Service, and<br>NOAA Fisheries |
| Wildlife – 3 | <b>Marine Wildlife Observer</b> . A Marine Wildlife Observer shall be present on each project construction vessel during all construction activities, including the installation of long lines and anchoring systems. The observer shall monitor and record the presence of all marine wildlife (marine mammals and sea turtles) within 100 yards of the work area. The observer shall have the authority to halt operations if marine wildlife are observed or anticipated to be near a work area and construction activities have the potential to result in injury or entanglement of marine wildlife. In addition, all work (including vessel motors) will be halted if a cetacean is observed within the monitoring area or if a pinniped or sea turtle is observed within 50 yards of the work area. Work may commence after the observed individuals have moved out of the monitoring area.                                                                                                                                                                                                                                               | VPD to identify qualified Marine<br>Wildlife Observers and submit<br>monthly observers' reports<br>Growers/Producers to assure a<br>qualified observer is present during<br>construction activities and that<br>observers' directives are heeded | VPD and NOAA Fisheries                                                                                                               |
|              | Observers' reports on marine mammal monitoring during construction activities shall<br>be prepared and submitted to NOAA Fisheries on a monthly basis. Reports shall<br>include such information as the (1) number, type, and location of marine mammals<br>observed; (2) the behavior of marine mammals in the area of potential sound effects<br>during construction; (3) dates and times when observations and in-water project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |                                                                                                                                      |

|              | <ul> <li>construction activities were conducted; and (4) dates and times when in-water construction activities were suspended because of marine mammals.</li> <li>VPD shall prepare a list of qualified marine wildlife observers who meet the following minimum qualifications: visual acuity in both eyes (correction is permissible) sufficient to discern moving targets at the water's surface with ability to estimate target size and distance; (2) use of binoculars or spotting scope may be necessary to correctly identify the target; (3) advanced education in biological science, wildlife management, mammalogy, or related fields (bachelor's degree or higher is preferred); (4) experience and ability to conduct field observations and collect data according to assigned protocols (this may include academic experience); (5) experience or training in the field identification of marine mammals (cetaceans and pinnipeds) and sea turtles; and (6) ability to communicate orally, by radio or in person, with project personnel to provide real time information on marine wildlife observed in the area, as needed.</li> </ul>                                       |                                                                           |                          |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|
| Wildlife – 4 | <b>Entanglement Prevention</b> . Grow-ropes will be attached to the head rope with a low-<br>breaking-strength twine (4-millimeter (0.16-inch) diameter; <1,000 pounds), which will<br>facilitate rapid detachment in the unlikely event of any interaction with the longline. A<br>1,100-pound breakaway link will be installed between surface marking buoys and the<br>vertical lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Grower/Producer                                                           | VPD                      |
| Wildlife – 5 | Marine Wildlife Education. Each grower/producer will be required to provide bi-<br>annual (twice per year) marine wildlife education to its employees regarding proper<br>procedures relating to marine wildlife. The training curriculum will include identifying<br>the presence of specified marine wildlife and procedures for avoiding impacts to<br>marine wildlife during operations. These procedures will include (1) reducing speed<br>and observing the distances from marine life specified in Wildlife-7; (2) providing a<br>safe path of travel for marine mammals that avoids encirclement or entrapment of the<br>animal(s) between the vessel and growing apparatus; (3) if approached by a marine<br>mammal, reducing speed, placing the vessel in neutral and waiting until the animal is<br>observed clear of the vessel before making way; (4) avoiding sudden direction or<br>speed changes when near marine mammals; (5) refraining from approaching,<br>touching or feeding a marine mammal; and (6) immediately contacting their supervisor<br>and other identified parties/agencies identified in Wildlife-1 should an employee<br>observe an injured marine mammal. | VPD to prepare training curriculum<br>Grower/Producer to provide training | VPD and NOAA Fisheries   |
| Wildlife – 6 | <b>Lighting.</b> All growing area operations shall be completed during daylight hours. No growing area operations will be conducted at night and no permanent artificial lighting of the shellfish cultivation facility shall occur, except for that associated with the use of navigational safety buoys required by the U.S. Coast Guard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Grower/Producer                                                           | VPD and U.S. Coast Guard |

| Wildlife – 7                               | <ul> <li>Vessel Management. Vessels in transit to and from the growing area shall maintain a distance of 100 yards from any observed cetacean and 50 yards between any observed pinniped or sea turtle. If cetaceans are observed within 100 yards or pinnipeds or sea turtles observed within 50 yards, the vessel shall reduce speeds to 12 knots or less until it is the appropriate distance (as required by this condition) from the particular marine life. If a cetacean is heading into the direct path of the vessel (i.e., approaching a moving vessel directly into the bow), the vessel shall shut off the engine until the cetacean is no longer approaching the bow and until a greater separation distance is observed. If small cetaceans are observed bow-riding, and the vessel is operating at speeds of 12 knots or less, the vessel shall remain parallel to the animal's course and avoid abrupt changes in direction until the cetaceans have left the area.</li> <li>Each sighting of a federally listed threatened or endangered whale or turtle shall be recorded and the following information shall be provided: <ul> <li>a. Date, time, coordinates of vessel</li> <li>b. Visibility, weather, sea state</li> <li>c. Vector of sighting (distance, bearing)</li> <li>d. Duration of sighting</li> <li>e. Species and number of animals</li> <li>f. Observed behaviors (feeding, diving, breaching, etc.)</li> </ul> </li> </ul> | Grower/Producer                                                                                                         | U.S. Coast Guard                                                                                 |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Wildlife – 8                               | <ul> <li>g. Description of interaction with aquaculture facility</li> <li>Invasive Species. Grower/producers operating in the project area shall be required to receive training from NMFS to identify potential invasive species and how to properly dispose of such invasive species if discovered.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Grower/Producer                                                                                                         | NMFS or entity delegated by<br>NMFS to conduct training                                          |
| Storage and<br>disposal of<br>supplies – 1 | <b>Spill Prevention and Response</b> . Discharges of feed, pesticides, or chemicals (including antibiotics and hormones) in ocean waters are prohibited. Fuel, lubricants and chemicals must be labeled, stored and disposed of in a safe and responsible manner, and marked with warning signs. Precautions shall be taken to prevent spills, fires and explosions, and procedures and supplies shall be readily available to manage chemical and fuel spills or leaks. Each grower/producer shall comply with the Spill Prevention and Response Plan (SPRP) for vessels and work barges that will be used during project construction and operations. Each grower/producer operating in the project area shall be trained in, and adhere to, the emergency procedures and spill prevention and response measures specified in the SPRP during all project operations. The SPRP shall provide for emergency response and spill control procedures to be taken to stop or control the source of the spill and to contain and clean up the spill. The SPRP shall include, at a minimum: (a) identification of potential spill sources and quantity estimates of a project specific reasonable worst case spill; (b) identification of prevention and response equipment and measures/procedures                                                                                                                                                               | VPD to prepare SPRP and provide<br>training to growers/producers<br>Growers/Producers to implement<br>VPD-prepared SPRP | U.S. Army Corps of<br>Engineers, U.S. Coast<br>Guard, California Office of<br>Emergency Services |

|                                            | that will be taken to prevent potential spills and to protect marine and shoreline<br>resources in the event of a spill. Spill prevention and response equipment shall be<br>kept onboard project vessels at all times; (c) a prohibition on at-sea vessel or<br>equipment fueling/refueling activities; and (d) emergency response and notification<br>procedures, including a list of contacts to call in the event of a spill; (e) assurance that<br>all hydraulic fluid to be used for installation, maintenance, planting, and harvesting<br>activities shall be vegetable based.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                                         |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|
| Storage and<br>disposal of<br>supplies – 2 | Aquaculture Gear Monitoring and Escapement Plan. Include in overall<br>management plan an aquaculture gear monitoring and escapement plan. Any farm<br>gear that has broken loose from the farm location shall be retrieved. The farm site<br>shall be visited at minimum twice per month to examine the aquaculture gear for<br>potential loss or non-compliant deployment, including inspections for fouling<br>organisms. Any organisms that have a potential to cover the sea floor will be removed<br>and disposed of at an identified upland facility. A Marine Debris Management Plan<br>shall also be prepared that includes (a) a plan for permanently marking all lines,<br>ropes, buoys, and other facility infrastructure and floating equipment with the name<br>and contact information of the grower/producer; (b) a description of the extent and<br>frequency of maintenance operations necessary to minimize the loss of materials and<br>equipment to the marine environment resulting from breakages and structural failures;<br>and (c) a description of the search and cleanup measures that would be implemented<br>if loss of shellfish cultivation facility materials, equipment, and/or infrastructure occurs. | VPD to prepare plan<br>Growers/Producers to implement<br>plan                    | VPD and U.S. Army Corps<br>of Engineers |
| Storage and<br>disposal of<br>supplies -3  | <b>Decommissioning Plan</b> . A decommissioning plan for the timely removal of all shellfish, structures, anchoring devices, equipment, and materials associated with the shellfish cultivation facility and documentation of completion of removal activities will be a requirement of each permit or sub-permit. Financial assurances to guarantee implementation of the plan will be in place and reviewed periodically.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grower/Producer to prepare and<br>implement approved plan<br>VPD to approve plan | U.S. Army Corps of<br>Engineers         |
| Navigation -1                              | <b>Update NOAA Charts.</b> VPD to submit to the NOAA Office of Coast Survey: (a) the geographical coordinates of the facility boundaries obtained using a different geographic position unit or comparable navigational equipment; (b) as-built plans of the facility and associated buoys and anchors; (c) each grower/producer's point of contact and telephone number; and (d) any other information required by the NOAA Office of Coast Survey to accurately portray the location of the shellfish cultivation facility on navigational charts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VPD                                                                              | NOAA                                    |
| Navigation -2                              | <b>Notice to Mariners.</b> No less than 15-days prior to the start of in-water activities associated with the installation phase of the project, VPD shall submit to (a) the U.S. Coast Guard (for publication in a Notice to Mariners); and (b) the harbormasters (for posting in their offices of public noticeboards), notices containing the anticipated start date of installation, the anticipated installation schedule, and the coordinates of the installation sites. During installation, VPD shall also make radio broadcast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VPD                                                                              | U.S. Coast Guard                        |

| announcements to the local fishers' emergency radio frequency that provide the     |  |
|------------------------------------------------------------------------------------|--|
| current installation location and a phone number that can be called for additional |  |
| information.                                                                       |  |

# **APPENDIX B**

Federally Protected Species Potential to Occur

#### APPENDIX B Federally Protected Species Potential To Occur

| Scientific Name                   | Common Name           | Federal<br>Status <sup>1</sup>  | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                     | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-----------------------------------|-----------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Marine Mammals <sup>2</sup>       |                       |                                 |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Cetaceans                         |                       |                                 |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Balarnoptera acutorostrata        | Common minke<br>whale | MMPA                            | Worldwide distribution. Polar, temperate,<br>and tropical waters in both coastal and<br>offshore habitats (NMFS 2018a).                                                                                                                              | <b>Moderate</b> potential to occur. Foraging and migration<br>habitat is present in the Action Area. Some individuals are<br>residents in California waters. Minke whales feed on<br>euphausiids, copepods and small schooling fish, which are<br>present in the Channel. In addition, this species has been<br>recorded since 1988 in the Santa Barbara Channel and<br>within 1 mile of the Action Area (PBCS 2018).                                                                                                                                                                                                              |  |
| Balaenoptera borealis<br>borealis | Sei whale             | Endangered,<br>MMPA             | Worldwide distribution in subtropical,<br>temperate, and subpolar waters. This species<br>prefers deeper waters far from the coastline<br>(NMFS 2018a). This species' habitat<br>preference is the continental shelf edge and<br>slope (NMFS 2018a). | Low potential to occur. This species may traverse through<br>the Action Area during migration. In general, sei whales<br>migrate annually from cool and subpolar waters in summer<br>to temperate and subtropical waters for winter, where food<br>is more abundant. Foraging resources (krill, copepods,<br>small schooling fish, cephalopods) are likely present in the<br>Action Area.                                                                                                                                                                                                                                          |  |
| Balaenoptera edeni                | Bryde's whale         | Proposed<br>Endangered,<br>MMPA | Prefers highly productive tropical,<br>subtropical and warm temperate waters<br>worldwide.                                                                                                                                                           | Low potential to occur. This species may be found in all<br>oceans from 40°S to 40°N; however, some populations<br>migrate seasonally while others are resident and do not<br>migrate (NMFS 2018). Year-round residents appear to be<br>present along the west coast of Baja California, Mexico<br>(Kenyon 1971). Foraging resources (krill, copepods, small<br>schooling fish, crustaceans) are likely present in the Action<br>Area. This species displays a preference for subtropical<br>and tropical zones, inhabiting waters 16°C (60°F) or<br>warmer) (Jefferson et al. 2008).                                              |  |
| Balaenoptera musculus<br>musculus | Blue whale            | Endangered,<br>MMPA             | Worldwide, from sub-polar to sub-tropical<br>latitudes; generally occurs more offshore<br>than other whales (NMFS 2018a).                                                                                                                            | Low potential to occur. This species has been observed<br>migrating and feeding through the Santa Barbara Channel<br>on many occasions, with several occurrences within the<br>Action Area (PBCS 2018). In general, this species migrates<br>poleward to feed in the summer and to the tropics to<br>breed in the winter (Jefferson et al. 2008). Most<br>occurrences are north of Santa Rosa and western Santa<br>Cruz Island along the 200 meter isobath (Cascadia 2011),<br>approximately 7.4 miles east of the Action Area. In<br>addition, foraging resources (predominantly krill) are likely<br>present in the Action Area. |  |
| Balaenoptera physalus<br>physalus | Fin whale             | Endangered,<br>MMPA             | Worldwide, primarily in temperate to polar latitudes and less common in the tropics.                                                                                                                                                                 | Moderate potential to occur. This species has been<br>observed migrating and feeding through the Santa Barbara<br>Channel on many occasions, with one occurrence (12                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

### APPENDIX B Federally Protected Species Potential To Occur

| Scientific Name             | Common Name                                 | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                         | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|---------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                             |                                |                                                                                                                                                                                                                                                                                                                                          | individuals) noted within 1 mile of the Action Area in 2011<br>(PBCS 2018; Cascadia 2011). This species' distribution is<br>not well known, but it generally migrates poleward to feed<br>in the summer and to the subtropics to breed in the winter<br>(Jefferson et al. 2008). Resources (krill, small schooling<br>fish, squid) are likely present in the Action Area. This<br>species is more commonly associated with the 200 meter<br>isobath, which is approximately 7.4 miles from the Action<br>Area (Cascadia 2011) |
| Berardius bairdii           | Baird's beaked<br>whale                     | MMPA                           | Throughout the North Pacific Ocean and<br>adjacent seas. This species prefers deep, cold<br>waters of 3,000 feet (nearly 1,000 meters) or<br>greater and may occur near shore along<br>narrow continental shelves. Beaked whales<br>are deep divers that prefer submarine<br>canyons, seamounts, and continental slopes<br>(NMFS 2018a). | Low potential to occur. Migration and distribution are<br>poorly known (Jefferson et al. 2008). Suitable foraging<br>resources (e.g., deep water and bottom-dwelling<br>crustaceans, cephalopods, gadiform fish; Jefferson et al.<br>2008) are not likely present in the Action Area. This<br>species prefers deep waters that are not present within the<br>Action Area. This species has been observed far south of<br>the Channel Islands, and west of Point Conception<br>(Baumann-Pickering et al. 2013).                |
| Delphinus capensis capensis | Long-beaked<br>common dolphin               | MMPA                           | Coastal habitats; prefers shallower tropical,<br>subtropical, and warmer temperate to cool<br>waters closer to the coast (within 50-100<br>nautical miles (90-180 km)) and the<br>continental shelf (NMFS 2018a).                                                                                                                        | <b>High</b> potential to occur. Foraging resources (small schooling fish and squid) are likely present in the Action Area. This species has been recorded multiple times and in great numbers (e.g., occurrences with 1,500 individuals) in the Santa Barbara Channel, including the Action Area (PBCS 2018). This species displays a habitat preference for coastal waters, sometimes coming close to shore within waters that are only a few meters deep (Jefferson et al. 2008).                                           |
| Delphinus delphis delphis   | Short-beaked<br>common dolphin              | MMPA                           | Warm tropical to cool temperate waters,<br>primarily oceanic and offshore. Species also<br>occurs along the continental slope in waters<br>650-6,500 feet (200-2,000 m) deep (NMFS<br>2018a).                                                                                                                                            | <b>Moderate</b> potential to occur. Foraging resources (small schooling fish and squid) are likely present in the Action Area. This species has been recorded multiple times and in great numbers (e.g., occurrences with 1,500 individuals) in Santa Barbara Channel and adjacent to the Action Area (PBCS 2018). This species is often associated with areas of upwelling and areas of steep sea-bottom (Jefferson, Webber and Pitman 2008).                                                                                |
| Eschrichtius robustus       | Gray whale (Eastern<br>North Pacific stock) | MMPA                           | Occurs in coastal waters along the west coast<br>of North America from Mexico to Alaska<br>and in eastern Siberia. Usually feeds along<br>the Bering, Chukchi, and Beaufort seas<br>during the summer, and winters along<br>breeding and calving areas off the coast of                                                                  | <b>High</b> potential to occur. This species is a frequent visitor<br>to the Ventura coastline and Santa Barbara Channel and<br>commonly observed during migration, especially during<br>the northward migration from Baja to Alaska. This species<br>is a bottom feeder (epibenthic fauna such as mysids,<br>amphipods, polychaete tube worms) and so are restricted                                                                                                                                                         |

### APPENDIX B Federally Protected Species Potential To Occur

| Scientific Name               | Common Name                  | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                        | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                              |                                | Baja California. Calves are born from<br>January to February (NMFS 2018a). During<br>their northward migration from Baja to<br>Alaska, cow-calf pairs stay particularly close<br>to shore to avoid predation by orcas (NMFS<br>2014). Bottom feeder that consumes benthic<br>amphipods. | to shallow continental shelf waters (Jefferson et al. 2008).<br>Gray whales are often observed close to shore and has<br>multiple occurrences in the Action Area (PBCS 2018).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Eubalaena glacialis           | North Pacific right<br>whale | Endangered,<br>MMPA            | Pacific Ocean between 20°N and 60°N<br>latitude, from temperate to subpolar waters.<br>Primarily occurs in shelf or coastal waters<br>(NMFS 2018a).                                                                                                                                     | Low potential to occur. Distribution is not well known but<br>they appear to have a northward migration in the spring<br>and a southward migration in the fall. This species is<br>extremely rare with likely less than 50 individuals in U.S.<br>waters (MMC 2018) and a scattered distribution<br>throughout its range (NMFS 2018a). Suitable foraging<br>resources (zooplankton) may be present within the Action<br>Area. The most recent and closest occurrences for this<br>species include 2 possible individuals sighted near San<br>Miguel Island (February 2015), 10 individuals off<br>Monterey (May 2016, PBCS 2018), and 1 individual off La<br>Jolla (April 2017, MMC 2018). This species is historically<br>known to inhabit offshore waters in depths sometimes<br>greater than 2,000 m (Jefferson, Webber and Pitman<br>2008). |
| Grampus griseus               | Risso's dolphin              | MMPA                           | Temperate, subtropical, and tropical waters<br>generally greater than 3,300 feet (1,000 m)<br>and seaward of the continental shelf and<br>slopes (NMFS 2018a).                                                                                                                          | Low potential to occur. Suitable foraging resources<br>(cephalopods and crustaceans) may be present within the<br>Action Area. This species has been observed in the Santa<br>Barbara Channel, with many occurrences located south<br>and northwest of the Action Area (PBCS 2018). This<br>species prefers deeper waters on the continental shelf and<br>slope, between 30° and 45° latitude (Jefferson et al. 2008),<br>and is unlikely to occur in the Action Area.                                                                                                                                                                                                                                                                                                                                                                          |
| Globicephala<br>macrorhynchus | Short-finned pilot<br>whale  | MMPA                           | Prefers warmer tropical and temperate<br>waters, typically within waters of 1,000 feet<br>or more deep (NMFS 2018a).                                                                                                                                                                    | Not expected to occur. Once common around the<br>Channel Islands, a strong El Nino in 1982-1983 brought<br>changes to the ecosystem affecting prey and this species<br>disappeared from the area (Jefferson et al. 2008). This<br>species inhabits areas with a high density of squid, their<br>preferred prey. The most recent documented sighting<br>occurred in October 2014 off Dana Point, Orange County,<br>CA (OC Register 2018). This species prefers deep waters<br>and is unlikely to occur in the Action Area.                                                                                                                                                                                                                                                                                                                       |
| Kogia breviceps               | Pygmy sperm whale            | MMPA                           | Worldwide distribution. Prefers tropical, sub-tropical and temperate waters. Most                                                                                                                                                                                                       | Not expected to occur. In addition, based on shipboard<br>surveys from 1991 to 2014, this species has only been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Scientific Name            | Common Name                      | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                  | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|----------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                  |                                | common along waters seaward of the<br>continental shelf edge and slope. Mostly<br>forages in mid- and deep-water<br>environments (NMFS 2018a).                                                                    | sighted a handful of times (including unidentified <i>Kogia</i> sp.) off the coast of Central and Southern California (NMFS 2017a). This species prefers deep waters (outer continental shelf and beyond) and therefore is unlikely to occur in the Action Area.                                                                                                                                                                                                                           |
| Kogia sima                 | Dwarf sperm whale                | MMPA                           | Worldwide; prefers tropical, sub-tropical,<br>and temperate waters. Most common along<br>the continental shelf edge and slope (NMFS<br>2018a).                                                                    | Not expected to occur. This species inhabits warmer<br>waters in offshore areas, and there is no evidence of<br>migrations. Dwarf sperm whales feed on deep-water<br>cephalopods (Jefferson, Webber and Pitman 2008). Based<br>on shipboard surveys from 1991 to 2014, <i>Kogia</i> sp. have<br>only been sighted a handful of times off the coast of<br>central and southern California (NMFS 2017b). This<br>species prefers deep waters and is unlikely to occur in the<br>Action Area. |
| Lagenorhynchus obliquidens | Pacific white-sided<br>dolphin   | MMPA                           | North Pacific Ocean; cool, temperate waters<br>from the continental shelf to the deep open<br>ocean (NMFS 2018a).                                                                                                 | <b>Moderate</b> potential to occur. Exhibits seasonal<br>inshore/offshore and north/south movements. Foraging<br>habitat is present in the Action Area. This species feeds<br>mostly on cephalopods and small schooling fish in deep<br>offshore waters but also on the continental shelf<br>(Jefferson, Webber and Pitman 2008). In addition, this<br>species has numerous occurrences within the Santa<br>Barbara Channel and a few occurrences in the Action Area<br>(PBCS 2018).       |
| Lissodelphis borealis      | Northern right-<br>whale dolphin | MMPA                           | Endemic to deep, cold temperate waters of<br>the North Pacific Ocean from Baja<br>California to the Gulf of Alaska; generally in<br>waters over the continental shelf and slope<br>colder than 66°F (NMFS 2018a). | Low potential to occur. Although foraging habitat (i.e., for<br>market squid) is present in the Action Area, this species<br>has several scattered observations within the Santa Barbara<br>Channel and no known observations within the Action<br>Area (PBCS 2018). Northern right-whale dolphins are an<br>open ocean species and are known only to come nearshore<br>where there are deep submarine canyons (Jefferson,<br>Webber and Pitman 2008).                                     |
| Mesoplodon densirostris    | Blainville's beaked<br>whale     | MMPA                           | Worldwide in temperate and tropical waters;<br>prefers deep waters (WDC 2018).                                                                                                                                    | Not expected to occur. Blainville's beaked whale has the<br>most extensive distribution of the genus and inhabits<br>depths between 200 to 1,000 m (Jefferson, Webber and<br>Pitman 2008), where squid are plentiful. This species<br>prefers deep waters and is unlikely to occur in the Action<br>Area.                                                                                                                                                                                  |
| Mesoplodon stejnegeri      | Stejneger's beaked<br>whale      | MMPA                           | North Pacific Ocean; prefer cold temperate<br>and subarctic waters; generally found in                                                                                                                            | Not expected to occur. Inhabiting the North Pacific basin,<br>this species is primarily oceanic but also inhabits the<br>continental slope. It feeds on deep-water squid (Jefferson,                                                                                                                                                                                                                                                                                                       |

| Scientific Name        | Common Name                                                                                                                                                                    | Federal<br>Status <sup>1</sup>                                                 | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                |                                                                                | deep, offshore waters from 2,500-5,000 feet deep (NMFS 2018a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Webber and Pitman 2008). This species prefers deep<br>waters and is unlikely to occur in the Action Area.                                                                                                                                                                                                                                                                                                                                                      |
| Megaptera novaeangliae | Humpback whale                                                                                                                                                                 | Threatened<br>(Mexico DPS)<br>and Endangered<br>(Central America<br>DPS), MMPA | Worldwide distribution from the equator to<br>sub-polar latitudes; feeding areas for the<br>Mexico DPS occur off the coast of central<br>California; Migrating individuals from the<br>Central America DPS may migrate through<br>the Action Area on their way to feeding<br>grounds located off the Pacific Northwest<br>(NMFS 2018a). This species stays near the<br>surface of the ocean when migrating and<br>prefers shallow waters when feeding and<br>calving. This species can be seen close to<br>shore when conditions allow for prey<br>switching from krill to small schooling fish,<br>which inhabit nearshore areas.                                                                                                             | <b>Moderate to high</b> potential to occur. Foraging and<br>migration habitat is present in the Action Area. Numerous<br>observations of this species have been documented within<br>the Santa Barbara Channel both close to shore and near<br>the Channel Islands (PBCS 2018). In addition, this species<br>is strongly associated with the 200 meter isobaths<br>(Cascadia 2011).                                                                            |
| Orcinus orca           | Killer Whale<br>(Southern Resident<br>DPS – consisting of<br>pods J, K, and L,<br>Eastern North<br>Pacific Transient<br>Stock, and Eastern<br>North Pacific<br>Offshore Stock) | Endangered<br>MMPA (all<br>populations)                                        | The Southern Resident DPS reside for part<br>of the year in the inland waters of<br>Washington State and British Columbia and<br>have been known to travel to coastal sites as<br>far south as central California (71 FR 69054-<br>69070). Transient forms (Eastern North<br>Pacific Transient Stock) of the species prefer<br>coastal waters from Alaska through<br>California, and offshore forms (Eastern<br>North Pacific Offshore Stock) can be found<br>from Mexico to Alaska (71 FR 69054-<br>69070). In general, this species is most<br>abundant in colder waters and high latitudes;<br>fairly abundant in temperate waters; lower<br>densities in tropical, subtropical, and<br>offshore waters (NMFS 2018a, 70 FR<br>69903-69912). | Low potential to occur. Foraging resources (primarily fish)<br>are present in the Action Area, which could be prey for<br>offshore stocks that occasionally visit the area (feed<br>primarily on sharks). Residents have only been observed as<br>far south as Monterey Bay. However, transients (which<br>prey on marine mammals) are more common in the Santa<br>Barbara Channel, with more occurrences nearer to the<br>islands than the shore (PBCS 2018). |
| Peponocephala electra  | Melon-headed<br>whale                                                                                                                                                          | ММРА                                                                           | Primarily in deep waters throughout the tropical areas of the world (NMFS 2018a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not expected to occur. The Action Area is located outside<br>of this species' known range. The closest habitat occurs in<br>Baja. This species is rarely found nearshore. They feed on<br>squid and small fish deep in the water column (Jefferson,<br>Webber and Pitman 2008). This species prefers deep<br>waters and is unlikely to occur in the Action Area.                                                                                               |
| Phoceonoides dalli     | Dall's porpoise                                                                                                                                                                | MMPA                                                                           | North Pacific open ocean, prefers temperate to boreal waters than are more than 600 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Low potential to occur. This species feeds on mid-water<br>fish and squid in offshore waters, only using nearshore                                                                                                                                                                                                                                                                                                                                             |

| Scientific Name                      | Common Name              | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------|--------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                          |                                | (180 meters) in depth and temperatures<br>between 36-63°F (NMFS 2018a).                                                                                                                                                                                         | waters if there are deep-water features such as canyons<br>(Jefferson, Webber and Pitman 2008). Although there are<br>many scattered observations of this species in the Santa<br>Barbara Channel (predominantly north of Santa Cruz<br>Island), the closest occurrences near the Action Area<br>occurred in 2007 (PBCS 2018). This species prefers deep<br>waters and unlikely to occur in the Action Area.                                                                                                             |
| Phocoena phocoena                    | Harbor porpoise          | MMPA                           | North temperate and subarctic coastal and<br>offshore waters; commonly found in bays,<br>estuaries, harbors, and fjords less than 650<br>feet deep. Along the North American coast,<br>range from central California to the Beaufort<br>Sea (NMFS 2018a).       | Not expected to occur. The Action Area is located outside<br>of this species' known range. The Action Area may have<br>their preferred prey species (cephalopods and small<br>schooling fish) but the southern range of the species<br>extends only to Point Conception. A shallow-water<br>species, they normally inhabit waters less than 100 m<br>(Jefferson, Webber and Pitman 2008). In addition, the<br>closest incidental observation of the species were located<br>along the Gaviota coast in 1992 (PBCS 2018). |
| Physeter catodon<br>(=microcephalus) | Sperm whale              | Endangered,<br>MMPA            | Worldwide; prefer deep waters and<br>consumes deep water species (e.g., squid,<br>sharks, skates, and fish) (NMFS 2018a)                                                                                                                                        | Not expected to occur. A somewhat migratory species,<br>sperm whales inhabit continental slope and oceanic waters<br>with steep drop-offs where they prey on cephalopods<br>(Jefferson, Webber and Pitman 2008). Although a few<br>incidental observations of this species has occurred in the<br>Santa Barbara Channel (dated 2002, 2004, and 2016; PBCS<br>2018), this species prefers deep waters and is unlikely to<br>occur in the Action Area.                                                                     |
| Pseudorca crassidens                 | False killer whale       | MMPA                           | Ranges in the U.S. in Hawaii, along the west<br>coast, and mid-Atlantic coast. Prefer tropical<br>to temperate waters deeper than 3,300 feet<br>(1,000 meters) (NMFS 2018a).                                                                                    | Not expected to occur. False killer whales are found in<br>deep, offshore waters, and sometimes occur on the<br>continental shelf (Jefferson, Webber and Pitman 2008).<br>They feed on cephalopods and fish which are present in<br>the Channel. However, this species prefers deep waters<br>and is unlikely to occur in the Action Area.                                                                                                                                                                               |
| Stenella coeruleoalba                | Striped dolphin          | MMPA                           | Mainly found seaward of the continental<br>shelf from 50°N to 40°S latitude. Prefer<br>highly productive tropical to warm<br>temperate waters (52-84°F) that are oceanic<br>and deep; often occurs in areas of upwelling<br>and convergence zones (NMFS 2018a). | Not expected to occur. Primarily a warm water species that<br>can be associated with convergence zones. They feed on<br>fish in pelagic zones, along the continental slope or<br>oceanic regions (Jefferson, Webber and Pitman 2008).<br>This species prefers open oceans, has been recorded west<br>of the Channel Islands (NMFS 2017c), and is unlikely to<br>occur in the Action Area.                                                                                                                                |
| Steno bredanensis                    | Rough-toothed<br>dolphin | MMPA                           | Worldwide; found primarily in deep waters<br>throughout tropical and warmer temperate<br>areas. Two recognized stock occur in Hawaii<br>and Northern Gulf of Mexico (NMFS                                                                                       | Not expected to occur. This warm open ocean species rarely ranges north of $40^{\circ}$ N (Jefferson, Webber and                                                                                                                                                                                                                                                                                                                                                                                                         |

| Scientific Name                      | Common Name                  | Federal<br>Status <sup>1</sup>                   | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                  | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------|------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                              |                                                  | 2018a). May be a specialist feeder on mahi mahi ( <i>Coryphaena hippurus</i> ).                                                                                                                                                                   | Pitman 2008). Suitable deep water habitats are absent in the Action Area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tursiops truncatus                   | Common<br>bottlenose dolphin | MMPA                                             | Worldwide ranging from 45°N to 45°S<br>latitude; found in temperate and tropical<br>waters. Coastal populations migrate into<br>bays, estuaries, and river mouths. Offshore<br>populations inhabit pelagic waters along the<br>continental shelf. | <b>High</b> potential to occur. A common coastal species and a generalist feeder (Jefferson, Webber and Pitman 2008). This species has many occurrences throughout the Santa Barbara Channel and within or directly adjacent to the Action Area (PBCS 2018). This species is also known to regularly occur within 1 kilometer of shore (Carretta et al. 1998).                                                                                                                                                                                                                                |
| Ziphius cavirostris                  | Cuvier's beaked<br>whale     | MMPA                                             | Worldwide in temperate, subtropical, and<br>tropical waters; prefer deep pelagic waters<br>(typically 3,300 feet or deeper along the<br>continental slope and edge or deep geologic<br>features)(NMFS 2018a).                                     | Not expected to occur. This widely distributed species is<br>found in offshore waters, especially deep waters near the<br>continental slope, necessary for catching deep-sea<br>squid.(Jefferson, Webber and Pitman 2008). This species<br>prefers deep waters and unlikely to occur in the Action<br>Area.                                                                                                                                                                                                                                                                                   |
| Mustelids                            |                              |                                                  | ·                                                                                                                                                                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Enhydra lutris nereis                | Southern sea otter           | Threatened,<br>MMPA                              | North Pacific Ocean; occurs in only two<br>areas of California: the mainland coastline<br>from San Mateo County to Santa Barbara<br>County, and San Nicholas Island, Ventura<br>County (USFWS 2015).                                              | Low potential to occur. One of four disjunct remnant<br>populations, the central/southern California population<br>sea otters are found in shallow, nearshore waters along the<br>coast (Jefferson, Webber and Pitman 2008). This species<br>known range is both north and south of the Action Area<br>and this species usually occurs within 2 kilometers (1.2<br>miles) of shore (USFWS 2015). However, it is possible that<br>foraging/travelling individuals may traverse the Action<br>Area.                                                                                             |
| Pinnipeds                            |                              |                                                  | ·                                                                                                                                                                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Arctocephalus philippii<br>townsedii | Guadalupe fur seal           | Threatened,<br>MMPA                              | Tropical waters of the Southern<br>California/Mexico region. This non-<br>migratory species breeds along rocky coastal<br>habitats and associated caves (NMFS 2018a).                                                                             | Low potential to occur. This species has known haulouts<br>and breeding colonies (rookeries) along the Channel<br>Islands, San Miguel Island (CDFW 2009), and Guadalupe<br>Island, Mexico (where most of the known rookeries are<br>located)(NMFS 2018a). This species travels great distances<br>to foraging areas for lanternfish and squid and therefore<br>may traverse and/or forage in the Action Area. They are<br>highly pelagic species and foraging areas are not well<br>known. They prefer far offshore to deep oceanic areas for<br>feeding (Jefferson, Webber and Pitman 2008). |
| Callorhinus ursinus                  | Northern fur seal            | MMPA<br>(Depleted –<br>Eastern Pacific<br>Stock) | Open ocean for foraging and rocky beaches<br>for reproduction. Haul out habitat may<br>include rocky or sandy beaches (NMFS<br>2018a).                                                                                                            | Low potential to occur. Northern fur seals migrate from<br>the Bering Sea southward to the North Pacific to feed in<br>the winter. This species is known to haulout and breed at<br>San Miguel Island (NMFS 2018a, CDFW 2009). This                                                                                                                                                                                                                                                                                                                                                           |

| Scientific Name         | Common Name               | Federal<br>Status <sup>1</sup>                                                           | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                    | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|---------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                           |                                                                                          |                                                                                                                                                                                                                                                                                                     | species has the potential to forage on fish and squid in the<br>Action Area, however, they are one of the most pelagic<br>pinnipeds and their foraging is usually offshore at the edge<br>of the continental shelf and slope (Jefferson, Webber and<br>Pitman 2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Eumetopias jubatus      | Steller sea lion          | Endangered<br>(Western DPS)<br>and Delisted due<br>to Recovery<br>(Eastern DPS),<br>MMPA | North Pacific Ocean, mainly around coasts<br>to outer continental shelf and slope. Prefer<br>cold temperate to sub-arctic waters. Haul-<br>outs and rookeries usually on beaches,<br>ledges, and rocky reefs (NMFS 2018a).                                                                          | Low potential to occur. On the west coast of North<br>America, Steller sea lions range from the Aleutian Islands<br>to Central California (formally southern California). This<br>species is rarely seen south of Monterey Bay (Jefferson,<br>Webber and Pitman 2008). Although foraging resources<br>(fishes and cephalopods) are present in the Action Area,<br>the closest known rookery is located at Año Nuevo Island<br>off the coast of central California (Allen and Angliss 2014).                                                                                                                                                                                                                                                              |
| Mirounga augustirostris | Northern elephant<br>seal | MMPA                                                                                     | Eastern and central North Pacific Ocean<br>most of the year (9 months); prefer sandy<br>beaches when on land. Range from Alaska to<br>Mexico and typically breed in the Channel<br>Islands or Baja California (NMFS 2018a).                                                                         | Low potential to occur. This species migrates to and from<br>their rookeries twice a year. Rookeries range from Baja to<br>northern California (Jefferson, Webber and Pitman 2008).<br>In addition, this species is known to haulout and breed at<br>the Channel Islands (NMFS 2018a, Lowry et al. 2014,<br>CDFW 2009). This species is a deep diver (300-800<br>meters) and prefers to forage in deeper pelagic waters,<br>often with seamounts and other underwater features<br>(Jefferson, Webber and Pitman 2008). Foraging resources<br>(e.g., squid, fishes) are present in the Action Area.<br>However, when present at the Channel Islands, they are<br>spending their time molting. Their preferred foraging areas<br>are north of the islands. |
| Phoca vitulina          | Pacific harbor seal       | MMPA                                                                                     | Generally non-migratory. On the U.S. west<br>coast this species is found in coastal and<br>estuarine waters from Canada to Baja<br>California, Mexico. Temperate coastal<br>habitats and uses rocks, reefs, beaches, and<br>drifting glacial ice for hauling out and<br>pupping sites (NMFS 2018a). | <b>High</b> potential to occur. This species is non-migratory and<br>inhabits the coast to the continental slope (Jefferson,<br>Webber and Pitman 2008). Harbor seals have known<br>haulouts and rookeries at Rincon Point (Santa Barbara<br>County) and Point Mugu (Ventura County); and haulouts<br>from Point Conception to Santa Barbara and along all of<br>the Channel Islands (CDFW 2009). Diving averages less<br>than 35 meters and they are generalist feeders (Jefferson,<br>Webber and Pitman 2008).                                                                                                                                                                                                                                         |
| Zalophus californianus  | California sea lion       | MMPA                                                                                     | Eastern North Pacific Ocean from central<br>Mexico to Canada; shallow coastal and<br>estuarine waters; prefers sandy beaches for<br>haul out sites but will also haul out on<br>marina docks, jetties, and buoys (NMFS<br>2018a).                                                                   | High potential to occur. This species is present along the<br>west coast from Puerto Vallarta to Alaska. Males (adult,<br>subadult and juveniles) undertake a northward migration<br>to Central California and Washington after the breeding<br>season in southern rookeries are generalist feeders<br>(Jefferson, Webber and Pitman 2008). This species has                                                                                                                                                                                                                                                                                                                                                                                             |

| Scientific Name                                | Common Name               | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------|---------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | known haulouts along all of the Channel Islands and<br>rookeries at San Nicholas Island (CDFW 2009, NMFS<br>2018a). California sea lions are generalist opportunistic<br>feeders and utilize the continental shelf and slope, but<br>have also been observed in deeper oceanic waters<br>(Jefferson, Webber and Pitman 2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Birds                                          |                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Brachyramphus marmoratus<br>(nesting)          | Marbled murrelet          | Threatened                     | Breeds along the coast from Santa Cruz<br>County north to Alaska. Nests in old-growth<br>coastal forests, sea-facing talus slopes, or<br>cliffs (Nelson 1997). During migration and<br>winter (mostly July to February), occurs<br>from Baja California to Alaska during the<br>non-breeding season, in nearshore and<br>protected coastal waters. Usually feeds<br>nearshore within 5 kilometers (3 miles) and<br>in waters less than 60 meters (197 feet) deep.<br>Dives and pursues prey (opportunistic<br>feeder) by flying underwater. This species is<br>opportunistic and feeds on fish, crustaceans,<br>and squid (Nelson 1997). | Low potential to feed. Suitable foraging habitat is present<br>within the Action Area. However, while this species occurs<br>regularly north of Point Conception, it occurs far less<br>frequently farther south (CLO 2018, Lehman 2018,<br>Garrett and Dunn 1991). In addition, the Action Area is<br>located 3 miles off the coast of Ventura County, at the<br>very edge of where this species potentially occurs.<br>Not expected to nest. The Action Area occurs in open<br>water, and nesting habitat is absent.                                                                                                                                                                                                                                                                                          |
| Phoebastria albatrus                           | Short-tailed<br>albatross | Endangered                     | Nests on several isolated islands of the<br>northwestern Pacific, but travels over much<br>of the northern Pacific to forage in open<br>waters for squid, fish, fish eggs, shrimp, and<br>crustaceans.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Very low potential to forage. This species forages widely<br>throughout the North Pacific Ocean and Bering Sea<br>(USFWS 2018e). The global population is extremely low<br>(approximately 1,200 individuals), and this species is an<br>extremely rare visitor to offshore waters along the<br>California coast, with only 43 records in the state since the<br>1970s (USFWS 2018e, CBRC 2018). The majority of<br>occurrences are from north of Point Conception, but<br>several have been observed farther south, with the nearest<br>reports being of 1 subadult at Prisoner's Harbor, Santa<br>Cruz Island, in July 2005, and 1 subadult at Santa Barbara<br>Island in February and March 2002 (CBRC 2018).<br>Not expected to nest. The Action Area occurs in open<br>water, so nesting habitat is absent. |
| Sternula antillarum browni<br>(nesting colony) | California least tern     | Endangered                     | Breeding range extends from the San<br>Francisco Bay Area south to Baja California,<br>Mexico, including nesting colonies in coastal<br>Santa Barbara and Ventura counties. May<br>migrate coastally or over open water.                                                                                                                                                                                                                                                                                                                                                                                                                 | Low potential to forage. The site is farther from shore and<br>in deeper water than where this species prefers to forage.<br>Individuals may occasionally pass through the Action Area<br>during migration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Scientific Name          | Common Name                                           | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------|-------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                       |                                | Forages in shallow estuaries and lagoons.<br>During the nesting season, foraging primarily<br>takes places within 2 miles of shore and in<br>waters less than 60 feet deep (USFWS 2006).<br>Nests on sandy beaches or exposed tidal<br>flats.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not expected to nest. The Action Area is in open water, and nesting habitat is absent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sea Turtles <sup>3</sup> |                                                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Caretta caretta          | Loggerhead sea<br>turtle (North Pacific<br>Ocean DPS) | Endangered                     | Occurs in tropical to temperate waters in the<br>Pacific Ocean. Nesting in the Pacific basin<br>occurs along Japan and Australia, where it<br>nests on ocean beaches, usually with high<br>energy, narrow, steeply slopes, and coarse-<br>grain sand. Migrates from nesting grounds<br>in Japan and Australia to feeding grounds<br>located along the west coast from central to<br>north America. Baja California has the<br>largest known aggregations of loggerhead sea<br>turtles. Migrates along nearshore coastal<br>waters (neritic zone). Typically feeds on<br>benthic invertebrates in hard bottom<br>habitats, although fish and plants are<br>occasionally consumed (NMFS and USFWS<br>1998a). | <ul> <li>High potential to feed and migrate. During ideal conditions (water temp/break), this species is known to migrate along the coast of California including the Santa Barbara Channel. Although there is no suitable feeding habitat (hard bottoms, benthic invertebrates) within the Action Area, during migration they may enter the Action Area. Sightings of this species along the U.S. west coast typically are of juveniles measuring 20-60 centimeter shell length (NMFS and USFWS 1998a). This species has also been observed at San Clemente Island (NMFS and USFWS 2007). This species has stranded on Ventura beaches in 2014 and 2017 (Dan Lawson, NMFS Protected Resources Division, 2018, pers. comm.).</li> <li>Not expected to nest. Nesting occurs mainly on open beaches or along narrow bays having suitable sand, and often in association with other species of sea turtles. No beach habitat is present in the Action Area and the Santa Barbara Channel is outside of nesting range. There are no known nesting habitats that occur along the western seaboard of the U.S. or Hawaii (NMFS and USFWS 1998a). The closest known loggerhead nesting beaches in the North Pacific Ocean are located in Japan (NMFS and USFWS 2007).</li> </ul> |
| Chelonia mydas           | Green sea turtle<br>(East Pacific DPS)                | Threatened                     | Eastern Pacific Ocean range. This species<br>forages in the open ocean as well as shallow<br>waters of lagoons, bays, estuaries,<br>mangroves, eelgrass, and seaweed beds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>High</b> potential to occur. Green sea turtles are generally<br>found in shallow waters except when migrating. They have<br>been observed at Sterns Wharf in Santa Barbara harbor<br>and at the Channel Islands. This species may migrate<br>and/or forage in the Action Area. A regular visitor in the<br>waters off the southwest coast of the US. Residents occur<br>in the San Gabriel River, Long Beach (NMFS and USFWS<br>1998b). This species has stranded on Santa Barbara and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Scientific Name        | Common Name                                               | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                            | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|-----------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                           |                                |                                                                                                                                                                                                             | Ventura beaches in 2014, 2015 and 2017 (Dan Lawson,<br>NMFS Protected Resources Division, 2018, pers. comm.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                           |                                |                                                                                                                                                                                                             | Not expected to nest. This species requires open beaches<br>with a sloping platform and minimal disturbance for<br>nesting. The closest known nesting occurrences are in<br>Mexico (NMFS and USFWS 1998b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dermochelys coriacea   | Leatherback sea<br>turtle (Western<br>Pacific Population) | Endangered                     | Pacific Ocean pelagic marine waters;<br>foraging habitat unknown. This population<br>migrates from their nesting grounds in the<br>Indo-Pacific to feeding areas off the Pacific<br>coast of North America. | Not expected to occur. This species migrates to the west<br>coast of North America to forage on jellyfish, salps and<br>pyrosomes. They utilize both open ocean and coastal<br>habitats. Despite the Channel Islands area not being within<br>the Final Critical Designated Habitat for Leatherback sea<br>turtles, this species could nonetheless migrate and/or<br>forage in the Action Area. This species has been<br>observed in Monterey Bay (NMFS and USFWS 1998c).<br>Not expected to nest. Nesting for the Western Pacific<br>Population occurs in Indonesia. Their preferred nesting<br>beaches are typically on continent shores and have<br>unobstructed, often deep offshore access (NMFS and<br>USFWS 1998c). |
| Eretmochelys imbricata | Hawksbill sea turtle                                      | Endangered                     | Circumtropical oceans (generally 30°N to<br>30°S latitude), including the Pacific Ocean<br>pelagic marine waters                                                                                            | Not expected to occur. This species is rare to nonexistent<br>in most localities (NMFS and USFWS 1998d) but may<br>migrate and/or forage (specialist sponge carnivore) in<br>Action Area. However, the Action Area is a sandy bottom<br>habitat, and this species is typically found feeding in the<br>vicinity of rock or reef habitats in shallow tropical waters.<br>No sighting have been documented in recent history<br>(NMFS and USFWS 1998d).<br>Not expected to nest. Hawksbill sea turtles nest high up                                                                                                                                                                                                          |
|                        |                                                           |                                |                                                                                                                                                                                                             | Not expected to nest. Hawksbill sea turtles nest high up<br>on the beach under/in dune vegetation, commonly in<br>pocket beaches without a lot of sand. The largest<br>remaining concentrations of nesting hawksbills occur on<br>remote oceanic islands of Australia and the Indian Ocean.<br>Other known nesting sites include Hawaii. American<br>Samoa, Guam, Republic of Palau, Commonwealth of the<br>Northern Mariana Islands, Republic of the Marshall<br>Islands, and the Federated States of Micronesia (NMFS<br>and USFWS 1998d).                                                                                                                                                                               |

| Scientific Name         | Common Name                | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                              | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|----------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lepidochelys olivacea   | Olive Ridley sea<br>turtle | Threatened <sup>4</sup>        | Pacific Ocean pelagic marine waters;<br>foraging habitat unknown (NMFS and<br>USFWS 1998d).                                                                                                                                                                                                                   | <ul> <li>Moderate potential to occur. This species distribution ranges from Southern California to Northern Chile. Olive Ridley sea turtles are mostly pelagic but will also inhabit coastal areas. This species feeds on algae, lobster, crabs, tunicates, mollusks, shrimp, and fish. Olive Ridley sea turtles may migrate and/or forage in the Action Area. This species has been observed in the Los Angeles Harbor (NMFS and USFWS 1998e). This species has stranded on Santa Barbara County beaches in 2014 and 2015 (Dan Lawson, NMFS Protected Resources Division, 2018, pers. comm.).</li> <li>Not expected to nest. In the eastern Pacific, the largest nesting concentrations occur in southern Mexico and northern Costa Rica, with some nesting as far north as southern Baja California. This species nests on continental margins, and exhibits an unusual nesting habit called "arribada" whereby up to thousands of turtles come ashore at the same time to nest.</li> </ul> |
| Sharks/Rays             |                            |                                |                                                                                                                                                                                                                                                                                                               | ashore at the same time to nest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Carcharhinus longimanus | Oceanic whitetip<br>shark  | Threatened                     | Worldwide, in tropical and sub-tropical<br>waters and found up to 30°N and 30°S<br>latitude (USFWS 2018c). This species is<br>pelagic, mostly offshore in open ocean or<br>along the continental shelf. They are<br>opportunistic feeders and top predators, and<br>prefer fish and cephalopods (NMFS 2018a). | Not expected to occur. Action Area is outside of this species known range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cetorbinus maximus      | Basking shark              | NMFS Species of<br>Concern     | Inhabits tropical and arctic waters but most<br>commonly observed in coastal temperate<br>waters. This species is a filter feeder, forages<br>at the surface, and consumes zooplankton<br>(NMFS 2018b).                                                                                                       | Low potential to occur. This species is not common, and<br>has had a dramatic decline since the mid-1900's from<br>fishing and the eastern Pacific population has not<br>rebounded (NMFS 2018b). The Action Area is located at<br>the southernmost extent of their range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Manta birostris         | Giant manta ray            | Threatened                     | Inhabits temperate, subtropical and<br>temperate waters, utilizing all habitats:<br>offshore, oceanic and coastal areas This<br>species feeds mainly on zooplankton and can<br>be found diving to depths of $10 - 1,000$<br>meters (NMFS 2018a).                                                              | Low potential to occur. Manta rays can be found in<br>temperatures as low as 19°C (66.2°F). Santa Barbara<br>Channel waters are not normally warm enough for this<br>species. Last year in Ventura waters, only the month of<br>August was warm enough for this species (NOAA 2018d).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Scientific Name         | Common Name                            | Federal<br>Status <sup>1</sup>            | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                            | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------|----------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acipenser medirostris   | Green Sturgeon<br>(southern DPS)       | Threatened,<br>NMFS Species of<br>Concern | Ranges from Alaska to Mexico and spawns<br>in the Rogue River, Klamath River Basin and<br>the Sacramento River. Spawns in deep pools<br>in large, turbulent, freshwater rivers; adults<br>live in oceanic waters, bays, and estuaries,<br>feeding on benthic invertebrates (NMFS<br>2015a). | Low potential to occur. Adults may migrate and/or forage<br>in the project vicinity. There is very little data on green<br>sturgeon use from Monterey south to the Mexican border.<br>The area may be used minimally by the southern DPS<br>(NOAA 2009).                                                                                                                                |
| Catostomus santaanae    | Santa Ana Sucker                       | Threatened                                | Small, shallow, cool, clear streams less than 7<br>meters (23 feet) in width and a few<br>centimeters to more than a meter (1.5 inches<br>to more than 3 feet) in depth; substrates are<br>generally coarse gravel, rubble, and boulder<br>(USFWS 2011)                                     | Not expected to occur. Habitat is unsuitable for this<br>species. This species inhabits freshwater streams only.                                                                                                                                                                                                                                                                        |
| Gadus microcephalus     | Pacific cod (Salish<br>Sea Population) | NMFS Species of<br>Concern                | This specific population inhabits Puget<br>Sound, the Strait of Juan de Fuca and the<br>Strait of Georgia. They feed on krill, shrimp,<br>sand lance and crabs. They are often found<br>over sandy bottoms and eelgrass may play a<br>role in habitat selection (NMFS 2011a).               | Not expected to occur. Although the Action Area is a<br>sandy bottom substrate, no eelgrass is present at these<br>depths. The Action Area not within the species known<br>range.                                                                                                                                                                                                       |
| Eucyclogobius newberryi | Tidewater goby                         | Endangered                                | Brackish water habitats along the California<br>coast from Agua Hedionda Lagoon, San<br>Diego County, to the mouth of the Smith<br>River (USFWS 2005).                                                                                                                                      | Not expected to occur. Unsuitable habitat for tidewater<br>goby, as they are a freshwater and brackish water species<br>Rincon Creek, Santa Clara River and Ventura River are the<br>closest known locations of this species to the Action Area.                                                                                                                                        |
| Merluccius productus    | Pacific hake<br>(Georgia Basin<br>DPS) | NMFS Species of<br>Concern                | The Georgia Basin DPS includes three<br>stocks: the highly migratory stock that ranges<br>from southern California to Queen Charlotte<br>Sound, a central-south Puget Sound Stock<br>and a Strait of Georgia stock (NMFS 2009a).                                                            | Not expected to occur. The highly migratory stock range<br>includes southern California waters were the Action Area<br>is located. The highly migratory stock spawns in the winter<br>in California and migrates northward to feed as far north<br>as Vancouver Island in the summer and spring. They are<br>found at moderate depths of up to 3,000 feet (910 meters)<br>(NMFS 2009a). |
| Oncorhynchus keta       | Chum salmon                            | Threatened                                | Inhabits the lowermost reaches of rivers and<br>streams, open ocean for anadromous form.<br>Historical distribution included as far south<br>as Monterey, however presently major<br>spawning populations are found only as far<br>south as Tillamook Bay, Oregon (NMFS<br>2017d).          | Not expected to occur. The Action Area not within the species' known range.                                                                                                                                                                                                                                                                                                             |

| Scientific Name                | Common Name                                                   | Federal<br>Status <sup>1</sup>                                 | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                                                                                                                 | Potential to Occur                                                                                                                                                                                                                            |
|--------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oncorhynchus kisutch           | Coho salmon<br>(Puget Sound/Strait<br>of Georgia ESU)         | NMFS Species of<br>Concern                                     | Inhabits streams and freshwater tributaries<br>with gravel substrates, open ocean for<br>anadromous form. This species distribution<br>is from central California to Alaska (NMFS<br>2016a).                                                                                                                                                                                                                                     | Not expected to occur. The Action Area not within the species' known range.                                                                                                                                                                   |
| Oncorhynchus mykiss            | Steelhead trout-<br>Oregon Coast ESU                          | NMFS Species of<br>Concern                                     | Ranges from Asia, through Alaska and south<br>to Southern California. This is a coastal<br>species (NMFS 2008).                                                                                                                                                                                                                                                                                                                  | Not expected to occur. Oceanic range is unknown.<br>However, spawning rivers only occur in rovers basins on<br>the coast of Oregon from the Columbia River south to<br>Cape Blanco (NMFS 2008).                                               |
| Oncorhynchus mykiss<br>irideus | Southern steelhead-<br>Southern California<br>DPS             | NMFS Species of<br>Concern                                     | This DPS includes watersheds from the<br>Santa Maria River to the U.S. Mexican<br>border, coast and inland habitats. Clean,<br>clear, cool, well-oxygenated streams; needs<br>relatively deep pools in migration and<br>gravelly substrate to spawn, open ocean for<br>anadromous form (NMFS 2016b).                                                                                                                             | Low potential to occur. Adults may migrate and/or forage<br>in project vicinity Steelhead were observed in 2017<br>occupying the Ventura River (A. Dransfield, pers. comm.).                                                                  |
| Oncorhynchus nerka             | Sockeye salmon<br>(Snake River ESU<br>and Ozette Lake<br>ESU) | Endangered<br>(Snake River) and<br>Threatened<br>(Ozette Lake) | In the U.S., these populations occur in<br>Oregon and Washington, and critical habitat<br>is designated for this species in Snake River<br>and Ozette Lake. This species inhabits<br>riverine, marine and lake environments<br>(lakes are a requirement), and feed on<br>aquatic insects and plankton (NMFS 2015b).                                                                                                              | Not expected to occur. The Action Area is outside of species range.                                                                                                                                                                           |
| Oncorhynchus tshanytscha       | Chinook salmon<br>(Central Valley Fall,<br>Late-fall run ESU) | NMFS Species of<br>Concern                                     | In the U.S., Chinook salmon ranges from<br>Alaska to California. This ESU spawns in the<br>Sacramento River and San Joaquin River.<br>Chinook salmon require deeper and larger<br>freshwater streams than other salmonids;<br>open ocean for anadromous form. They<br>range from Alaska to Southern California,<br>and feed on aquatic insects, amphipods,<br>crustaceans, and, once they are large enough,<br>fish (NMFS 2010). | Not expected to occur. The Action Area not within the species' known range.                                                                                                                                                                   |
| Sebastes levis                 | Cowcod                                                        | NMFS Species of<br>Concern                                     | The species ranges from central Oregon to<br>central Baja California and Guadalupe<br>Island, Mexico. Inhabits deep shelf and<br>upper continental slope, inhabiting depths of<br>65 to 1,600 feet (20 to 500 meters) in rocky<br>areas, and feeds on squid, octopus and other<br>fish (NMFS 2009b).                                                                                                                             | Low potential to occur Unsuitable habitat for cowcod,<br>individuals may migrate through the area. Southern<br>California has been recognized as the center of distribution<br>of the species since the 1880s (Eigenmann and Beeson<br>1894). |

| Scientific Name        | Common Name                        | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                                                                   | Potential to Occur                                                                                                                                                                                                    |
|------------------------|------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sebastes paucispinus   | Bocaccio (Southern<br>DPS)         | NMFS Species of<br>Concern     | Ranges from Baja California to Alaska; most<br>common between 160-820 feet in depth, but<br>found up to 1,560 feet in depth. This species<br>feeds on other fish species (mainly other<br>rockfish) (NMFS 2007b).                                                                                                                                                                  | Not expected to occur. This species prefers deep waters<br>and is unlikely to occur in the Action Area.                                                                                                               |
| Sebastes ruberrimus    | Yelloweye rockfish                 | Threatened                     | Yelloweye rockfish range from northern<br>Baja California to Alaska. This species is<br>associated with rocky reefs, kelp canopies,<br>and artificial structures like oil platforms.<br>Adults prefer deeper waters and rocky<br>bottoms. This species is commonly found in<br>depths of 300 to 590 feet (91 to 180<br>meters)(NMFS 2017e).                                        | Not expected to occur. This species prefers deep waters, is<br>more common from Central California northward, and is<br>unlikely to occur in the Action Area.                                                         |
| Sphyrna lewini         | Scalloped<br>hammerhead shark      | Threatened                     | In the east Pacific, scalloped hammerhead<br>sharks range from southern California to<br>Ecuador. Inhabits coastal warm temperate<br>and tropical seas, ranging from intertidal to<br>depths of up to 1000 meters. Adults are<br>common at seamounts (Miller et al. 2013).                                                                                                         | Low potential to occur Adults may migrate and/or forage<br>in the project vicinity.                                                                                                                                   |
| Thaleichthys pacificus | Pacific eulachon<br>(Southern DPS) | Threatened                     | Ranges from Northern California to Alaska<br>and into the southeastern Bering Sea. Critical<br>habitat is designated for the Southern DPS<br>in northern California in Mad River,<br>Redwood Creek and Klamath River.<br>Anadromous fish, endemic to northeastern<br>Pacific Ocean. In the US, most euchalon<br>production originates in the Columbia River<br>Basin (NMFS 2011b). | Not expected to occur. The Action Area is outside of this<br>species' known range. No records at the Channel Islands,<br>Critical habitat extends as far south as the Mad River,<br>Northern California (NMFS 2011b). |
| Invertebrates          |                                    |                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                     |
| Haliotis corrugate     | Pink abalone                       | NMFS Species of<br>Concern     | Ranges from Point Conception to Baja<br>California. This species required sheltered<br>waters with depths from 20 to 118 feet (6 -<br>36 m) (NMFS 2007c).                                                                                                                                                                                                                          | Not expected to occur. Suitable habitat not present. Very<br>low population numbers.                                                                                                                                  |
| Haliotis cracherodii   | Black abalone                      | Endangered                     | This species feeds predominantly on kelp<br>and inhabits rocky, low intertidal zones up to<br>6 meters deep (NMFS 2009c) Their range<br>extends from Point Area in Mendocino<br>County to Northern Baja California.                                                                                                                                                                | Not expected to occur. Suitable habitat not present. Very<br>low population numbers. The nearest critical habitat to the<br>Action Area is at Anacapa Island (NMFS 2011c).                                            |
| Haliotis fulgens       | Green abalone                      | NMFS Species of<br>Concern     | Ranges from Point Conception to Baja<br>California. This species is found in rock<br>crevices in shallow water on exposed coast                                                                                                                                                                                                                                                    | Not expected to occur. Suitable habitat not present. Very low population numbers.                                                                                                                                     |

| Scientific Name        | Common Name   | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                              | Potential to Occur                                                                                                                                                                                                                                                               |
|------------------------|---------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |               |                                | from the low intertidal to depths of 60 feet (18 m) (NMFS 2009d).                                                                                                                                                                             |                                                                                                                                                                                                                                                                                  |
| Haliotis kamtschatkana | Pinto abalone | NMFS Species of<br>Concern     | Ranges from Sitka, Alaska to Point<br>Conception. This species is usually found in<br>the tidal zone up to 30 feet but can be at<br>depths of up to 330 feet. Pinto Abalone are<br>associated with kelp beds in exposed areas<br>(NMFS 2014). | Not expected to occur. Suitable habitat not present. Very<br>low population numbers. The Action Area is not within<br>this species known range.                                                                                                                                  |
| Haliotis sorenseni     | White abalone | Endangered                     | Open low- or high-relief rock or bolder<br>areas interspersed with sand channels. This<br>species inhabits rocky pinnacles and deep<br>reefs in Southern California; especially those<br>off the Channel Islands (Hobday and Tegner<br>2000). | Not expected to occur. Suitable habitat not present.<br>Observed along the coastline in Santa Barbara County and<br>the Channel Islands. They usually occur at depths of 20-<br>60 meters and to be most abundant between 25-30 meters<br>(80-100 feet)(Hobday and Tegner 2000). |

Notes:

<sup>1</sup> Federal Status: MMPA = Marine Mammal Protection Act (50 CFR Part 216); Depleted species population stock is below optimum sustainable populations; NMFS Species of Concern = National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS) Species of Concern (not federally listed or protected under the Endangered Species Act).

<sup>2</sup> The best potential to occur assessment has been provided given the paucity of information available for marine mammals, especially whales. Low potentials to occur do not negate the possibility of a given whale species occurring in the Action Area.

<sup>3</sup>Sea turtles are highly migratory and much of their geographic range and/or foraging habitat in the Pacific Ocean is unknown (e.g., see NMFS and USFWS 1998a)

<sup>4</sup> Endangered status provided to the breeding colony populations on the Pacific Coast of Mexico.

# APPENDIX C

Phytoplankton Population Impact Analysis

# **Appendix C** PHYTOPLANKTON POPULATION IMPACT ANALYSIS

The proposed project could potentially affect phytoplankton populations in and near the project site, which could affect food resources for other marine resources. Cultured shellfish consume natural foods suspended in the water column, including phytoplankton and other organic matter, and potentially compete with other filter feeders for food. Therefore, this analysis has been prepared to determine what impact the project will have on food resources available to filter feeding organisms. The methodology to evaluate this impact was adapted from the mitigated negative declaration associated with Santa Barbara Mariculture Company's offshore mussel aquaculture farm prepared by the California Department of Fish and Wildlife to estimate the maximum effect of a mussel farm on phytoplankton (CDFG 2018).

#### Estimating the Maximum Effect of the Project on Phytoplankton:

The methodology: (1) identifies the maximum clearance rates of mussels; (2) applies this rate to the estimated maximum mussel production for the project; (3) using minimum flow rates, assesses how much phytoplankton is removed by the mussel farm; and (4) compares the turnover rate to the flow rate of seawater through the project site to determine the maximum estimated effect of the project on phytoplankton amounts.

The maximum clearance rate (CR\_max) for mussels is defined in Brigolin *et al.*, (2009) as 107 liters/day (g DW). Brigolin *et al.*, (2009) also provides conversion ratios for wet to dry weight (17.4:1 including the shell weight).

The project anticipates growing a maximum of 22,000,000 pounds of mussels at a time. This is an extremely conservative estimate that assumes that all plots are leased, and all arrays are at the grow-out stage simultaneously. This is equivalent to 9,979,032 kg or 573,507 kg DW. The maximum clearance rate for mussels grown as part of the project would therefore be 573,507 kg DW x 107 liters/day, or 61,365,249 liters/day. This assumes the mussels are filtering seawater at their maximum rate.

The next step is to identify how long it takes the entire volume of seawater at the farm to go through mussels, which is known as the turnover time. This is determined by the total volume of water in the farm area (the area multiplied by water depth) divided by the maximum clearance rate.

Water Volume = Area (2000 acres) x Average Depth (30m) = 2000 acres<sup>1</sup> = 242,811,600 m<sup>3</sup>. The total water volume divided by the CR\_max ( $61,365,249 \text{ m}^3/\text{day}$ ) = Approximately 4 days.

The next step is to compare the turnover time to how long seawater resides in the project area. This is calculated using the minimum flow velocity in the project site area (3.43 cm/s) to assess the maximum residence time within the proposed farm. The minimum flow rate estimate comes from wave data from buoy Station 46217 (Anacapa Passage) and the National Date Buoy Center. The minimum annual average wave period for this station is 3.43 cm/s. This is an average wave period that is calculated in 30 minute increments.

Max\_res\_time = Farm\_size(sqrt(2000acres)) / Min\_Speed (3.43 cm/s) = (sqrt(8.09 sqkm) / 0.0000343 km/s = 2.84 km / 2.96 km/day = 0.9594 day

<sup>&</sup>lt;sup>1</sup> One acre =  $4,046.86 \text{ m}^2$ .

#### = 23 hours

Note that the time scales differ by orders of magnitude (23 hours & 4 days) and the mussels will not clear much of the water passing through the farm.

The phytoplankton concentration entering the farm will likely range from 1 to 20 mgChl/m3 (average from the Plumes and Blooms program). Given the extremely low residence time within the project site, over the 0.95 days of transit of a water parcel through the farm, the mussels will filter a small amount of seawater based upon the maximum total farm clearance rate calculation above.

Since these two time scales described above differ by more than two orders of magnitude, it was determined that the total production of the reconfigured farm at full build-out would have an inconsequential impact on phytoplankton and zooplankton populations in the Channel. Furthermore, nutrient regeneration in the water column within mussel farms is high, as phytoplankton consumed by the mussels results in released nutrients supporting new phytoplankton production. In conclusion, no adverse effect on phytoplankton population is anticipated with this project.

# Appendix <u>BD</u>

Predator Control Management Plan for the Ventura Shellfish Enterprise Project\*

\* Any revisions to the management plans will be updated after receiving comments from relevant regulatory agencies.

# **PREDATOR CONTROL MANAGEMENT PLAN** FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

PREPARED FOR:

# **VENTURA PORT DISTRICT**

1603 Anchors Way Ventura, California 93001 Contact: Brian Pendleton

PREPARED BY:

# DUDEK

621 Chapala Street Santa Barbara, California 93101 Contact: John H. Davis IV, Senior Coastal Ecologist jdavis@dudek.com 805.252.7996

# AUGUST 2019

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# TABLE OF CONTENTS

# SECTION

# PAGE

| 1  | INTRODUCTION                                                                                                                                                                                                                                                        |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | SITE DESCRIPTION       3         2.1       Project Description       3         2.2       Project Location       3                                                                                                                                                   |
| 3  | PREDATOR CONTROL PLAN53.1Overview of the Predator Control Management Plan53.2Scope of the Predator Control Management Plan53.3Objectives of the Predator Control Management Plan5                                                                                   |
| 4  | AUTHORITY AND RESPONSIBILITY                                                                                                                                                                                                                                        |
| 5  | <b>REGULATORY SETTING</b> 95.1Federal Endangered Species Act (1973)95.2Marine Mammal Protection Act (1972)95.3Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act)105.4Migratory Bird Treaty Act.105.5Requirements for Federal Permits11 |
| 6  | RESOURCES FOR IMPLEMENTATION OF THE PLAN                                                                                                                                                                                                                            |
| 7  | POTENTIAL PREDATORY SPECIES                                                                                                                                                                                                                                         |
| 8  | PREDATOR MANAGEMENT APPROACH                                                                                                                                                                                                                                        |
| 9  | EVALUATION AND REVIEW OF THE PLAN                                                                                                                                                                                                                                   |
| 10 | PERSONNEL WILDLIFE CONTROL TRAINING                                                                                                                                                                                                                                 |
| 11 | FEDERALLY PROTECTED SPECIES                                                                                                                                                                                                                                         |
| 12 | CONCLUSION                                                                                                                                                                                                                                                          |
| 13 | REFERENCES                                                                                                                                                                                                                                                          |

# APPENDIX

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# FIGURES

| 1  | Project Location                      | 13 |
|----|---------------------------------------|----|
| 2  | Detailed Plan for Shellfish Longlines | 15 |
| 3A | Parcel Array Overview                 | 17 |
|    | Parcel Array Backbone Details         |    |
|    |                                       |    |

# TABLES

| 1 | Principal Predators Affecting California Offshore Commercial Shellfish Aquaculture2 | 3 |
|---|-------------------------------------------------------------------------------------|---|
| 2 | Methods of Predator Control                                                         | 6 |

# **1** INTRODUCTION

The Predator Control Management Plan (PCMP) describes predator-prey relationships, possible predator interactions with the shellfish farm, and means of controlling predation on the Ventura Shellfish Enterprise (VSE) aquaculture farm. This plan was developed in consultation with National Oceanic and Atmospheric Administration (NOAA) Fisheries, the VSE Project Management Team, and Project Stakeholders. The VSE project will establish a commercial offshore bivalve aquaculture operation based from the Ventura Harbor in Ventura, California, focused on the cultivation of Mediterranean mussels (*Mytilus galloprovincialis*). Specified humane methods of predator deterrence will be utilized, favoring non-lethal methods. No controls, other than non-lethal exclusion, shall be applied to species that are listed as threatened or endangered.

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

# 2 SITE DESCRIPTION

# 2.1 Project Description

The project consists of twenty 100-acre plots (total of 2,000 acres) located in open federal waters of the Santa Barbara Channel (Channel) in the Southern California Bight (SCB), northwest of Ventura Harbor, with approximate depths at the project site ranging from 80 to 114 feet below sea level, with an average depth of 98 feet. The plot locations are shown in Figure 1, with latitude and longitude coordinates for the outer corners indicated. Each of the 20 plots are 2,299.5 feet by 1,899.5 feet, for an average plot size of 100.27 acres. Each plot will contain up to 24 lines (12 end-to-end pairs), with each line consisting of 575 feet of backbone length and 250 feet of horizontal scope on each end. There will be a 50 foot setback on each end of the pairs (for a total of 100 feet of spacing between lines of adjacent parcels) and 50 foot spacing between the two center pins. Parallel lines will be spaced 150 feet apart, with a 125 foot setback at each of the long sides (for a total of 250 feet of spacing between lines of adjacent parcels) (Fig. 2, 3A, 3B). The mussels will be grown and harvested by grower/producers who would sub-permit the plots from Ventura Port District (VPD), and the mussel product will be landed at Ventura Harbor.

# 2.2 Project Location

The project's twenty 100-acre plots are approximately 3.53 miles from the shore. The closest distance from the plots to the 3-mile nautical line is a minimum of 2,900 feet, with an average closest distance of over 3,000 feet. The closest distance from the growing area to the City of Ventura city limit is 4.5 miles. Ventura Harbor is 4.1 miles from the closest plot (8 miles from the most distant plot). The sub-permit sites are located on sandy bottom habitat outside of any rocky reef habitat, as evaluated in Gentry et al. 2017 and illustrated by NOAA United States West Coast nautical charts (NOAA 2017a).

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 3 PREDATOR CONTROL PLAN

# 3.1 Overview of the Predator Control Management Plan

This PCMP has been developed as a comprehensive wildlife damage control program that addresses a range of nonlethal preferred management actions. The most effective, selective, and humane techniques available to deter or remove individual predators or species that threaten mussel farm productivity will be implemented. Predator control is not anticipated to be necessary for the aquaculture farm due to location, depth and project design features, and farmed species. The submerged long lines will be located between 15 to 45 feet below the ocean surface. The mussel growing socks will hang an additional 10 to 16 feet below the long lines (Figure 2). Many seabirds, including the double-crested cormorant (*Phalacrocorax auritus*), dive for prey, primarily various fish species and market squid (*Doryteuthis opalescens*), in the upper water column (i.e., less than 30 feet deep) of the Santa Barbara Channel. The project is designed so that the longlines can be lowered to avoid predation at these depths. While the Brant's cormorant (*Phalacrocorax penicillatus*) can dive and feed off of the seafloor at depths greater than 150 feet deep, they are piscivorous (fish eaters) and are unlikely predators of the mussel farm (Table 1). The procedures outlined here in the PCMP are to be utilized if predation becomes an issue for the VSE aquaculture farm.

# 3.2 Scope of the Predator Control Management Plan

The implementation of this plan is intended to increase the productivity of the VSE's mussel farm.

# 3.3 Objectives of the Predator Control Management Plan

The objectives of the PCMP are as follows:

- Increase the productivity of the mussel farm by reducing predators, if necessary.
- Employ only approved methods of predator control, favoring non-lethal methods.
- Only non-lethal exclusion can be applied to special status species.

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 4 AUTHORITY AND RESPONSIBILITY

Grower/producers are responsible for implementing procedures and are encouraged to seek guidance from the VPD. It is the grower/producer's responsibility to attend predator control trainings, be informed regarding procedures and following all rules and regulations pertaining to special status species and approved methods of predator control. Specified humane methods of predator deterrence will be utilized, favoring non-lethal methods. No controls, other than non-lethal exclusion, shall be applied to species that are listed as threatened or endangered.

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 5 REGULATORY SETTING

# 5.1 Federal Endangered Species Act (1973)

The federal Endangered Species Act (ESA) of 1973 (16 U.S.C. 1531 et seq.), as amended, is administered by the U.S. Fish & Wildlife Service (USFWS) and NOAA Fisheries. This legislation is intended to provide a means to conserve the ecosystems upon which endangered and threatened species depend and provide programs for the conservation of those species, thus preventing extinction of plants and wildlife. The ESA defines an endangered species as "any species that is in danger of extinction throughout all or a significant portion of its range." A threatened species is defined as "any species that is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range." Under the provisions of Section 9(a)(1)(B) of the ESA (16 U.S.C. 1531 et seq.), it is unlawful to "take" any listed species. Take is defined in Section 3(19) of the ESA as, "harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct." A Final Rule published in the Federal Register on November 8, 1999 (64 FR 60727–60731), further defines "harm" as any act that kills or injures fish or wildlife, and emphasizes that such acts may include significant habitat modification or degradation that significantly impairs essential behavioral patterns (e.g., nesting or reproduction) of fish or wildlife. Further, the USFWS, through regulation, has interpreted the terms "harm" and "harass" to include certain types of habitat modification that result in injury to or death of species, which therefore are defined as forms of take. These interpretations, however, are generally considered and applied on a case-by-case basis and often vary from species to species.

In a case where a property owner seeks permission from a federal agency for an action that could affect a federally listed plant or wildlife species, the property owner and agency are required to consult with USFWS. Take prohibitions in Section 9 of the ESA (16 U.S.C. 1531 et seq.) do not expressly encompass all plants. Property owners may take listed plant species without violating the take prohibition if:

- The proposed development is private and does not require federal authorization or permit.
- There are no special federal regulations under Section 4(d) that prohibit take of the plant species.
- There are no state laws prohibiting take of the plant species.

Section 9(a)(2) of the ESA (16 U.S.C. 1531 et seq.) addresses the protections afforded to listed plants. In addition, the ESA provides protection to invertebrate species by listing them as threatened or endangered.

# 5.2 Marine Mammal Protection Act (1972)

The Marine Mammal Protection Act of 1972 (MMPA), as amended, establishes a federal responsibility for the protection and conservation of marine mammal species by prohibiting the "take" of any marine mammal. The MMPA defines "take" as the act of hunting, killing, capture, and/or harassment of any marine mammal, or the attempt at such. The MMPA also imposes a moratorium on the import, export, or sale of any marine mammals, parts, or products within the

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

U.S. The USFWS and NOAA Fisheries are jointly responsible for implementation of the MMPA; USFWS is responsible for the protection of sea otters, and NOAA Fisheries is responsible for protecting pinnipeds (seals and sea lions) and cetaceans (whales and dolphins).

Under Section 101(a)(5)(D) of the MMPA, an incidental harassment permit may be issued for activities other than commercial fishing that may impact small numbers of marine mammals. An incidental harassment permit covers activities that extend for periods of not more than 1 year, and that will have a negligible impact on the impacted species. Amendments to the MMPA in 1994 statutorily defined two levels of harassment. Level A harassment is defined as any act of pursuit, torment, or annoyance that has the potential to injure a marine mammal in the wild. Level B harassment is defined as harassment having potential to disturb marine mammals by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering.

# 5.3 Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act)

The Magnuson-Stevens Fishery Conservation and Management Act (16 U.S.C. Sections 1801–1884) of 1976, as amended in 1996 and reauthorized in 2007, is intended to protect fisheries resources and fishing activities within 200 miles of shore. The amended law, also known as the Sustainable Fisheries Act (Public Law 104-297), requires all federal agencies to consult with the Secretary of Commerce on proposed projects authorized, funded, or undertaken by that agency that may adversely affect Essential Fish Habitat (EFH). The main purpose of the EFH provisions is to avoid loss of fisheries due to disturbance and degradation of the fisheries habitat. Managed fish found in the project vicinity include, but are not limited to, salmonid species, rockfish, roundfish, and flatfish (URS Corporation, May 2013).

# 5.4 Migratory Bird Treaty Act

The Migratory Bird Treaty Act (MBTA) prohibits the take of any migratory bird or any part, nest, or eggs of any such bird. Under the MBTA, "take" is defined as pursue, hunt, shoot, wound, kill trap, capture, or collect, or any attempt to carry out these activities (16 U.S.C. 703 et seq.). The number of bird species covered by the MBTA is extensive; the species are listed in Title 50 of the Code of Federal Regulations (CFR), Part 10.13. The regulatory definition of "migratory bird" is broad and includes any mutation or hybrid of a listed species, and also includes any part, egg, or nest of such birds (50 CFR 10.12). The MBTA, which is enforced by USFWS, makes it unlawful "by any means or in any manner, to pursue, hunt, take, capture, [or] kill" any migratory bird or attempt such actions, except as permitted by regulation. The applicable regulations prohibit the take, possession, import, export, transport, sale, purchase, barter, or offering of these activities, except under a valid permit or as permitted in the implementing regulations (50 CFR 21.11). Additionally, Executive Order 13186, "Responsibilities of Federal Agencies to Protect Migratory Birds," requires that any project with federal involvement address impacts of federal actions on migratory birds with the purpose of promoting conservation of migratory bird populations (66 FR 3853–3856). The Executive Order requires federal agencies to work with USFWS to develop a memorandum of understanding. USFWS reviews actions that might affect

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

these species. Currently, birds are considered to be nesting under the MBTA only when there are eggs or chicks, which are dependent on the nest.

# 5.5 Requirements for Federal Permits

Responsible aquaculture should employ non-lethal deterrents as a primary course of action and should not unreasonably disrupt wildlife or their use of important marine habitats. If predation becomes an issue and lethal action is necessary, consultation with VPD, the U.S. Army Corps of Engineers (USACE), and USFWS is required prior to permitting.

The most likely predators of offshore mussel farms in California are diving ducks and seabirds, which are a vital part of marine ecosystems and are valuable indicators for ecosystem health. Most seabirds are protected by the MBTA, and some are endangered or threatened under the ESA. Guidelines governing permit issuance for migratory birds are authorized by the MBTA and subsequent regulations (50 CFR Parts 13 and 21) (USFWS 2003). Specifically, Part 21.41 of Subpart D of these regulations outlines procedures for issuing permits for the control of depredating birds. These regulations state that all private individuals, organizations, and Federal and State agencies seeking to control migratory birds must file an application for a depredation permit that contains the following information: (1) a description of the area where depredations are occurring; (2) the nature of the crops or other interests being injured; (3) the extent of such injury; and (4) the particular species of migratory birds committing the injury (USFWS 2003).

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK



DATE OF PREPARATION: 8/30/2018

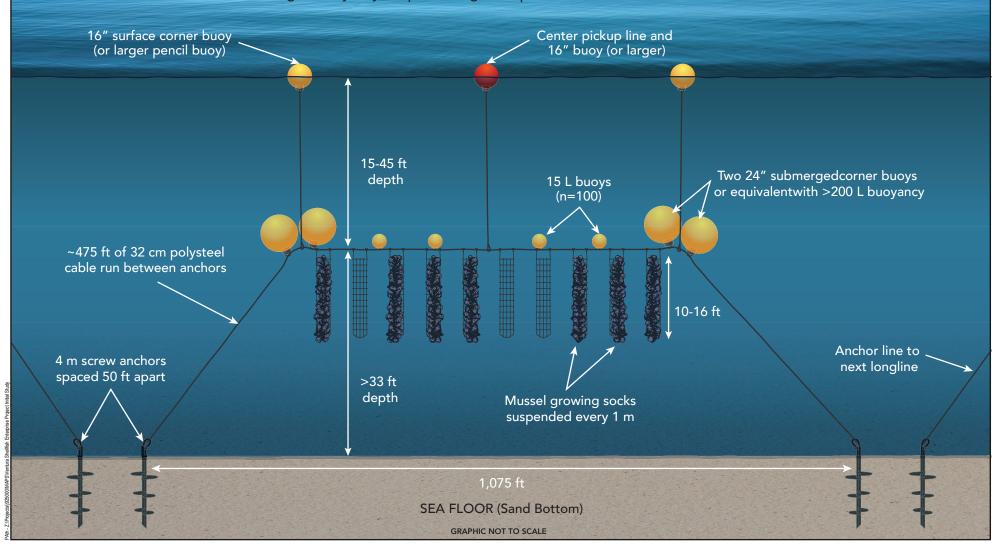
DUDEK

6,250

12,500

Feet

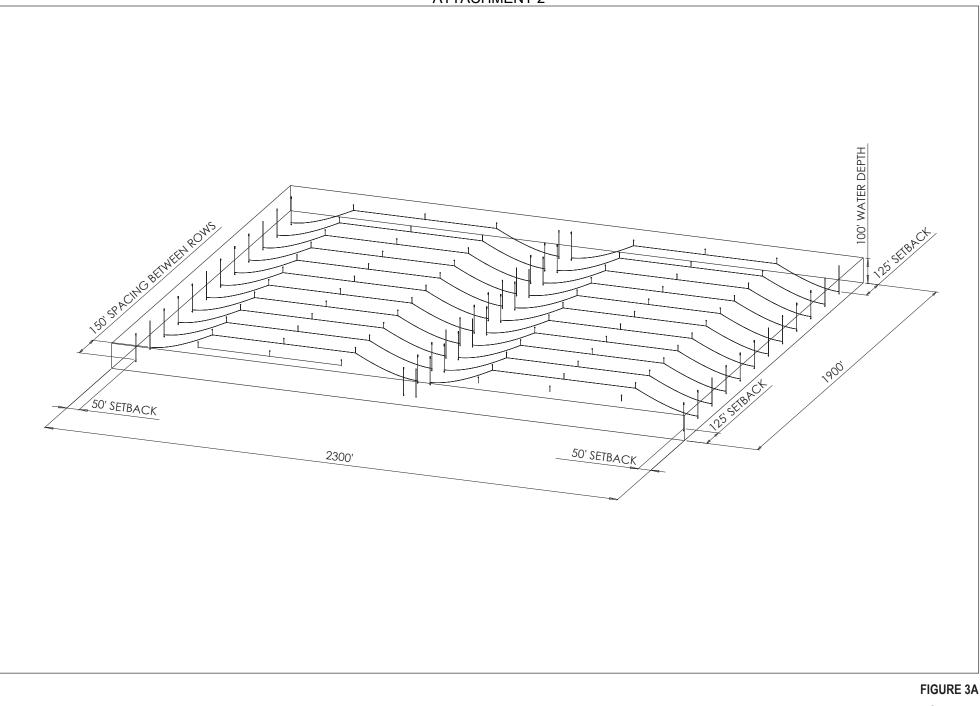
**Project Location** Ventura Shellfish Enterprise Project


# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

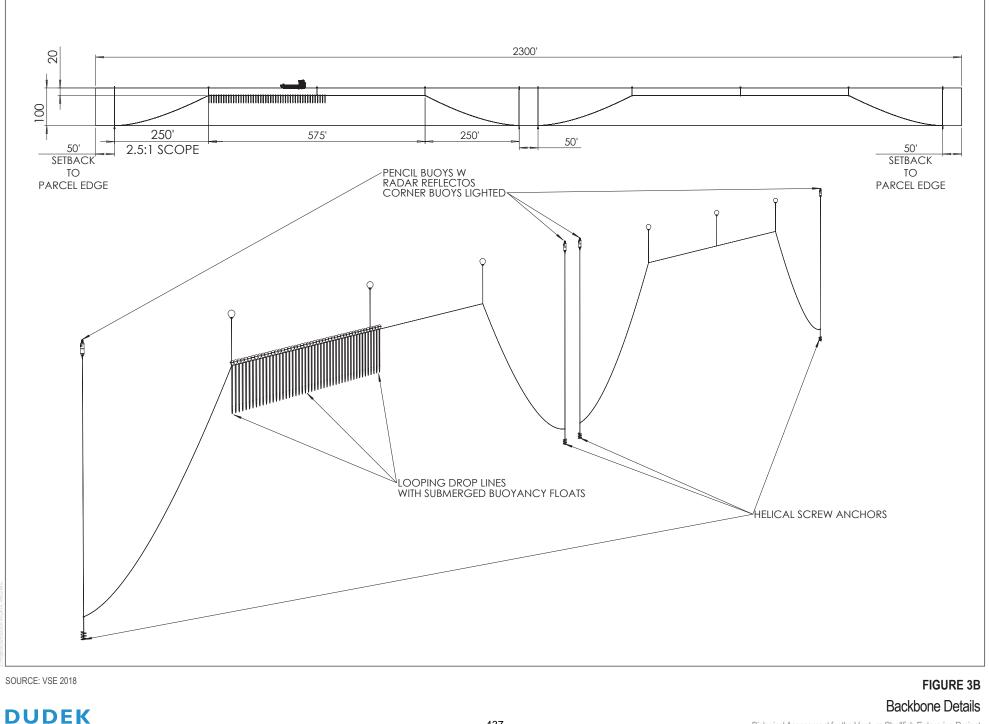
### INTENTIONALLY LEFT BLANK

# General Plan for Submerged Longlines




- Anchor lines should have 2.5:1 slope from anchor to submerged corner bouy
- Submerged buoyancy keeps lines tight despite surface waves and storms




### FIGURE 2 Detailed Plan for Shellfish Longlines

**DUDEK** 

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT



# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT



# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### 6 RESOURCES FOR IMPLEMENTATION OF THE PLAN

There are numerous sources of wildlife control management supplies, equipment, and commercial vendors that can be employed for uses as described within this PCMP. Grower/producers are responsible for purchasing their own equipment for wildlife control, if needed. Only grower/producers who have attended predator control training are authorized to use non-lethal wildlife control methods. Equipment for wildlife control may include field guides for species identification, binoculars, pyrotechnic launchers and ammunition, and visual deterrents.

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 7 POTENTIAL PREDATORY SPECIES

Increased abundances of a number of seabirds have been found in areas of mussel aquaculture (Roycroft et al. 2007). Predation of cultivated mussels by diving ducks has been recorded in almost every area where mussels are cultivated (Canada, United States of America, Scotland, Germany, Holland, Norway) (Dunthorn 1971; Glude and Chew 1980; Milne and Galbraith 1986; Meixner 1986; Rueggeberg and Booth 1989; Thompson and Gillis 2001). The main issues for shellfish farms are diving ducks like eiders and scoters (Table 1, Bevan et al. 2002) (which do not occur on the California coast) and scoters (Bevan et al. 2002). Although other species such as cormorants and gulls show increased abundance near long-line mussel farms (Roycroft et al. 2007), they have not been observed predating on the mussels and instead use the above water structure for perching and preening. The diving duck species, however, are able to consume a large amount of shellfish in one day and often feed in large groups. Mussels also fall off the ropes while ducks are foraging (pulling on the lines). Mussel farms may experience a yearly increase in predation since migrating birds can recall mussel sites and lead more individuals the following year (Robertson and Cooke 1999). Crabs and seas stars are also known to ascend long lines from the sea floor to consume mussels at aquaculture facilities. However, due to the mussel aquaculture array design in deeper water, with minimal attractive floats, and arrays suspended in the water column (minimal access to sea floor predators; Fig. 2, 3A, 3B), predation at VSE is not likely to be an issue.

| Predator Type | Common Name                                    | Scientific Name            | Impact on Shellfish<br>Aquaculture |
|---------------|------------------------------------------------|----------------------------|------------------------------------|
| Mammal        | Sea Otter                                      | Enhydra lutris             | Low                                |
| Crustaceans   | Crabs                                          | Crustacea spp.             | Moderate                           |
| Echinoderms   | Sea Stars                                      | Asteroidea spp.            | Low                                |
| Birds         | Double-crested cormorant Phalacrocorax auritus |                            | Low                                |
|               | Brant's cormorant                              | Phalacrocorax penicillatus | Low                                |
|               | Common loon                                    | Gavia immer                | Low                                |
|               | Pacific loon                                   | Gavia pacifica             | Low                                |
|               | Red-throated loon                              | Gavia stellata             | Low                                |
|               | Western grebe                                  | Aechmophorus occidentalis  | Low                                |
|               | Eared grebe                                    | Podiceps nigricollis       | Low                                |
|               | Gulls and Terns                                | Larus and Sternula spp.    | Low                                |

Table 1 Potential Predators for California Offshore Commercial Shellfish Aquaculture

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### 8 PREDATOR MANAGEMENT APPROACH

### 8.1 Means of Controlling Predation

There are many different techniques to reduce predation on mussel farms (Table 2; Bevan et al. 2002). Total exclusion is the only completely effective method for eliminating bird predation at aquaculture facilities (a complete enclosure around the aquaculture farm). In the case of VSE, this method is impractical for a farm of this size and very costly. Another commonly used method for bird control is electric wires and fencing which is also impractical for this project. Results from non-exclusion techniques vary, and the use of a single technique is rarely effective (Curtis et al. 1996). Usually, several control methods combined is required. Price et al (2016) describes six options for reducing predation impacts on logline mussel farms: harassment, aversive condition, exclusion, nonlethal removal, lethal removal and population control.

In many locations, mussel farming operators have taken measures to control or eliminate predation by the use of acoustic harassment devices, water cannons, and other hazing methods. Frightening techniques rely on sight and/or sound stimuli to discourage birds from remaining at a site and include the following methods (Curtis et al. 1996):

- a) Noise making devices:
  - Species-specific distress calls
  - Pyrotechnic devices: cracker shells, whistle bombs, screamers, screamer rockets and bangers, rope fire crackers, electronic noisemakers
- b) Visual scare devices:
  - Lights: construction flashers, area lights, revolving beacons
  - Scarecrows, effigies and predator models
  - Mirrors, reflectors and streamers
- c) Remote-controlled airplanes/boats
- d) Water spray devices
- e) Patrols and being present onsite

Harassment by chasing, explosives, and deterrent devices have not been particularly effective, with the target animal becoming habituated over time. Ross et al. (2001) conducted trials using an underwater playback system on mussel farms in Scotland, but this deterrent had an effective range of less than 100 m (Thompson and Gillis 2001). Noise harassment devices may actually become attractants to habituated individuals who come to recognize the sound as an indicator for food. Acoustic deterrents such as propane canons achieve similar results and also disturb surrounding residents. Boat chasing appears to be the most effective scare tactic but is an unsatisfactory solution due to high costs. Boat chasing can also be disruptive for other wildlife. This solution is ineffective for bird species that forage at night.

### PREDATOR CONTROL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

Visual deterrents such as scarecrows usually result in rapid habituation by the birds (Ross et al. 2001; Thompson and Gillis 2001). Ross (2000) studied the use of a powerful laser light with promising results, but the laser does not work in bright light and has an effective range of approximately 100 m.

Another solution is to use a protective socking material (Barbeau et al. 2006). This material consists of the standard polypropylene sock with a biodegradable protective layer stitched around it. When mussels are put into socks and hung in the water, they start migrating toward the outside of the sock in order to filter feed properly, making them more vulnerable to predation by diving ducks. Hence the second layer, with its smaller mesh openings, prevents mussels from migrating outside of the sock, therefor offering protection from predators, and the socking material is eventually biodegradable. However, this method has mixed results. Williams et al. (2018) lost fewer medium-sized (20 mm) mussels to greater scaup *Aythya marila* predation than un-sleeved socks. Losses were similar for small (14 mm) and large (26 mm) mussels, but more small mussels migrated through sleeved socks (thus more vulnerable to predation) (Williams et al. 2018).

| <b>Control Method</b>  | Control Examples                                              | Predator Type     |
|------------------------|---------------------------------------------------------------|-------------------|
| Exclusion and barriers | Perimeter nets                                                | Birds and Mammals |
|                        | Overhead wires                                                | Birds             |
| Deterrents             | Acoustic deterrent devices                                    | Birds and Mammals |
|                        | Lights                                                        | Birds             |
|                        | Alarm (distress calls; species specific)                      | Birds and Mammals |
|                        | Pyrotechnic dispersal devices                                 | Birds             |
|                        | Water spray devices                                           | Birds             |
|                        | Scarecrows, reflectors                                        | Birds             |
|                        | Human activity; boat chasing                                  | Birds and Mammals |
|                        | System design: increased water depth, remove possible perches | Birds             |
| Removal                | Trapping and relocation                                       | Birds and Mammals |
|                        | Killing                                                       | Birds and Mammals |

#### Table 2 Methods of Predator Control

### 8.2 Recommendations for Predator Control

Predator control is not permitted unless in direct response to evidence of predation. If predation is affecting profits, the following actions are recommended to reduce diving duck and seabird predation, adapted from Richman et al. (2013).

- Be active on the farm. Human activity on the farm site has been shown to reduce the presence of birds.
- Buoys can attract ducks to the site. Do not add additional buoys to the arrays for marking purposes if feasible.
- Protect spat lines as they are the preferred size of all species of ducks; although larger species can and will eat larger mussels. If possible, use protective socking around spat lines.

No further predator control methods are approved without prior review and approval by the VPD, USACE, and USFWS.

# 9 EVALUATION AND REVIEW OF THE PLAN

In the event that any predator management is required, implementation of this predator management plan will be monitored, and a report will be prepared annually describing the actions taken to control predation and the numbers and types of predators controlled. In addition, the report will include documented incidents of predation, recommendations on how predation might be further reduced, and an evaluation of how the current year's predator management actions (if any) relate to the objectives established for this plan.

# 10 PERSONNEL WILDLIFE CONTROL TRAINING

Predator control training will be made available to all grower/producers and will be provided by the VPD or a thirdparty consultant. Training is required in order to be informed of rules and regulations and identify appropriate methods of predator control if predation becomes an issue.

# 11 FEDERALLY PROTECTED SPECIES

Federally protected species have the potential to occur on site. Methods used for predator control are not to cause harm to special status species. The following resources were used to determine which federally listed, proposed, or federally recognized (i.e., National Marine Fisheries Service ("NMFS") Species of Concern) species had a potential to occur on site: NOAA California Species List Tools (NOAA 2018a), NOAA Find a Species Website (NMFS 2018a, filtered for West Coast Region), Channel Islands Bird Checklist (Collins 2011), USFWS Information for Planning and Consulting (USFWS 2018a), USFWS Environmental Conservation Online System (USFWS 2018b), the NOAA Section 6 Program Website (NOAA 2018b), NMFS Species of Concern (NMFS 2018), and California Natural Diversity Database (CNDDB; CDFW 2018). The NOAA Species List Tools (NOAA 2018a) and CNDDB (CDFW 2018) were queried for the 7.5-minute U.S. Geological Survey quadrangle that bordered the Pacific Ocean from the Ventura County line south to Port Hueneme, which included Pitas Point, White Ledge Peak, Ventura, Oxnard, and Oxnard OE W. Appendix A lists all special status species with potential to occur on site.

# 12 CONCLUSION

The Predator Control Management Plan for the Ventura Shellfish Enterprise provides guidelines and decision pathways in the unlikely chance of predation on the mussel farm. If followed by growers/producers, with cooperation and guidance from VPD staff, grower/producers will be able to reduce predation while minimizing potential impacts to wildlife.

# 13 REFERENCES

potential non-disruptive deterrent to reduce losses to diving ducks. Aquaculture International, 14, 595-613.

- Bevan, D.J., K.P. Chandroo, and R.D. Moccia. 2002. Predator control in commercial aquaculture in Canada. AEC Order No. 02-001. September.
- California Department of Fish and Wildlife (CDFW). 2018. California Natural Diversity Database (CNDDB). RareFind Version 5.2.14 (Commercial Subscription). Sacramento, California: CDFW, Biogeographic Database Branch. Accessed February 12, 2018. http://www.dfg.ca.gov/biogeodata/cnddb/mapsanddata.asp.
- Collins, P.W. 2011. Channel Islands Bird Checklist. U.S. Department of the Interior, National Park Service. November 4.
- Curtis, K.S., Pitt, W.C., and M.R. Conover. 1996. Overview of Techniques for Reducing Bird Predation at Aquaculture Facilities. Jack H. Berryman Institute for Wildlife Damage Management, College of Natural Resources, Utah State University, Logan, Utah. International Association of Fish and Wildlife Agencies.
- Dunthorn, AA. 1971. The predation of cultivated mussels by eiders. Bird Study 18:107–112.
- Glude, J.B. and K.K. Chew. 1982. Shellfish aquaculture in the Pacific Northwest. Alaska Sea Grant Report 82-2, University of Alaska, Anchorage, Alaska, pp.291-304.
- Meixner, R. 1986. The predation of mussels by eiders (*Somateria mollissima*) and its effect on German mussel farming. Ices Council meeting 1986 (collected papers), Ices, Copenhagen, Denmark, 3 pp
- Milne H., and C. Galbraith. 1986. Predation by eider ducks on cultivated mussels. Prepared by Dept of Zoology, University of Aberdeen, 166 pp
- National Marine Fisheries Service (NMFS). 2018. Species of Concern Website. NOAA Fisheries, West Coast Region, National Oceanic and Atmospheric Administration. Accessed February 20, 2018. .http://www.westcoast.fisheries.noaa.gov/protected\_species/species\_of\_concern/species\_of\_concern.html
- National Oceanic and Atmospheric Administration (NOAA). 2018a. California Species List Tools. NOAA Fisheries West Coast Region. Accessed February 20, 2018. http://www.westcoast.fisheries.noaa.gov/maps\_data/ california\_species\_list\_tools.html
- NOAA. 2018b. Endangered Species Act, Section 6 Program Website. Accessed February 20, 2018. http://www.nmfs.noaa.gov/pr/conservation/states/california.htm
- NOAA. 2017a. United States West Coast, California. Port Hueneme to Santa Barbara. Mercator Projection. Nautical Chart. Washington, DC. U.S. Department of Commerce, NOAA, National Ocean Science, Coast Survey.
   30th Ed. June 2013. Last correction 7/3/2017.

- NOAA. 2017b. Laws. Laws and Policies. NOAA Fisheries. Accessed March 20, 2019 from the NOAA website: https://www.fisheries.noaa.gov/insight/laws
- NOAA 2016. National Environmental Policy Act Compliance for Council-Initiated Fishery Management Actions Under the Magnuson-Stevens Act. National Oceanic and Atmospheric Administration. Department of Commerce. Federal Register. Vol. 81, No. 35. RIN 0648-XD124. Accessed March 20, 2019 from the NOAA website: https://www.govinfo.gov/content/pkg/FR-2016-02-23/pdf/2016-03684.pdf
- Price, C.S., E.Keane, D. Morin, C. Vaccaro, D. Bean, and J.A. Morris, Jr. 2016. Protected Species & Longline Mussel Aquaculture Interactions. NOAA Technical Memorandum NOS NCCOS 211. 85 pp.
- Robertson, G.J., and F. Cooke. 1999. Winter philopatry in migratory waterfowl. Auk 116:20-34.
- Ross, B.P. 2000. The manipulation of feeding behaviour of diving ducks on mussel farms. PhD thesis, University of Glasgow, 130 pp.
- Ross, B.P., Lien, J., and R.W. Furness. 2001. Use of underwater playback to reduce the impact of eiders on mussel farms. ICES J Mar Sci 58:517–524.
- Roycroft, D, Kelly, T.C., and L.J. Lewis. 2007. Behavioural interactions of seabirds with suspended mussel longlines. Aquaculture International. 15:25-36.
- Rueggeberg, H., and J. Booth. 1989. Marine birds and aquaculture in British Columbia: preventing predation by scoters on a west coast mussel farm. Canadian Wildlife Service, Pacific and Yukon Region, Delta.
- Thompson, G.R., and B. Gillis. 2001. Sea ducks and mussel aquaculture operations in PEI Oct.200–Jan.2001. Technical report. 227. Prince Edward Island Department of Fisheries, Aquaculture, and Environment Fisheries and Aquaculture Division, Charlottetown, P.E.I., Canada, 96 pp.
- United States Fish and Wildlife Service (USFWS). 2018a. Information for Planning and Consulting. Accessed February 20, 2018. https://ecos.fws.gov/ipac/.
- USFWS. 2018b. Environmental Conservation Online System (ECOS). Accessed February 20, 2018. https://ecos.fws.gov/ecp/.
- USFWS. 2003. Double-crested Cormorant Management in the United States. Final Environmental Impact Statement. Accessed March 20, 2019 from the APHIS USDA website: https://www.aphis.usda.gov/wildlife\_damage/ downloads/nepa/2003%20USA%20Double-crested%20cormorant%20management%20-%20Final%20USFWS%20EIS.pdf
- Williams, D.R., Child, M.F., Dicks, L.V., Ockendon, N., Pople, R.G., Showler, D.A., Walsh, J.C., zu Ermgassen,
  E.K.H.J. & Sutherland, W.J. 2018. Bird Conservation. Pages 95-244 in: W.J. Sutherland, L.V. Dicks, N.
  Ockendon, S.O. Petrovan & R.K. Smith (eds) What Works in Conservation 2018. Open Book Publishers,
  Cambridge, UK.

# **APPENDIX A**

Federally Protected Species Potential to Occur

| Scientific Name                   | Common Name           | Federal<br>Status <sup>1</sup>  | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                     | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------|-----------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marine Mammals <sup>2</sup>       | ·                     |                                 |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cetaceans                         |                       |                                 |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Balarnoptera acutorostrata        | Common minke<br>whale | MMPA                            | Worldwide distribution. Polar, temperate,<br>and tropical waters in both coastal and<br>offshore habitats (NMFS 2018a).                                                                                                                              | <b>Moderate</b> potential to occur. Foraging and migration<br>habitat is present in the Action Area. Some individuals are<br>residents in California waters. Minke whales feed on<br>euphausiids, copepods and small schooling fish, which are<br>present in the Channel. In addition, this species has been<br>recorded since 1988 in the Santa Barbara Channel and<br>within 1 mile of the Action Area (PBCS 2018).                                                                                                                                                                                                              |
| Balaenoptera borealis<br>borealis | Sei whale             | Endangered,<br>MMPA             | Worldwide distribution in subtropical,<br>temperate, and subpolar waters. This species<br>prefers deeper waters far from the coastline<br>(NMFS 2018a). This species' habitat<br>preference is the continental shelf edge and<br>slope (NMFS 2018a). | Low potential to occur. This species may traverse through<br>the Action Area during migration. In general, sei whales<br>migrate annually from cool and subpolar waters in<br>summer to temperate and subtropical waters for winter,<br>where food is more abundant. Foraging resources (krill,<br>copepods, small schooling fish, cephalopods) are likely<br>present in the Action Area.                                                                                                                                                                                                                                          |
| Balaenoptera edeni                | Bryde's whale         | Proposed<br>Endangered,<br>MMPA | Prefers highly productive tropical,<br>subtropical and warm temperate waters<br>worldwide.                                                                                                                                                           | Low potential to occur. This species may be found in all<br>oceans from 40°S to 40°N; however, some populations<br>migrate seasonally while others are resident and do not<br>migrate (NMFS 2018). Year-round residents appear to be<br>present along the west coast of Baja California, Mexico<br>(Kenyon 1971). Foraging resources (krill, copepods, small<br>schooling fish, crustaceans) are likely present in the Action<br>Area. This species displays a preference for subtropical<br>and tropical zones, inhabiting waters 16°C (60°F) or<br>warmer) (Jefferson et al. 2008).                                              |
| Balaenoptera musculus<br>musculus | Blue whale            | Endangered,<br>MMPA             | Worldwide, from sub-polar to sub-tropical<br>latitudes; generally occurs more offshore<br>than other whales (NMFS 2018a).                                                                                                                            | Low potential to occur. This species has been observed<br>migrating and feeding through the Santa Barbara Channel<br>on many occasions, with several occurrences within the<br>Action Area (PBCS 2018). In general, this species migrates<br>poleward to feed in the summer and to the tropics to<br>breed in the winter (Jefferson et al. 2008). Most<br>occurrences are north of Santa Rosa and western Santa<br>Cruz Island along the 200 meter isobath (Cascadia 2011),<br>approximately 7.4 miles east of the Action Area. In<br>addition, foraging resources (predominantly krill) are likely<br>present in the Action Area. |
| Balaenoptera physalus<br>physalus | Fin whale             | Endangered,<br>MMPA             | Worldwide, primarily in temperate to polar latitudes and less common in the tropics.                                                                                                                                                                 | Moderate potential to occur. This species has been<br>observed migrating and feeding through the Santa Barbara<br>Channel on many occasions, with one occurrence (12                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Scientific Name             | Common Name                                 | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                         | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|---------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                             |                                |                                                                                                                                                                                                                                                                                                                                          | individuals) noted within 1 mile of the Action Area in<br>2011 (PBCS 2018; Cascadia 2011). This species'<br>distribution is not well known, but it generally migrates<br>poleward to feed in the summer and to the subtropics to<br>breed in the winter (Jefferson et al. 2008). Resources (krill,<br>small schooling fish, squid) are likely present in the Action<br>Area. This species is more commonly associated with the<br>200 meter isobath, which is approximately 7.4 miles from<br>the Action Area (Cascadia 2011) |
| Berardius bairdii           | Baird's beaked<br>whale                     | MMPA                           | Throughout the North Pacific Ocean and<br>adjacent seas. This species prefers deep, cold<br>waters of 3,000 feet (nearly 1,000 meters) or<br>greater and may occur near shore along<br>narrow continental shelves. Beaked whales<br>are deep divers that prefer submarine<br>canyons, seamounts, and continental slopes<br>(NMFS 2018a). | Low potential to occur. Migration and distribution are<br>poorly known (Jefferson et al. 2008). Suitable foraging<br>resources (e.g., deep water and bottom-dwelling<br>crustaceans, cephalopods, gadiform fish; Jefferson et al.<br>2008) are not likely present in the Action Area. This<br>species prefers deep waters that are not present within the<br>Action Area. This species has been observed far south of<br>the Channel Islands, and west of Point Conception<br>(Baumann-Pickering et al. 2013).                |
| Delphinus capensis capensis | Long-beaked<br>common dolphin               | MMPA                           | Coastal habitats; prefers shallower tropical,<br>subtropical, and warmer temperate to cool<br>waters closer to the coast (within 50-100<br>nautical miles (90-180 km)) and the<br>continental shelf (NMFS 2018a).                                                                                                                        | <b>High</b> potential to occur. Foraging resources (small schooling fish and squid) are likely present in the Action Area. This species has been recorded multiple times and in great numbers (e.g., occurrences with 1,500 individuals) in the Santa Barbara Channel, including the Action Area (PBCS 2018). This species displays a habitat preference for coastal waters, sometimes coming close to shore within waters that are only a few meters deep (Jefferson et al. 2008).                                           |
| Delphinus delphis delphis   | Short-beaked<br>common dolphin              | MMPA                           | Warm tropical to cool temperate waters,<br>primarily oceanic and offshore. Species also<br>occurs along the continental slope in waters<br>650-6,500 feet (200-2,000 m) deep (NMFS<br>2018a).                                                                                                                                            | <b>Moderate</b> potential to occur. Foraging resources (small schooling fish and squid) are likely present in the Action Area. This species has been recorded multiple times and in great numbers (e.g., occurrences with 1,500 individuals) in Santa Barbara Channel and adjacent to the Action Area (PBCS 2018). This species is often associated with areas of upwelling and areas of steep sea-bottom (Jefferson, Webber and Pitman 2008).                                                                                |
| Eschrichtius robustus       | Gray whale (Eastern<br>North Pacific stock) | MMPA                           | Occurs in coastal waters along the west coast<br>of North America from Mexico to Alaska<br>and in eastern Siberia. Usually feeds along<br>the Bering, Chukchi, and Beaufort seas<br>during the summer, and winters along<br>breeding and calving areas off the coast of                                                                  | <b>High</b> potential to occur. This species is a frequent visitor<br>to the Ventura coastline and Santa Barbara Channel and<br>commonly observed during migration, especially during<br>the northward migration from Baja to Alaska. This species<br>is a bottom feeder (epibenthic fauna such as mysids,<br>amphipods, polychaete tube worms) and so are restricted                                                                                                                                                         |

| Scientific Name               | Common Name                  | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                        | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                              |                                | Baja California. Calves are born from<br>January to February (NMFS 2018a). During<br>their northward migration from Baja to<br>Alaska, cow-calf pairs stay particularly close<br>to shore to avoid predation by orcas (NMFS<br>2014). Bottom feeder that consumes benthic<br>amphipods. | to shallow continental shelf waters (Jefferson et al. 2008).<br>Gray whales are often observed close to shore and has<br>multiple occurrences in the Action Area (PBCS 2018).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Eubalaena glacialis           | North Pacific right<br>whale | Endangered,<br>MMPA            | Pacific Ocean between 20°N and 60°N<br>latitude, from temperate to subpolar waters.<br>Primarily occurs in shelf or coastal waters<br>(NMFS 2018a).                                                                                                                                     | Low potential to occur. Distribution is not well known<br>but they appear to have a northward migration in the<br>spring and a southward migration in the fall. This species<br>is extremely rare with likely less than 50 individuals in U.S.<br>waters (MMC 2018) and a scattered distribution<br>throughout its range (NMFS 2018a). Suitable foraging<br>resources (zooplankton) may be present within the Action<br>Area. The most recent and closest occurrences for this<br>species include 2 possible individuals sighted near San<br>Miguel Island (February 2015), 10 individuals off<br>Monterey (May 2016, PBCS 2018), and 1 individual off La<br>Jolla (April 2017, MMC 2018). This species is historically<br>known to inhabit offshore waters in depths sometimes<br>greater than 2,000 m (Jefferson, Webber and Pitman<br>2008). |
| Grampus griseus               | Risso's dolphin              | MMPA                           | Temperate, subtropical, and tropical waters<br>generally greater than 3,300 feet (1,000 m)<br>and seaward of the continental shelf and<br>slopes (NMFS 2018a).                                                                                                                          | Low potential to occur. Suitable foraging resources<br>(cephalopods and crustaceans) may be present within the<br>Action Area. This species has been observed in the Santa<br>Barbara Channel, with many occurrences located south<br>and northwest of the Action Area (PBCS 2018). This<br>species prefers deeper waters on the continental shelf and<br>slope, between 30° and 45° latitude (Jefferson et al. 2008),<br>and is unlikely to occur in the Action Area.                                                                                                                                                                                                                                                                                                                                                                          |
| Globicephala<br>macrorhynchus | Short-finned pilot<br>whale  | MMPA                           | Prefers warmer tropical and temperate<br>waters, typically within waters of 1,000 feet<br>or more deep (NMFS 2018a).                                                                                                                                                                    | Not expected to occur. Once common around the<br>Channel Islands, a strong El Nino in 1982-1983 brought<br>changes to the ecosystem affecting prey and this species<br>disappeared from the area (Jefferson et al. 2008). This<br>species inhabits areas with a high density of squid, their<br>preferred prey. The most recent documented sighting<br>occurred in October 2014 off Dana Point, Orange<br>County, CA (OC Register 2018). This species prefers deep<br>waters and is unlikely to occur in the Action Area.                                                                                                                                                                                                                                                                                                                       |
| Kogia breviceps               | Pygmy sperm whale            | MMPA                           | Worldwide distribution. Prefers tropical, sub-tropical and temperate waters. Most                                                                                                                                                                                                       | Not expected to occur. In addition, based on shipboard<br>surveys from 1991 to 2014, this species has only been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Scientific Name            | Common Name                      | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                  | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|----------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                  |                                | common along waters seaward of the<br>continental shelf edge and slope. Mostly<br>forages in mid- and deep-water<br>environments (NMFS 2018a).                                                                    | sighted a handful of times (including unidentified <i>Kogia</i> sp.) off the coast of Central and Southern California (NMFS 2017a). This species prefers deep waters (outer continental shelf and beyond) and therefore is unlikely to occur in the Action Area.                                                                                                                                                                                                                           |
| Kogia sima                 | Dwarf sperm whale                | MMPA                           | Worldwide; prefers tropical, sub-tropical,<br>and temperate waters. Most common along<br>the continental shelf edge and slope (NMFS<br>2018a).                                                                    | Not expected to occur. This species inhabits warmer<br>waters in offshore areas, and there is no evidence of<br>migrations. Dwarf sperm whales feed on deep-water<br>cephalopods (Jefferson, Webber and Pitman 2008). Based<br>on shipboard surveys from 1991 to 2014, <i>Kogia</i> sp. have<br>only been sighted a handful of times off the coast of<br>central and southern California (NMFS 2017b). This<br>species prefers deep waters and is unlikely to occur in the<br>Action Area. |
| Lagenorhynchus obliquidens | Pacific white-sided<br>dolphin   | MMPA                           | North Pacific Ocean; cool, temperate waters<br>from the continental shelf to the deep open<br>ocean (NMFS 2018a).                                                                                                 | <b>Moderate</b> potential to occur. Exhibits seasonal<br>inshore/offshore and north/south movements. Foraging<br>habitat is present in the Action Area. This species feeds<br>mostly on cephalopods and small schooling fish in deep<br>offshore waters but also on the continental shelf<br>(Jefferson, Webber and Pitman 2008). In addition, this<br>species has numerous occurrences within the Santa<br>Barbara Channel and a few occurrences in the Action<br>Area (PBCS 2018).       |
| Lissodelphis borealis      | Northern right-<br>whale dolphin | MMPA                           | Endemic to deep, cold temperate waters of<br>the North Pacific Ocean from Baja<br>California to the Gulf of Alaska; generally in<br>waters over the continental shelf and slope<br>colder than 66°F (NMFS 2018a). | Low potential to occur. Although foraging habitat (i.e., for<br>market squid) is present in the Action Area, this species<br>has several scattered observations within the Santa<br>Barbara Channel and no known observations within the<br>Action Area (PBCS 2018). Northern right-whale dolphins<br>are an open ocean species and are known only to come<br>nearshore where there are deep submarine canyons<br>(Jefferson, Webber and Pitman 2008).                                     |
| Mesoplodon densirostris    | Blainville's beaked<br>whale     | MMPA                           | Worldwide in temperate and tropical waters;<br>prefers deep waters (WDC 2018).                                                                                                                                    | Not expected to occur. Blainville's beaked whale has the<br>most extensive distribution of the genus and inhabits<br>depths between 200 to 1,000 m (Jefferson, Webber and<br>Pitman 2008), where squid are plentiful. This species<br>prefers deep waters and is unlikely to occur in the Action<br>Area.                                                                                                                                                                                  |
| Mesoplodon stejnegeri      | Stejneger's beaked<br>whale      | MMPA                           | North Pacific Ocean; prefer cold temperate<br>and subarctic waters; generally found in                                                                                                                            | Not expected to occur. Inhabiting the North Pacific basin,<br>this species is primarily oceanic but also inhabits the<br>continental slope. It feeds on deep-water squid (Jefferson,                                                                                                                                                                                                                                                                                                       |

| Scientific Name        | Common Name                                                                                                                                                                    | Federal<br>Status <sup>1</sup>                                                 | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                |                                                                                | deep, offshore waters from 2,500-5,000 feet deep (NMFS 2018a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Webber and Pitman 2008). This species prefers deep waters and is unlikely to occur in the Action Area.                                                                                                                                                                                                                                                                                                                                                         |
| Megaptera novaeangliae | Humpback whale                                                                                                                                                                 | Threatened<br>(Mexico DPS)<br>and Endangered<br>(Central America<br>DPS), MMPA | Worldwide distribution from the equator to<br>sub-polar latitudes; feeding areas for the<br>Mexico DPS occur off the coast of central<br>California; Migrating individuals from the<br>Central America DPS may migrate through<br>the Action Area on their way to feeding<br>grounds located off the Pacific Northwest<br>(NMFS 2018a). This species stays near the<br>surface of the ocean when migrating and<br>prefers shallow waters when feeding and<br>calving. This species can be seen close to<br>shore when conditions allow for prey<br>switching from krill to small schooling fish,<br>which inhabit nearshore areas.                                                                                                             | <b>Moderate to high</b> potential to occur. Foraging and<br>migration habitat is present in the Action Area. Numerous<br>observations of this species have been documented within<br>the Santa Barbara Channel both close to shore and near<br>the Channel Islands (PBCS 2018). In addition, this species<br>is strongly associated with the 200 meter isobaths<br>(Cascadia 2011).                                                                            |
| Orcinus orca           | Killer Whale<br>(Southern Resident<br>DPS – consisting of<br>pods J, K, and L,<br>Eastern North<br>Pacific Transient<br>Stock, and Eastern<br>North Pacific<br>Offshore Stock) | Endangered<br>MMPA (all<br>populations)                                        | The Southern Resident DPS reside for part<br>of the year in the inland waters of<br>Washington State and British Columbia and<br>have been known to travel to coastal sites as<br>far south as central California (71 FR 69054-<br>69070). Transient forms (Eastern North<br>Pacific Transient Stock) of the species prefer<br>coastal waters from Alaska through<br>California, and offshore forms (Eastern<br>North Pacific Offshore Stock) can be found<br>from Mexico to Alaska (71 FR 69054-<br>69070). In general, this species is most<br>abundant in colder waters and high latitudes;<br>fairly abundant in temperate waters; lower<br>densities in tropical, subtropical, and<br>offshore waters (NMFS 2018a, 70 FR<br>69903-69912). | Low potential to occur. Foraging resources (primarily fish)<br>are present in the Action Area, which could be prey for<br>offshore stocks that occasionally visit the area (feed<br>primarily on sharks). Residents have only been observed<br>as far south as Monterey Bay. However, transients (which<br>prey on marine mammals) are more common in the Santa<br>Barbara Channel, with more occurrences nearer to the<br>islands than the shore (PBCS 2018). |
| Peponocephala electra  | Melon-headed<br>whale                                                                                                                                                          | ММРА                                                                           | Primarily in deep waters throughout the tropical areas of the world (NMFS 2018a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not expected to occur. The Action Area is located outside<br>of this species' known range. The closest habitat occurs in<br>Baja. This species is rarely found nearshore. They feed on<br>squid and small fish deep in the water column (Jefferson,<br>Webber and Pitman 2008). This species prefers deep<br>waters and is unlikely to occur in the Action Area.                                                                                               |
| Phoceonoides dalli     | Dall's porpoise                                                                                                                                                                | MMPA                                                                           | North Pacific open ocean, prefers temperate to boreal waters than are more than 600 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Low potential to occur. This species feeds on mid-water<br>fish and squid in offshore waters, only using nearshore                                                                                                                                                                                                                                                                                                                                             |

| Scientific Name                      | Common Name              | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------|--------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                          |                                | (180 meters) in depth and temperatures<br>between 36-63°F (NMFS 2018a).                                                                                                                                                                                         | waters if there are deep-water features such as canyons<br>(Jefferson, Webber and Pitman 2008). Although there are<br>many scattered observations of this species in the Santa<br>Barbara Channel (predominantly north of Santa Cruz<br>Island), the closest occurrences near the Action Area<br>occurred in 2007 (PBCS 2018). This species prefers deep<br>waters and unlikely to occur in the Action Area.                                                                                                             |
| Phocoena phocoena                    | Harbor porpoise          | MMPA                           | North temperate and subarctic coastal and<br>offshore waters; commonly found in bays,<br>estuaries, harbors, and fjords less than 650<br>feet deep. Along the North American coast,<br>range from central California to the Beaufort<br>Sea (NMFS 2018a).       | Not expected to occur. The Action Area is located outside<br>of this species' known range. The Action Area may have<br>their preferred prey species (cephalopods and small<br>schooling fish) but the southern range of the species<br>extends only to Point Conception. A shallow-water<br>species, they normally inhabit waters less than 100 m<br>(Jefferson, Webber and Pitman 2008). In addition, the<br>closest incidental observation of the species were located<br>along the Gaviota coast in 1992 (PBCS 2018). |
| Physeter catodon<br>(=microcephalus) | Sperm whale              | Endangered,<br>MMPA            | Worldwide; prefer deep waters and<br>consumes deep water species (e.g., squid,<br>sharks, skates, and fish) (NMFS 2018a)                                                                                                                                        | Not expected to occur. A somewhat migratory species,<br>sperm whales inhabit continental slope and oceanic waters<br>with steep drop-offs where they prey on cephalopods<br>(Jefferson, Webber and Pitman 2008). Although a few<br>incidental observations of this species has occurred in the<br>Santa Barbara Channel (dated 2002, 2004, and 2016;<br>PBCS 2018), this species prefers deep waters and is<br>unlikely to occur in the Action Area.                                                                     |
| Pseudorca crassidens                 | False killer whale       | ММРА                           | Ranges in the U.S. in Hawaii, along the west<br>coast, and mid-Atlantic coast. Prefer tropical<br>to temperate waters deeper than 3,300 feet<br>(1,000 meters) (NMFS 2018a).                                                                                    | Not expected to occur. False killer whales are found in<br>deep, offshore waters, and sometimes occur on the<br>continental shelf (Jefferson, Webber and Pitman 2008).<br>They feed on cephalopods and fish which are present in<br>the Channel. However, this species prefers deep waters<br>and is unlikely to occur in the Action Area.                                                                                                                                                                               |
| Stenella coeruleoalba                | Striped dolphin          | ММРА                           | Mainly found seaward of the continental<br>shelf from 50°N to 40°S latitude. Prefer<br>highly productive tropical to warm<br>temperate waters (52-84°F) that are oceanic<br>and deep; often occurs in areas of upwelling<br>and convergence zones (NMFS 2018a). | Not expected to occur. Primarily a warm water species<br>that can be associated with convergence zones. They feed<br>on fish in pelagic zones, along the continental slope or<br>oceanic regions (Jefferson, Webber and Pitman 2008).<br>This species prefers open oceans, has been recorded west<br>of the Channel Islands (NMFS 2017c), and is unlikely to<br>occur in the Action Area.                                                                                                                                |
| Steno bredanensis                    | Rough-toothed<br>dolphin | MMPA                           | Worldwide; found primarily in deep waters<br>throughout tropical and warmer temperate<br>areas. Two recognized stock occur in Hawaii<br>and Northern Gulf of Mexico (NMFS                                                                                       | Not expected to occur. This warm open ocean species rarely ranges north of $40^{\circ}$ N (Jefferson, Webber and                                                                                                                                                                                                                                                                                                                                                                                                         |

| Scientific Name                      | Common Name                  | Federal<br>Status <sup>1</sup>                   | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                  | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------|------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                              |                                                  | 2018a). May be a specialist feeder on mahi mahi ( <i>Coryphaena hippurus</i> ).                                                                                                                                                                   | Pitman 2008). Suitable deep water habitats are absent in the Action Area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tursiops truncatus                   | Common<br>bottlenose dolphin | MMPA                                             | Worldwide ranging from 45°N to 45°S<br>latitude; found in temperate and tropical<br>waters. Coastal populations migrate into<br>bays, estuaries, and river mouths. Offshore<br>populations inhabit pelagic waters along the<br>continental shelf. | <b>High</b> potential to occur. A common coastal species and a generalist feeder (Jefferson, Webber and Pitman 2008). This species has many occurrences throughout the Santa Barbara Channel and within or directly adjacent to the Action Area (PBCS 2018). This species is also known to regularly occur within 1 kilometer of shore (Carretta et al. 1998).                                                                                                                                                                                                                                |
| Ziphius cavirostris                  | Cuvier's beaked<br>whale     | MMPA                                             | Worldwide in temperate, subtropical, and<br>tropical waters; prefer deep pelagic waters<br>(typically 3,300 feet or deeper along the<br>continental slope and edge or deep geologic<br>features)(NMFS 2018a).                                     | Not expected to occur. This widely distributed species is<br>found in offshore waters, especially deep waters near the<br>continental slope, necessary for catching deep-sea<br>squid.(Jefferson, Webber and Pitman 2008). This species<br>prefers deep waters and unlikely to occur in the Action<br>Area.                                                                                                                                                                                                                                                                                   |
| Mustelids                            |                              |                                                  | ·                                                                                                                                                                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Enhydra lutris nereis                | Southern sea otter           | Threatened,<br>MMPA                              | North Pacific Ocean; occurs in only two<br>areas of California: the mainland coastline<br>from San Mateo County to Santa Barbara<br>County, and San Nicholas Island, Ventura<br>County (USFWS 2015).                                              | Low potential to occur. One of four disjunct remnant<br>populations, the central/southern California population<br>sea otters are found in shallow, nearshore waters along the<br>coast (Jefferson, Webber and Pitman 2008). This species<br>known range is both north and south of the Action Area<br>and this species usually occurs within 2 kilometers (1.2<br>miles) of shore (USFWS 2015). However, it is possible<br>that foraging/travelling individuals may traverse the<br>Action Area.                                                                                             |
| Pinnipeds                            |                              |                                                  | ·                                                                                                                                                                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Arctocephalus philippii<br>townsedii | Guadalupe fur seal           | Threatened,<br>MMPA                              | Tropical waters of the Southern<br>California/Mexico region. This non-<br>migratory species breeds along rocky coastal<br>habitats and associated caves (NMFS 2018a).                                                                             | Low potential to occur. This species has known haulouts<br>and breeding colonies (rookeries) along the Channel<br>Islands, San Miguel Island (CDFW 2009), and Guadalupe<br>Island, Mexico (where most of the known rookeries are<br>located)(NMFS 2018a). This species travels great distances<br>to foraging areas for lanternfish and squid and therefore<br>may traverse and/or forage in the Action Area. They are<br>highly pelagic species and foraging areas are not well<br>known. They prefer far offshore to deep oceanic areas for<br>feeding (Jefferson, Webber and Pitman 2008). |
| Callorhinus ursinus                  | Northern fur seal            | MMPA<br>(Depleted –<br>Eastern Pacific<br>Stock) | Open ocean for foraging and rocky beaches<br>for reproduction. Haul out habitat may<br>include rocky or sandy beaches (NMFS<br>2018a).                                                                                                            | Low potential to occur. Northern fur seals migrate from<br>the Bering Sea southward to the North Pacific to feed in<br>the winter. This species is known to haulout and breed at<br>San Miguel Island (NMFS 2018a, CDFW 2009). This                                                                                                                                                                                                                                                                                                                                                           |

| Scientific Name         | Common Name               | Federal<br>Status <sup>1</sup>                                                           | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                    | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|---------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                           |                                                                                          |                                                                                                                                                                                                                                                                                                     | species has the potential to forage on fish and squid in the<br>Action Area, however, they are one of the most pelagic<br>pinnipeds and their foraging is usually offshore at the edge<br>of the continental shelf and slope (Jefferson, Webber and<br>Pitman 2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Eumetopias jubatus      | Steller sea lion          | Endangered<br>(Western DPS)<br>and Delisted due<br>to Recovery<br>(Eastern DPS),<br>MMPA | North Pacific Ocean, mainly around coasts<br>to outer continental shelf and slope. Prefer<br>cold temperate to sub-arctic waters. Haul-<br>outs and rookeries usually on beaches,<br>ledges, and rocky reefs (NMFS 2018a).                                                                          | Low potential to occur. On the west coast of North<br>America, Steller sea lions range from the Aleutian Islands<br>to Central California (formally southern California). This<br>species is rarely seen south of Monterey Bay (Jefferson,<br>Webber and Pitman 2008). Although foraging resources<br>(fishes and cephalopods) are present in the Action Area,<br>the closest known rookery is located at Año Nuevo Island<br>off the coast of central California (Allen and Angliss<br>2014).                                                                                                                                                                                                                                                           |
| Mironnga augustirostris | Northern elephant<br>seal | MMPA                                                                                     | Eastern and central North Pacific Ocean<br>most of the year (9 months); prefer sandy<br>beaches when on land. Range from Alaska to<br>Mexico and typically breed in the Channel<br>Islands or Baja California (NMFS 2018a).                                                                         | Low potential to occur. This species migrates to and from<br>their rookeries twice a year. Rookeries range from Baja to<br>northern California (Jefferson, Webber and Pitman 2008).<br>In addition, this species is known to haulout and breed at<br>the Channel Islands (NMFS 2018a, Lowry et al. 2014,<br>CDFW 2009). This species is a deep diver (300-800<br>meters) and prefers to forage in deeper pelagic waters,<br>often with seamounts and other underwater features<br>(Jefferson, Webber and Pitman 2008). Foraging resources<br>(e.g., squid, fishes) are present in the Action Area.<br>However, when present at the Channel Islands, they are<br>spending their time molting. Their preferred foraging<br>areas are north of the islands. |
| Phoca vitulina          | Pacific harbor seal       | MMPA                                                                                     | Generally non-migratory. On the U.S. west<br>coast this species is found in coastal and<br>estuarine waters from Canada to Baja<br>California, Mexico. Temperate coastal<br>habitats and uses rocks, reefs, beaches, and<br>drifting glacial ice for hauling out and<br>pupping sites (NMFS 2018a). | <b>High</b> potential to occur. This species is non-migratory<br>and inhabits the coast to the continental slope (Jefferson,<br>Webber and Pitman 2008). Harbor scals have known<br>haulouts and rookeries at Rincon Point (Santa Barbara<br>County) and Point Mugu (Ventura County); and haulouts<br>from Point Conception to Santa Barbara and along all of<br>the Channel Islands (CDFW 2009). Diving averages less<br>than 35 meters and they are generalist feeders (Jefferson,<br>Webber and Pitman 2008).                                                                                                                                                                                                                                         |
| Zalophus californianus  | California sea lion       | MMPA                                                                                     | Eastern North Pacific Ocean from central<br>Mexico to Canada; shallow coastal and<br>estuarine waters; prefers sandy beaches for<br>haul out sites but will also haul out on                                                                                                                        | <b>High</b> potential to occur. This species is present along the west coast from Puerto Vallarta to Alaska. Males (adult, subadult and juveniles) undertake a northward migration to Central California and Washington after the breeding season in southern rookeries are generalist feeders                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Scientific Name                                | Common Name               | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------|---------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                           |                                | marina docks, jetties, and buoys (NMFS 2018a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Jefferson, Webber and Pitman 2008). This species has<br>known haulouts along all of the Channel Islands and<br>rookeries at San Nicholas Island (CDFW 2009, NMFS<br>2018a). California sea lions are generalist opportunistic<br>feeders and utilize the continental shelf and slope, but<br>have also been observed in deeper oceanic waters<br>(Jefferson, Webber and Pitman 2008).                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Birds                                          |                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Brachyramphus marmoratus<br>(nesting)          | Marbled murrelet          | Threatened                     | Breeds along the coast from Santa Cruz<br>County north to Alaska. Nests in old-growth<br>coastal forests, sea-facing talus slopes, or<br>cliffs (Nelson 1997). During migration and<br>winter (mostly July to February), occurs<br>from Baja California to Alaska during the<br>non-breeding season, in nearshore and<br>protected coastal waters. Usually feeds<br>nearshore within 5 kilometers (3 miles) and<br>in waters less than 60 meters (197 feet) deep.<br>Dives and pursues prey (opportunistic<br>feeder) by flying underwater. This species is<br>opportunistic and feeds on fish, crustaceans,<br>and squid (Nelson 1997). | Low potential to feed. Suitable foraging habitat is present<br>within the Action Area. However, while this species<br>occurs regularly north of Point Conception, it occurs far<br>less frequently farther south (CLO 2018, Lehman 2018,<br>Garrett and Dunn 1991). In addition, the Action Area is<br>located 3 miles off the coast of Ventura County, at the<br>very edge of where this species potentially occurs.<br>Not expected to nest. The Action Area occurs in open<br>water, and nesting habitat is absent.                                                                                                                                                                                                                                                                                          |
| Phoebastria albatrus                           | Short-tailed<br>albatross | Endangered                     | Nests on several isolated islands of the<br>northwestern Pacific, but travels over much<br>of the northern Pacific to forage in open<br>waters for squid, fish, fish eggs, shrimp, and<br>crustaceans.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Very low potential to forage. This species forages widely<br>throughout the North Pacific Ocean and Bering Sea<br>(USFWS 2018e). The global population is extremely low<br>(approximately 1,200 individuals), and this species is an<br>extremely rare visitor to offshore waters along the<br>California coast, with only 43 records in the state since the<br>1970s (USFWS 2018e, CBRC 2018). The majority of<br>occurrences are from north of Point Conception, but<br>several have been observed farther south, with the nearest<br>reports being of 1 subadult at Prisoner's Harbor, Santa<br>Cruz Island, in July 2005, and 1 subadult at Santa Barbara<br>Island in February and March 2002 (CBRC 2018).<br>Not expected to nest. The Action Area occurs in open<br>water, so nesting habitat is absent. |
| Sternula antillarum browni<br>(nesting colony) | California least tern     | Endangered                     | Breeding range extends from the San<br>Francisco Bay Area south to Baja California,<br>Mexico, including nesting colonies in coastal<br>Santa Barbara and Ventura counties. May                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Low potential to forage. The site is farther from shore and<br>in deeper water than where this species prefers to forage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Scientific Name          | Common Name                                           | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------|-------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                       |                                | migrate coastally or over open water.<br>Forages in shallow estuaries and lagoons.<br>During the nesting season, foraging primarily<br>takes places within 2 miles of shore and in<br>waters less than 60 feet deep (USFWS 2006).<br>Nests on sandy beaches or exposed tidal<br>flats.                                                                                                                                                                                                                                                                                                                                                                        | Individuals may occasionally pass through the Action Area<br>during migration.<br>Not expected to nest. The Action Area is in open water,<br>and nesting habitat is absent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sea Turtles <sup>3</sup> |                                                       | 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Caretta caretta          | Loggerhead sea<br>turtle (North Pacific<br>Ocean DPS) | Endangered                     | Occurs in tropical to temperate waters in the<br>Pacific Ocean. Nesting in the Pacific basin<br>occurs along Japan and Australia, where it<br>nests on ocean beaches, usually with high<br>energy, narrow, steeply slopes, and coarse-<br>grain sand. Migrates from nesting grounds<br>located along the west coast from central to<br>north America. Baja California has the<br>largest known aggregations of loggerhead sea<br>turtles. Migrates along nearshore coastal<br>waters (neritic zone). Typically feeds on<br>benthic invertebrates in hard bottom<br>habitats, although fish and plants are<br>occasionally consumed (NMFS and USFWS<br>1998a). | <ul> <li>High potential to feed and migrate. During ideal conditions (water temp/break), this species is known to migrate along the coast of California including the Santa Barbara Channel. Although there is no suitable feeding habitat (hard bottoms, benthic invertebrates) within the Action Area, during migration they may enter the Action Area. Sightings of this species along the U.S. west coast typically are of juveniles measuring 20-60 centimeter shell length (NMFS and USFWS 1998a). This species has also been observed at San Clemente Island (NMFS and USFWS 2007). This species has stranded on Ventura beaches in 2014 and 2017 (Dan Lawson, NMFS Protected Resources Division, 2018, pers. comm.).</li> <li>Not expected to nest. Nesting occurs mainly on open beaches or along narrow bays having suitable sand, and often in association with other species of sea turtles. No beach habitat is present in the Action Area and the Santa Barbara Channel is outside of nesting range. There are no known nesting habitats that occur along the western seaboard of the U.S. or Hawaii (NMFS and USFWS 1998a). The closest known loggerhead nesting beaches in the North Pacific Ocean are located in Japan (NMFS and USFWS 2007).</li> </ul> |
| Chelonia mydas           | Green sea turtle<br>(East Pacific DPS)                | Threatened                     | Eastern Pacific Ocean range. This species<br>forages in the open ocean as well as shallow<br>waters of lagoons, bays, estuaries,<br>mangroves, eelgrass, and seaweed beds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>High</b> potential to occur. Green sea turtles are generally<br>found in shallow waters except when migrating. They<br>have been observed at Sterns Wharf in Santa Barbara<br>harbor and at the Channel Islands. This species may<br>migrate and/or forage in the Action Area. A regular<br>visitor in the waters off the southwest coast of the US.<br>Residents occur in the San Gabriel River, Long Beach<br>(NMFS and USFWS 1998b). This species has stranded on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Scientific Name        | Common Name                                               | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                            | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|-----------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                           |                                |                                                                                                                                                                                                             | Santa Barbara and Ventura beaches in 2014, 2015 and 2017 (Dan Lawson, NMFS Protected Resources Division, 2018, pers. comm.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                           |                                |                                                                                                                                                                                                             | Not expected to nest. This species requires open beaches<br>with a sloping platform and minimal disturbance for<br>nesting. The closest known nesting occurrences are in<br>Mexico (NMFS and USFWS 1998b).                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dermochelys coriacea   | Leatherback sea<br>turtle (Western<br>Pacific Population) | Endangered                     | Pacific Ocean pelagic marine waters;<br>foraging habitat unknown. This population<br>migrates from their nesting grounds in the<br>Indo-Pacific to feeding areas off the Pacific<br>coast of North America. | Not expected to occur. This species migrates to the west<br>coast of North America to forage on jellyfish, salps and<br>pyrosomes. They utilize both open ocean and coastal<br>habitats. Despite the Channel Islands area not being<br>within the Final Critical Designated Habitat for<br>Leatherback sea turtles, this species could nonetheless<br>migrate and/or forage in the Action Area. This species<br>has been observed in Monterey Bay (NMFS and USFWS<br>1998c).<br>Not expected to nest. Nesting for the Western Pacific<br>Population occurs in Indonesia. Their preferred nesting<br>beaches are typically on continent shores and have |
| Eretmochelys imbricata | Hawksbill sea turtle                                      | Endangered                     | Circumtropical oceans (generally 30°N to<br>30°S latitude), including the Pacific Ocean<br>pelagic marine waters                                                                                            | unobstructed, often deep offshore access (NMFS and<br>USFWS 1998c).<br>Not expected to occur. This species is rare to nonexistent<br>in most localities (NMFS and USFWS 1998d) but may<br>migrate and/or forage (specialist sponge carnivore) in<br>Action Area. However, the Action Area is a sandy<br>bottom habitat, and this species is typically found feeding<br>in the vicinity of rock or reef habitats in shallow tropical<br>waters. No sighting have been documented in recent<br>history (NMFS and USFWS 1998d).                                                                                                                           |
|                        |                                                           |                                |                                                                                                                                                                                                             | Not expected to nest. Hawksbill sea turtles nest high up<br>on the beach under/in dune vegetation, commonly in<br>pocket beaches without a lot of sand. The largest<br>remaining concentrations of nesting hawksbills occur on<br>remote oceanic islands of Australia and the Indian Ocean.<br>Other known nesting sites include Hawaii. American<br>Samoa, Guam, Republic of Palau, Commonwealth of the<br>Northern Mariana Islands, Republic of the Marshall                                                                                                                                                                                         |

| Scientific Name         | Common Name                | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                              | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|----------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                            |                                |                                                                                                                                                                                                                                                                                                               | Islands, and the Federated States of Micronesia (NMFS and USFWS 1998d).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lepidochelys olivacea   | Olive Ridley sea<br>turtle | Threatened <sup>4</sup>        | Pacific Ocean pelagic marine waters;<br>foraging habitat unknown (NMFS and<br>USFWS 1998d).                                                                                                                                                                                                                   | Moderate potential to occur. This species distribution<br>ranges from Southern California to Northern Chile. Olive<br>Ridley sea turtles are mostly pelagic but will also inhabit<br>coastal areas. This species feeds on algae, lobster, crabs,<br>tunicates, mollusks, shrimp, and fish. Olive Ridley sea<br>turtles may migrate and/or forage in the Action Area.<br>This species has been observed in the Los Angeles Harbor<br>(NMFS and USFWS 1998e). This species has stranded on<br>Santa Barbara County beaches in 2014 and 2015 (Dan<br>Lawson, NMFS Protected Resources Division, 2018, pers.<br>comm.).<br>Not expected to nest. In the eastern Pacific, the largest<br>nesting concentrations occur in southern Mexico and<br>northern Costa Rica, with some nesting as far north as |
|                         |                            |                                |                                                                                                                                                                                                                                                                                                               | southern Baja California. This species nests on continental<br>margins, and exhibits an unusual nesting habit called<br>"arribada" whereby up to thousands of turtles come<br>ashore at the same time to nest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sharks/Rays             | 1                          | 1                              | F                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Carcharhinus longimanus | Oceanic whitetip<br>shark  | Threatened                     | Worldwide, in tropical and sub-tropical<br>waters and found up to 30°N and 30°S<br>latitude (USFWS 2018c). This species is<br>pelagic, mostly offshore in open ocean or<br>along the continental shelf. They are<br>opportunistic feeders and top predators, and<br>prefer fish and cephalopods (NMFS 2018a). | Not expected to occur. Action Area is outside of this species known range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cetorhinus maximus      | Basking shark              | NMFS Species of<br>Concern     | Inhabits tropical and arctic waters but most<br>commonly observed in coastal temperate<br>waters. This species is a filter feeder, forages<br>at the surface, and consumes zooplankton<br>(NMFS 2018b).                                                                                                       | Low potential to occur. This species is not common, and<br>has had a dramatic decline since the mid-1900's from<br>fishing and the eastern Pacific population has not<br>rebounded (NMFS 2018b). The Action Area is located at<br>the southernmost extent of their range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Manta birostris         | Giant manta ray            | Threatened                     | Inhabits temperate, subtropical and temperate waters, utilizing all habitats: offshore, oceanic and coastal areas This species feeds mainly on zooplankton and can be found diving to depths of $10 - 1,000$ meters (NMFS 2018a).                                                                             | Low potential to occur. Manta rays can be found in<br>temperatures as low as 19°C (66.2°F). Santa Barbara<br>Channel waters are not normally warm enough for this<br>species. Last year in Ventura waters, only the month of<br>August was warm enough for this species (NOAA 2018d).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Scientific Name         | Common Name                            | Federal<br>Status <sup>1</sup>            | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                            | Potential to Occur                                                                                                                                                                                                                                                                                                                                                                      |  |
|-------------------------|----------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fish                    | Fish                                   |                                           |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Acipenser medirostris   | Green Sturgeon<br>(southern DPS)       | Threatened,<br>NMFS Species of<br>Concern | Ranges from Alaska to Mexico and spawns<br>in the Rogue River, Klamath River Basin and<br>the Sacramento River. Spawns in deep pools<br>in large, turbulent, freshwater rivers; adults<br>live in oceanic waters, bays, and estuaries,<br>feeding on benthic invertebrates (NMFS<br>2015a). | Low potential to occur. Adults may migrate and/or forage<br>in the project vicinity. There is very little data on green<br>sturgeon use from Monterey south to the Mexican border.<br>The area may be used minimally by the southern DPS<br>(NOAA 2009).                                                                                                                                |  |
| Catostomus santaanae    | Santa Ana Sucker                       | Threatened                                | Small, shallow, cool, clear streams less than 7<br>meters (23 feet) in width and a few<br>centimeters to more than a meter (1.5 inches<br>to more than 3 feet) in depth; substrates are<br>generally coarse gravel, rubble, and boulder<br>(USFWS 2011)                                     | Not expected to occur. Habitat is unsuitable for this species. This species inhabits freshwater streams only.                                                                                                                                                                                                                                                                           |  |
| Gadus microcephalus     | Pacific cod (Salish<br>Sea Population) | NMFS Species of<br>Concern                | This specific population inhabits Puget<br>Sound, the Strait of Juan de Fuca and the<br>Strait of Georgia. They feed on krill, shrimp,<br>sand lance and crabs. They are often found<br>over sandy bottoms and eelgrass may play a<br>role in habitat selection (NMFS 2011a).               | Not expected to occur. Although the Action Area is a<br>sandy bottom substrate, no eelgrass is present at these<br>depths. The Action Area not within the species known<br>range.                                                                                                                                                                                                       |  |
| Eucyclogobius newberryi | Tidewater goby                         | Endangered                                | Brackish water habitats along the California<br>coast from Agua Hedionda Lagoon, San<br>Diego County, to the mouth of the Smith<br>River (USFWS 2005).                                                                                                                                      | Not expected to occur. Unsuitable habitat for tidewater<br>goby, as they are a freshwater and brackish water species<br>Rincon Creek, Santa Clara River and Ventura River are the<br>closest known locations of this species to the Action Area.                                                                                                                                        |  |
| Merluccius productus    | Pacific hake<br>(Georgia Basin<br>DPS) | NMFS Species of<br>Concern                | The Georgia Basin DPS includes three<br>stocks: the highly migratory stock that ranges<br>from southern California to Queen Charlotte<br>Sound, a central-south Puget Sound Stock<br>and a Strait of Georgia stock (NMFS 2009a).                                                            | Not expected to occur. The highly migratory stock range<br>includes southern California waters were the Action Area<br>is located. The highly migratory stock spawns in the<br>winter in California and migrates northward to feed as far<br>north as Vancouver Island in the summer and spring.<br>They are found at moderate depths of up to 3,000 feet<br>(910 meters) (NMFS 2009a). |  |
| Oncorhynchus keta       | Chum salmon                            | Threatened                                | Inhabits the lowermost reaches of rivers and<br>streams, open ocean for anadromous form.<br>Historical distribution included as far south<br>as Monterey, however presently major<br>spawning populations are found only as far<br>south as Tillamook Bay, Oregon (NMFS<br>2017d).          | Not expected to occur. The Action Area not within the species' known range.                                                                                                                                                                                                                                                                                                             |  |

| Scientific Name                | Common Name                                                   | Federal<br>Status <sup>1</sup>                                 | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                                                                                                                 | Potential to Occur                                                                                                                                                                                                                            |
|--------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oncorhynchus kisutch           | Coho salmon<br>(Puget Sound/Strait<br>of Georgia ESU)         | NMFS Species of<br>Concern                                     | Inhabits streams and freshwater tributaries<br>with gravel substrates, open ocean for<br>anadromous form. This species distribution<br>is from central California to Alaska (NMFS<br>2016a).                                                                                                                                                                                                                                     | Not expected to occur. The Action Area not within the species' known range.                                                                                                                                                                   |
| Oncorhynchus mykiss            | Steelhead trout-<br>Oregon Coast ESU                          | NMFS Species of<br>Concern                                     | Ranges from Asia, through Alaska and south<br>to Southern California. This is a coastal<br>species (NMFS 2008).                                                                                                                                                                                                                                                                                                                  | Not expected to occur. Oceanic range is unknown.<br>However, spawning rivers only occur in rovers basins on<br>the coast of Oregon from the Columbia River south to<br>Cape Blanco (NMFS 2008).                                               |
| Oncorhynchus mykiss<br>irideus | Southern steelhead-<br>Southern California<br>DPS             | NMFS Species of<br>Concern                                     | This DPS includes watersheds from the<br>Santa Maria River to the U.S. Mexican<br>border, coast and inland habitats. Clean,<br>clear, cool, well-oxygenated streams; needs<br>relatively deep pools in migration and<br>gravelly substrate to spawn, open ocean for<br>anadromous form (NMFS 2016b).                                                                                                                             | Low potential to occur. Adults may migrate and/or forage<br>in project vicinity Steelhead were observed in 2017<br>occupying the Ventura River (A. Dransfield, pers. comm.).                                                                  |
| Oncorhynchus nerka             | Sockeye salmon<br>(Snake River ESU<br>and Ozette Lake<br>ESU) | Endangered<br>(Snake River) and<br>Threatened<br>(Ozette Lake) | In the U.S., these populations occur in<br>Oregon and Washington, and critical habitat<br>is designated for this species in Snake River<br>and Ozette Lake. This species inhabits<br>riverine, marine and lake environments<br>(lakes are a requirement), and feed on<br>aquatic insects and plankton (NMFS 2015b).                                                                                                              | Not expected to occur. The Action Area is outside of species range.                                                                                                                                                                           |
| Oncorhynchus tshanytscha       | Chinook salmon<br>(Central Valley Fall,<br>Late-fall run ESU) | NMFS Species of<br>Concern                                     | In the U.S., Chinook salmon ranges from<br>Alaska to California. This ESU spawns in the<br>Sacramento River and San Joaquin River.<br>Chinook salmon require deeper and larger<br>freshwater streams than other salmonids;<br>open ocean for anadromous form. They<br>range from Alaska to Southern California,<br>and feed on aquatic insects, amphipods,<br>crustaceans, and, once they are large enough,<br>fish (NMFS 2010). | Not expected to occur. The Action Area not within the species' known range.                                                                                                                                                                   |
| Sebastes levis                 | Cowcod                                                        | NMFS Species of<br>Concern                                     | The species ranges from central Oregon to<br>central Baja California and Guadalupe<br>Island, Mexico. Inhabits deep shelf and<br>upper continental slope, inhabiting depths of<br>65 to 1,600 feet (20 to 500 meters) in rocky<br>areas, and feeds on squid, octopus and other<br>fish (NMFS 2009b).                                                                                                                             | Low potential to occur Unsuitable habitat for cowcod,<br>individuals may migrate through the area. Southern<br>California has been recognized as the center of<br>distribution of the species since the 1880s (Eigenmann<br>and Beeson 1894). |

| Scientific Name        | Common Name                        | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                                                                                                                                                                   | Potential to Occur                                                                                                                                                                                                    |
|------------------------|------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sebastes paucispinus   | Bocaccio (Southern<br>DPS)         | NMFS Species of<br>Concern     | Ranges from Baja California to Alaska; most<br>common between 160-820 feet in depth, but<br>found up to 1,560 feet in depth. This species<br>feeds on other fish species (mainly other<br>rockfish) (NMFS 2007b).                                                                                                                                                                  | Not expected to occur. This species prefers deep waters<br>and is unlikely to occur in the Action Area.                                                                                                               |
| Sebastes ruberrimus    | Yelloweye rockfish                 | Threatened                     | Yelloweye rockfish range from northern<br>Baja California to Alaska. This species is<br>associated with rocky reefs, kelp canopies,<br>and artificial structures like oil platforms.<br>Adults prefer deeper waters and rocky<br>bottoms. This species is commonly found in<br>depths of 300 to 590 feet (91 to 180<br>meters)(NMFS 2017e).                                        | Not expected to occur. This species prefers deep waters, is<br>more common from Central California northward, and is<br>unlikely to occur in the Action Area.                                                         |
| Sphyrna lewini         | Scalloped<br>hammerhead shark      | Threatened                     | In the east Pacific, scalloped hammerhead<br>sharks range from southern California to<br>Ecuador. Inhabits coastal warm temperate<br>and tropical seas, ranging from intertidal to<br>depths of up to 1000 meters. Adults are<br>common at seamounts (Miller et al. 2013).                                                                                                         | Low potential to occur Adults may migrate and/or forage<br>in the project vicinity.                                                                                                                                   |
| Thaleichthys pacificus | Pacific eulachon<br>(Southern DPS) | Threatened                     | Ranges from Northern California to Alaska<br>and into the southeastern Bering Sea. Critical<br>habitat is designated for the Southern DPS<br>in northern California in Mad River,<br>Redwood Creek and Klamath River.<br>Anadromous fish, endemic to northeastern<br>Pacific Ocean. In the US, most euchalon<br>production originates in the Columbia River<br>Basin (NMFS 2011b). | Not expected to occur. The Action Area is outside of this<br>species' known range. No records at the Channel Islands,<br>Critical habitat extends as far south as the Mad River,<br>Northern California (NMFS 2011b). |
| Invertebrates          | ·                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       |
| Haliotis corrugate     | Pink abalone                       | NMFS Species of<br>Concern     | Ranges from Point Conception to Baja<br>California. This species required sheltered<br>waters with depths from 20 to 118 feet (6 -<br>36 m) (NMFS 2007c).                                                                                                                                                                                                                          | Not expected to occur. Suitable habitat not present. Very<br>low population numbers.                                                                                                                                  |
| Haliotis cracherodii   | Black abalone                      | Endangered                     | This species feeds predominantly on kelp<br>and inhabits rocky, low intertidal zones up to<br>6 meters deep (NMFS 2009c) Their range<br>extends from Point Area in Mendocino<br>County to Northern Baja California.                                                                                                                                                                | Not expected to occur. Suitable habitat not present. Very<br>low population numbers. The nearest critical habitat to the<br>Action Area is at Anacapa Island (NMFS 2011c).                                            |
| Haliotis fulgens       | Green abalone                      | NMFS Species of<br>Concern     | Ranges from Point Conception to Baja<br>California. This species is found in rock<br>crevices in shallow water on exposed coast                                                                                                                                                                                                                                                    | Not expected to occur. Suitable habitat not present. Very low population numbers.                                                                                                                                     |

| Scientific Name        | Common Name   | Federal<br>Status <sup>1</sup> | Distribution and Primary Habitat<br>Associations                                                                                                                                                                                              | Potential to Occur                                                                                                                                                                                                                                                               |
|------------------------|---------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |               |                                | from the low intertidal to depths of 60 feet (18 m) (NMFS 2009d).                                                                                                                                                                             |                                                                                                                                                                                                                                                                                  |
| Haliotis kamtschatkana | Pinto abalone | NMFS Species of<br>Concern     | Ranges from Sitka, Alaska to Point<br>Conception. This species is usually found in<br>the tidal zone up to 30 feet but can be at<br>depths of up to 330 feet. Pinto Abalone are<br>associated with kelp beds in exposed areas<br>(NMFS 2014). | Not expected to occur. Suitable habitat not present. Very<br>low population numbers. The Action Area is not within<br>this species known range.                                                                                                                                  |
| Haliotis sorenseni     | White abalone | Endangered                     | Open low- or high-relief rock or bolder<br>areas interspersed with sand channels. This<br>species inhabits rocky pinnacles and deep<br>reefs in Southern California; especially those<br>off the Channel Islands (Hobday and Tegner<br>2000). | Not expected to occur. Suitable habitat not present.<br>Observed along the coastline in Santa Barbara County and<br>the Channel Islands. They usually occur at depths of 20-<br>60 meters and to be most abundant between 25-30 meters<br>(80-100 feet)(Hobday and Tegner 2000). |

Notes:

<sup>1</sup> Federal Status: MMPA = Marine Mammal Protection Act (50 CFR Part 216); Depleted species population stock is below optimum sustainable populations; NMFS Species of Concern = National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS) Species of Concern (not federally listed or protected under the Endangered Species Act).

<sup>2</sup> The best potential to occur assessment has been provided given the paucity of information available for marine mammals, especially whales. Low potentials to occur do not negate the possibility of a given whale species occurring in the Action Area.

<sup>3</sup>Sea turtles are highly migratory and much of their geographic range and/or foraging habitat in the Pacific Ocean is unknown (e.g., see NMFS and USFWS 1998a)

<sup>4</sup> Endangered status provided to the breeding colony populations on the Pacific Coast of Mexico.

# Appendix <u>E</u>

Sediment and Water Quality Management Plan for the Ventura Shellfish Enterprise Project\*

\* Any revisions to the management plans will be updated after receiving comments from relevant regulatory agencies.

# SEDIMENT AND WATER QUALITY MANAGEMENT PLAN

FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

PREPARED FOR:

## **VENTURA PORT DISTRICT**

1603 Anchors Way Ventura, California 93001 Contact: Brian Pendleton

PREPARED BY:

### DUDEK

621 Chapala Street Santa Barbara, California 93101 Contact: John H. Davis IV, Senior Coastal Ecologist jdavis@dudek.com 805.252.7996

## AUGUST 2019

## SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# TABLE OF CONTENTS

## SECTION

## PAGE

| ACRON | NYMS A                                                                                                          | ND ABBREVIATIONSIII                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1     | 1.1<br>1.2                                                                                                      | DUCTION       1         Project Location       1         Project Description       1         Potential Impacts to the Environment       7                                                                                                                                                                                             |  |  |  |
| 2     | OBJEC                                                                                                           | TIVES                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 3     | 3.1<br>3.2                                                                                                      | DOLOGY11Field Sample Collection113.1.1Sample Stations113.1.2Pre-Construction sampling power curve123.1.3VSE Buildout Monitoring duration123.1.4Monitoring Frequency123.1.5Sampling Overview133.1.6Chain of Custody16Laboratory Testing163.2.1Sediment Chemistry173.2.2Sediment Toxicity173.2.3Benthic Community173.2.4Water Quality18 |  |  |  |
| 4     |                                                                                                                 | A ANALYSIS                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 5     | STRESSOR IDENTIFICATION       21         5.1       Pollutant Confirmation, Source Identification and Management |                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 6     | REPORTING                                                                                                       |                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 7     | CONCLUSION                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 8     | REFERENCES                                                                                                      |                                                                                                                                                                                                                                                                                                                                       |  |  |  |

## SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## APPENDICES

- A Standard Field Sheet
- B Chain of Custody Form
- C Laboratory Method Detection Limits and Recommended Practical Quantitation Limits for all Testing Parameters: Sediment Chemistry, Sediment Toxicity, Benthic Community, and Water Quality

## FIGURES

| 1 | Project Location                      | 3 |
|---|---------------------------------------|---|
| 2 | Detailed Plan for Shellfish Longlines | 5 |

## SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## ACRONYMS AND ABBREVIATIONS

| Acronym/Abbreviation | Definition                                                         |
|----------------------|--------------------------------------------------------------------|
| BA                   | Biological Assessment                                              |
| BEI                  | Benthic Enrichment Index                                           |
| CASS                 | Coastal Aquaculture Siting Analysis and Sustainability Analysis    |
| CCC                  | California Coastal Commission                                      |
| CDP                  | Coastal Development Permit                                         |
| CDPH                 | California Department of Public Health                             |
| COC                  | Chain of Custody                                                   |
| DO                   | Dissolved Oxygen                                                   |
| EFH                  | Essential Fish Habitat                                             |
| ESA                  | Endangered Species Act                                             |
| HAPC                 | Habitat Area of Particular Concern                                 |
| LOE                  | Lines of Evidence                                                  |
| MLOE                 | Multiple Lines of Evidence                                         |
| NMFS                 | National Marine Fisheries Service                                  |
| NOAA                 | National Oceanic and Atmospheric Administration                    |
| ORP                  | Oxidation Reduction Potential                                      |
| PAHS                 | Polycyclic Aromatic Hydrocarbons                                   |
| PCBS                 | Polychlorinated Biphenyls                                          |
| РОМ                  | Percent Organic Matter                                             |
| QA                   | Quality Assurance                                                  |
| QC                   | Quality Control                                                    |
| ROV                  | Remote Operated Vehicle                                            |
| SCAMIT               | Southern California Association of Marine Invertebrate Taxonomists |
| SCB                  | Southern California Bight                                          |
| SCUBA                | Self-Contained Underwater Breathing Apparatus                      |
| TDS                  | Total Dissolved Solids                                             |
| TOC                  | Total Organic Carbon                                               |
| USACE                | United States Army Corps of Engineers                              |
| USFWS                | U.S. Fish and Wildlife Service                                     |
| VPD                  | Ventura Port District                                              |
| VSE                  | Ventura Shellfish Enterprise                                       |

SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

# 1 INTRODUCTION

This Sediment and Water Quality Management Plan has been prepared for the Ventura Port District (VPD, project applicant). The project, supported in part through the NOAA 2015 and 2018 Sea Grant Aquaculture Extension and Technology Transfer to California Sea Grant (NOAA Sea Grant Program), will establish a commercial offshore aquaculture operation based from the Ventura Harbor in Ventura, California, focused on the cultivation of Mediterranean mussels (*Mytilus galloprovincialis*). This Sediment and Water Quality Management Plan presents the methodology and analysis for determining project effects of the marine environment during build-out and operation of the mussel farm.

## 1.1 Project Location

The project's twenty 100-acre plots are approximately 3.53 miles from the shore (Figure 1). The closest distance from the growing area to the City of Ventura city limit is 4.5 miles. Ventura Harbor is 4.1 miles from the closest plot (8 miles from the most distant plot). The sites are located on sandy bottom habitat outside of any rocky reef habitat, as evaluated in Gentry et al. 2017 and illustrated by NOAA United States West Coast nautical charts (NOAA 2017).

The project site is situated within the northern portion of the Southern California Bight (SCB), which stretches along the curved coastline of Southern California from Point Conception south to Cape Colnett in Baja California and includes the Channel Islands and the Pacific Ocean. The habitats and biological communities of the SCB are influenced by dynamic relationships among climate, ecology, and oceanography (e.g., currents) (Leet et al. 2001). The SCB provides essential nutrients and marine habitats for a range of species and organisms. Submarine canyons, ridges, basins, and seamounts provide unique deep water habitats within the region. The basins provide habitats for a significant number of mid-water and benthic deep-sea fish near the Channel Islands, whereas nearshore areas provide habitat. This particular habitat type and location was intentionally selected through rigorous analysis with multiple stakeholders to avoid sensitive resources such as rocky reef, a Habitat Area of Particular Concern (HAPC) and Essential Fish Habitat (EFH). The site selection process is described in detail in the BA and EFH analysis (Dudek 2018a,b), as well as the Coastal Aquaculture Siting Analysis and Sustainability Analysis (CASS) Report (NOAA 2018).

## 1.2 Project Description

The project consists of twenty 100-acre plots (total of 2,000 acres) located in open federal waters of the Santa Barbara Channel (Channel) in the SCB, northwest of Ventura Harbor, with approximate depths at the project site ranging from 80 to 114 feet below sea level, with an average depth of 98 feet. The plot locations are shown in Figure 1, with latitude and longitude coordinates for the outer corners indicated. Each of the 20 plots are 2,299.5 feet by 1,899.5 feet, for an average plot size of 100.27 acres. Each plot will contain up to 24 horizontal lines (12 end-to-end pairs), with each line consisting of 575 feet of backbone length and 250 feet of horizontal scope on each end (Figure 2).

## SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

There will be a 50 foot setback on each end of the pairs (for a total of 100 feet of spacing between lines of adjacent parcels) and 50 foot spacing between the two center pins. Parallel lines will be spaced 150 feet apart, with a 125 foot setback at each of the long sides (for a total of 250 feet of spacing between lines of adjacent parcels). The mussels will be grown and harvested by grower/producers who would sub-permit the plots from Ventura Port District (VPD), and the mussel product will be landed at Ventura Harbor.

Buoys marking the corners of each parcel will identify the cultivation area for navigational safety and will comply with all regulations for height, illumination, and visibility, including radar reflection. As shown in Figure 2, permanent surface buoys for each longline will consist of two 16-inch surface corner buoys (one corner buoy supporting and marking either end of the backbone), as well as one 16-inch buoy supporting and marking the center pickup line, for a total of three surface buoys per longline. Simulated views of parcel arrays at the surface and underwater are provided in Figures 3 through 6. All surface buoys will be marked with the grower/producer name and phone number. Buoys attached to the central horizontal portion of the backbone line support the line, provide a means of lifting the backbone line to access the cultivation ropes, and determine the depth of the submerged backbone, which will vary seasonally from 15 to 45 feet below the surface. Additionally, a combination of surface and submerged buoys attached to the backbone line will be used during the mussel production cycle to maintain tension on the structural backbone line as the weight of the mussel crop increases. These will consist of 24-inch (or equivalent, with greater than 200 L buoyancy) buoys attached at required intervals along the surface and connecting to the backbone line, in combination with smaller submerged buoys affixed directly to the backbone line. The combination of surface and submerged buoysards are submerged buoys attached but flexible structure that is capable of responding dynamically to surface waves and storms.

The longline configuration produces a fairly rigid tensioned structure from which the cultivation ropes, or "fuzzy ropes" are attached. Fuzzy ropes are characterized by extra filaments that provide settlement substrate for mussels to attach. Fuzzy ropes may be attached to and suspended from the backbone rope either as individual lengths or as a continuous looping single length that drapes up and down over the backbone. The length of each section or loop of fuzzy rope will be approximately 20 feet but the actual length depends on the lifting capacity of the servicing vessel. The length of the central horizontal section of backbone line will be approximately 575 feet, which will support approximately 8,000 feet of fuzzy cultivation line. Given a water depth of 100 feet, the distance from the surface to the backbone would be 20 feet, and the height from the seafloor to the backbone would be 80 feet. Given the length of the fuzzy ropes are 20 feet long, the distance from the end of the fuzzy ropes to the sea floor will be approximately 60 feet.



DATE OF PREPARATION: 8/30/2018

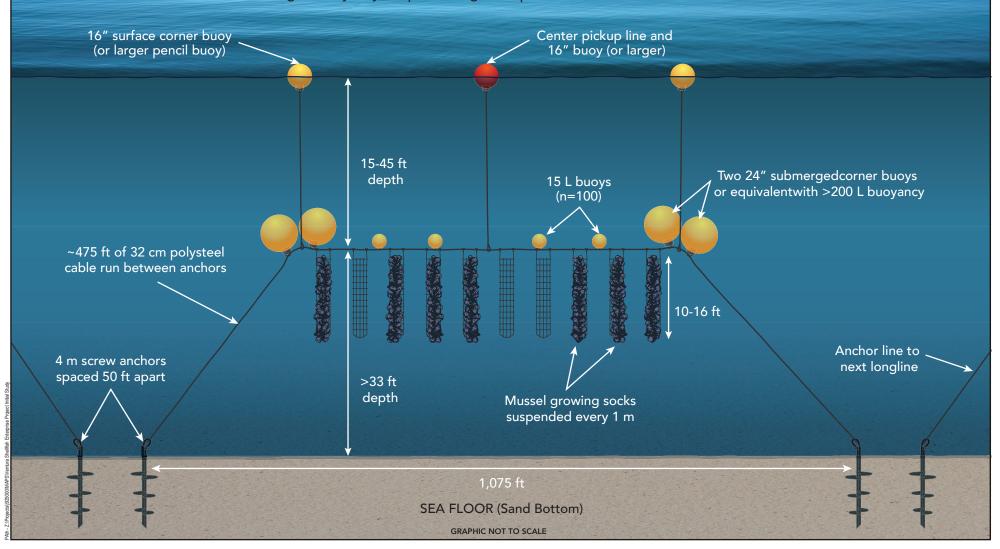
DUDEK

6,250

12,500

Feet

**Project Location** Ventura Shellfish Enterprise Project


SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

# General Plan for Submerged Longlines



- Anchor lines should have 2.5:1 slope from anchor to submerged corner bouy
- Submerged buoyancy keeps lines tight despite surface waves and storms



#### FIGURE 2 Detailed Plan for Shellfish Longlines

**DUDEK** 

SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

A more detailed project description is provided in the Biological Assessment (Dudek 2018a), the Essential Fish Habitat (EFH) Assessment (Dudek 2018b), and the Coastal Development Permit (CDP) application prepared for the VPD for the VSE mussel farm.

## 1.3 Potential Impacts to the Environment

Sediment composition underneath shellfish aquaculture gear could be significantly altered from biodeposits and shift(s) in the benthic invertebrate assemblage and population abundance and structure. The project actions have the potential to alter the seafloor habitat through the deposition of biological materials resulting from dislodged or discharged shells, shell fragments, and deposits from the growing operation accumulating on the seafloor beneath the aquaculture structures. Such material typically includes feces and pseudofeces from the cultivated shellfish, as well as fouling organisms such as algae, barnacles, sponges, and other invertebrates that accumulate on the project equipment and subsequently become dislodged by natural processes, or due to harvesting or cleaning operations. Pseudofeces are a specialized method of expulsion that filter-feeding bivalve mollusks use in order to get rid of suspended particles such as particles of grit which cannot be used as food, and which have been rejected by the animal. The rejected particles are wrapped in mucus, and are then expelled without having passed through the digestive tract. Thus, although they may closely resemble the mollusk's real feces, they are not actually feces, hence the name pseudofeces, meaning false feces. Cultivated shellfish or shells can also be dislodged from the structure during growth, storm events, predation by marine wildlife, and cleaning and harvesting activities. The combination of biodeposit sources and their ultimate settling in the benthic substrate under and adjacent to the mussel farm could affect the native marine biota.

The accumulation of material including shell fragments, intact shells, fouling organisms, and feces can alter the physical and chemical characteristics of the bottom substrate, and can affect the benthic community and sediment-dwelling organisms that may be sensitive to conditions such as substrate composition and chemistry. Accumulation of material could also attract organisms that would change the composition of the benthic community (Sowles 2003). Other potential benthic impacts can include increased loads on sediment dissolved oxygen and redox conditions, and changes to nutrient cycling resulting in a decrease in benthic species abundance and sediment porosity (Pearson and Rosenberg 1978; Wilding and Nickell 2013; Wilding 2012). The effect on benthic nitrogen cycling is determined by biogeochemical and physical variables, such as water depth, current velocities, and bottom type and composition (CFGC 2018). Shellfish are able to alter the biogeochemical process in the water column by stimulating nitrification (Souchu et al. 2001).

Given the site characteristics of deeper, offshore waters with currents, and considering the project configuration whereby the fuzzy ropes will be approximately 40 to 60 feet from the ocean floor, the accumulation of materials is expected to have a negligible effect on the habitat. Findings in a study by Hartstein and Rowden (2004) indicates that aquaculture farms with high hydrodynamic energy (i.e., open ocean or offshore) results in biodeposits being transported over a much greater distance from the point of origin before arriving on the seabed (using an average fecal pellet falling velocity of 3.54 cm/s, average current speed of 10.0 cm/s as calculated 3 m above the bed and an average water depth of 12m). The study concluded that no organic enrichment of the sediment and subsequent alteration of the macroinvertebrate assemblage took place in comparison to aquaculture farms with low hydrodynamic energy (i.e., bays, harbors, or inshore) (Hartstein and Rowden 2004).

## SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

Monitoring the ecological effects of aquaculture are essential components of the process of planning and regulating aquaculture to achieve sustainable outcomes (Donnan 2001; Silvert & Cromey 2001). Properly designed monitoring programs provide a method to determine whether there are detrimental effects on the environment; whether the effects are significant, or acceptable and reversible; and how any effects can be minimized (Fernandes et al. 2001).

# 2 OBJECTIVES

The primary objective is to monitor benthic communities, water quality and aquatic life within and in the vicinity of the plots. As per NOAA guidance for aquaculture in Federal waters, and in alignment with NOAA Aquaculture Policy which applies broadly to all marine aquaculture-related activities at NOAA, this plan seeks to uphold the following overarching goal (NOAA 2011):

Goal 1. Ecosystem compatibility- Aquaculture development in federal waters is compatible with the functioning of healthy, productive, and resilient marine ecosystems.

NOAA will achieve this goal by:

- Developing, implementing, and enforcing ecosystem-based conservation and management measures for aquaculture that fulfill the agency's marine stewardship responsibilities to protect and restore healthy coastal and ocean ecosystems and to conserve living marine resources, their habitats, and other protected areas;
- Developing, implementing, and enforcing conservation and management measures for aquaculture designed to maintain the health, genetics, habitats, and populations of wild species; maintain water quality; and avoid harmful interactions with marine mammals, birds, and protected species;
- Taking into account the cumulative impacts of aquaculture throughout all trophic levels of the marine environment and in combination with the impacts of other activities.

The following Sediment and Water Quality Monitoring Plan describes the sediment and water quality sample collection and analysis that will be implemented during the Permit term. As required by the Permit, this Sediment and Water Quality Monitoring Plan describes in detail the field sampling, sampling design, laboratory procedures, analytical methods, quality control/assurance measures, data management, stressor identification, reporting and schedule. The integration of data from this management plan will enable regulatory agencies and the general public to confirm whether the permit will result in adverse impacts to the surrounding benthic environment or water column. The overall Plan objectives are as follows (Dutch et al. 2008; Striplin 1988).

Sediment and Water Quality Monitoring Plan Objectives:

- 1. To establish a baseline of environmental conditions at the aquaculture farm.
- 2. To collect long-term data documenting changes over time in physical, chemical, and biogeochemical sediment characteristics and benthos assemblage structure measured for the monitoring stations and reference sites, including data during initial project installation and build-out.
- 3. To provide data for use by the VPD and other relevant regulatory agencies concerned with sediment and water quality.
- 4. Evaluate changes over time in physical, chemical, and biogeochemical sediment characteristics and in benthos assemblage structure at the plots in relation to changes in natural and human-related environmental drivers and pressures, and implement adaptive management, if needed.

SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

# 3 METHODOLOGY

3.1 Field Sample Collection

## 3.1.1 SAMPLE STATIONS

The project's twenty 100-acre plots are approximately 3.53 miles from the shore, located in federal waters of the Channel. As described above, the aquaculture site substrate is anticipated to be homogeneous, with a sandy substrate. Through California State Waters mapping, it was determined that the continental shelf is underlain by variable amounts of upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated in the late Pleistocene (USGS 2013). Seafloor habitats in the Channel consist of significant amounts of soft sediment that support a variety of communities in deep water. The potential marine benthic habitat types are directly related to the Channel's Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, at the project location, are soft, unconsolidated sediment. This seafloor composition provides habitat for a multitude of marine benthic organisms (USGS 2013).

Baseline monitoring will be required prior to implementation of the following sampling methodology, to ascertain the substrate is indeed homogeneous. In this instance homogenous is defined as uniform substrate and biota, meaning the substrate and biota, on average, is distributed more or less equally across an area, in this case, the mussel farm. Statistically, in a normal distribution, homogenous implies a low variance and small standard deviation (i.e., samples are quantitatively similar to each other and don't deviate much to the population mean). For instance, the sediment size and abundance and diversity of invertebrates are expected to be more or less the same in samples taken across a 100-acre plot or the entire 2,000 acre aquaculture farm. If the substrate is not homogeneous and is more variable than expected, then more sample sites will need to be added to the sampling design to capture overall habitat variability of the project site essential for a robust data analysis. If rocky reef or other Essential Fish Habitat(s) or Habitat Areas of Particular Concern (HAPC) are observed during baseline surveys, then the EFH will be mapped and completely avoided (Dudek 2018b). Assuming a homogeneous sandy substrate, each of the twenty 100 acre active plots will have a minimum of three (3) random sampling locations within each plot. The number of sampling locations per plot will be determined using the pre-construction Sampling Power Curve, which is a way to determine the appropriate sample size for the area (See Section 3.1.2). Prior to sampling, each plot will be divided into 1 acre boxes in ArcGIS and a nonbiased selection of the sampling location would occur using ESRI software. The three samples will be combined into one sample to represent the 100 acre plot.

The aquaculture farm will have at least two (2) reference stations. Reference stations will be established 100 to 300 meters from the parcel boundary of the outermost aquaculture unit along an isocline (Figure 7). For example, during build-out of the aquiculture operation, assuming the nearest 100 acre parcels are constructed, the reference site would be similar distance from shore as the first string of farms are being construction with bathymetry or depth considered, but completely outside of the mussel farm boundaries at build out (i.e., non-use sub-permit leases cannot be used as a

## SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

reference site). Reference samples will be collected from a similar depth and sediment type to sub-permit stations. Following completion of the aquiculture farm, the two reference sites would be sampled randomly. Please refer to Figure 7 as an example. Note that baseline monitoring may preclude use of select areas as reference site if there is a significant difference between the mussel farm and proposed reference site. The mussel farm and reference sites will need to be similar to meet the selection criteria for future use during construction and operation of the project.

### 3.1.2 PRE-CONSTRUCTION SAMPLING POWER CURVE

A power curve is used to establish sampling size. The number of sampling locations per plot will be determined using the pre-construction Sampling Power Curve which is a way to determine the appropriate sample size for the area. Assumptions are that data collected from the samples will be of normal distribution, low variability, and a small standard deviation. The power curve represents every combination of power and difference for each sample size when the significance level and the standard deviation are held constant. Essentially, this test determines how many observations in your sample are required to achieve adequate statistical power. On the other hand, the sample size cannot be so large as to waste time and money on unnecessary sampling or to falsely detect unimportant differences to be statistically significant. A minimum sample size of three (3) samples per 100-acres is set from this aquaculture project.

### 3.1.3 VSE BUILDOUT MONITORING DURATION

The scale of the VSE aquaculture project necessitates that the twenty 100-acre plots will have an adaptive monitoring plan. This plan will commence upon installation of the first 100-acre plot but also requires 3 years of monitoring at 80% capacity for the aquaculture site. The monitoring plan is dependent on the length of time it takes to attain full occupancy of all of the plots. Hence, if the project site takes two years to develop to 80% capacity, and along with the 3-year monitoring requirement at that capacity, then the monitoring plan will have a duration of 5 years total.

## 3.1.4 MONITORING FREQUENCY

Pre-construction sampling is required prior to installation of the aquaculture plots in order to obtain a baseline of habitat conditions. Pre-construction sampling is required at least once prior to the commencement of construction. Baseline environmental monitoring is important to confirm habitat and sediment conditions and understand existing environmental conditions prior to the start of construction. If any changes to conditions occur during the future construction or operations of project, the baseline data gained from the following monitoring activities will assist in understanding the cause, so that any changes can be managed. As such, future samples collected at the project site will be compared to this baseline for analysis. After construction is complete within the plot, monitoring will occur on a bi-annual basis.

## 3.1.5 SAMPLING OVERVIEW

## 3.1.5.1 Sampling Vessels and Navigation

Vessels used to collect sediment samples will be stable and maneuverable, conducive to utilizing sampling equipment and/or suitable for SCUBA diving purposes. The vessels will be equipped with a side or rear davit (Weston Solutions 2014) from which to deploy and retrieve surface sampling equipment, and will accommodate a minimum of two persons in addition to all appropriate sampling and safety equipment. If conducting sampling by SCUBA divers, there is a minimum requirement of two scientific divers and one non-captain or crew person acting as surface support for safety requirements. All sampling station locations will be pre-determined and coordinates provided prior to field sampling activities, for use on any vessel navigation system.

### 3.1.5.2 Sediment Sampling Procedures

Sampling of benthic sediments will be conducted to determine redox potential, total dissolved sulfide, porosity and sediment organic matter. Although sulfide is the main regulatory determinant, the other three variables are used to validate and confirm accuracy of sulfide results via empirical relationships of measured variables (Hargrave, 2010) and the Benthic Enrichment Index (BEI) (Hargrave, 1994). Samples will be collected using either SCUBA diver or grab sampling equipment, described further below. The sampling methodology for using a diver to collect sediment samples is outlined in Wildish *et al.*, (1999 and 2004). The main goal is to use an appropriate sampling method and device, which maintains an intact sediment-water interface. To ensure acceptable results, VPD approval must be obtained prior to the use of non-approved equipment and methodologies for sediment sample collection and sub-sampling not described herein. Any deviations from the approved equipment and methodologies must be justified and described in the final submission.

Sediment and benthos samples will be collected in a consistent, repeatable manner following these procedures. A double 0.1 square meter (m<sup>2</sup>) stainless-steel modified van Veen or Ekman or Ponar grab sampler will be used, which allows sediment for physical, biogeochemistry, chemistry, and toxicity samples to be collected simultaneously with benthic infaunal samples. The grab will be attached to the vessel's cable and winch system and lowered to 2-3 meters above the sediment surface. The vessel will be maneuvered into position above the target location. The grab will then be lowered to the bottom where it will trigger and close upon contact with the sediment surface, and a sample will be collected. The grab will then be raised back up to the vessel and landed on a grab stand. The collected sediment sample will be visually inspected. Any grab sample lacking fine-grained particles in the sediment (i.e., composed of all cobble, shell hash, or wood, etc.) or for which the jaws of the grab do not close completely will be rejected. Any grab sample that has either a less-than-adequate penetration depth or significant over-penetration will be discarded. If a sample is rejected for any reason, it is dumped overboard after the vessel has been repositioned away from the target location. If a station is rejected, an alternate station with a new station number will be sampled in its place. For sediment sampling, the following best practices will be utilized (NSFA 2014):

• A temperature logger must be used to record, at least every 30 minutes, the temperature of the environment where sediment samples are stored (i.e., cooler and refrigerator). The same temperature data logger must

## SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

measure the storage temperature throughout the lifecycle of each set of sediment samples (i.e., from the onset of sediment collection to the completion of analysis).

- Rinse all sampling equipment with saltwater between deployments to remove all debris and sediment.
- Siphon (do not pour) the overlying water from the sample. It is important to maintain an undisturbed sediment sample and avoid getting surface water in the syringe.
- If the sample is spoiled at any point during the collection (e.g., leakage from sampling device, sediment surface layer not intact, equipment malfunction, human error etc.), collect a new sample.
- If an appropriate grab sampler for the site-specific benthic conditions is used and is unsuccessful (lack of sufficient quantity of sediment) after the 3rd sediment collection attempt, another sampling location can be chosen. Collect a new waypoint and provide a justification for choosing a new sampling site.
- Excess sediment from grabs must be discarded down current, away from the sampling location.

## 3.1.5.3 SCUBA Diving Sampling Procedures

When locations and conditions allow cores to be collected by divers, cores must be inserted into the sediment, while minimizing disturbance of the sediment surface (NSFA 2014). Open-ended cores should be slowly inserted into the bottom with a gentle twisting action to minimize sediment compression. Cores should have drilled holes at least every 2 cm's to allow lateral sub-sampling of the surface layer closest to the sediment-water interface using a minimum 5-mL cut-off plastic syringe (NSFA 2014). Once sediment is in the core, the diver seals the upper end with a cap to maintain overlying water above the undisturbed sediment surface. Vertically intact cores must be brought to the surface in an upright position. Clarity of overlying water can be used to visually confirm that the sediment surface is as undisturbed as possible. Intact sediment cores should be stored upright in an ice-filled cooler. The required subsample volume must equal a minimum of 5 mL per core. Each core and corresponding syringe must be labeled with a sample ID (NSFA 2014).

## 3.1.5.4 Video Collection Procedures

Video must be collected at every sampling site and reference site using a submersible video camera (drop camera, ROV, or SCUBA diver operated) using an acceptable high-resolution format (i.e., AVI) (NSFA 2014). Video must be obtained before grab samples to show undisturbed sediment. The field of view must include a visible reference scale. Each station must be clearly labeled on the video by using a placard (sub-permittee name/#, date, sample station ID) prior to submersion. The drop camera video must be equipped with a digital overlay detailing real time latitude and longitude (WGS84 or NAD83, decimal degrees) of the sampling location (NSFA 2014). Video requirements include continuous footage of initial descent, impact with the seafloor, camera ascent and retrieval on deck. Once at the bottom, the camera will hover just off bottom and gently contact sediment to indicate consistency. Each station requires a minimum of 2 minutes of seafloor footage, covering a minimum area of 5 m<sup>2</sup>, achieved either by drift of vessel, movement of the handler along the vessel deck, or SCUBA diver swim. Video image quality must be sufficient to recognize and identify sediment type, condition, and benthic species present (NSFA 2014). Sufficient lighting must be used when the visibility is poor.

## 3.1.5.5 Water Quality Sampling Procedures

Water quality sampling will be conducted both within the plots and outside of the plots (reference sites) for comparison as biological communities exist in equilibrium in the marine environment and any changes in seawater characteristics can result in potentially adverse impacts to the marine environment. Water column measurements of physical and chemical characteristics of seawater such as water temperature, hydrogen ion (pH) concentration, and salinity are reliable indicators of the water quality of the marine ecosystem. Water quality sampling will be conducted at each pre-determined sampling location in conjunction with the sediment sampling (2 sampling sites within each aquaculture sub-permit parcel, and 2 outside of the sub-permit parcel as reference sites) consisting of surface, mid-water and sea floor sampling. Water quality sampling will employ a Multi-Parameter Water Quality Meter, deployed into the water column from the vessel. This instrument allows for a comprehensive profile of water properties at the sampling sites and reference sites.

#### Field Observations

General field reporting datasheets are required to be filled out, which presents an overview of the site conditions on, around and beneath a farm site. There is a requirement to collect and submit field observations. A sample log sheet is provided in Appendix A. Log sheets will be used for QA/QC during VPD review. Field observations must be recorded during each sampling event and will include (NSFA 2014):

- Sampling water body, site name and sub-permit number
- Relative descriptions/estimates of ambient weather conditions, including wind speed and direction, Beaufort's sea state, and direction and strength of the current and tide schedule
- Sampling station coordinates
- Station ID
- Time and date of each sample collection
- Type of vessel used for sampling
- Type of sampling equipment and any modifications
- Water depth at each sampling station (ft) and the depth of collected sediment (cm)
- Water temperature (°F)
- Name(s) of personnel collecting the samples
- Number of sediment collection attempts at each station
- Details pertaining to unusual or unpredicted events that might have occurred during the operation of the grab sampler (e.g., equipment failure, unusual appearance of sediment integrity, etc.)
- Deviations from standard operating procedures

## SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

For benthic sampling, the following must be recorded:

- Description of the sediment type, consistency, color and odor
- Presence of flora and fauna
- Presence of gas bubbles
- Presence of shellfish feces/pseudofeces

## 3.1.6 CHAIN OF CUSTODY

Chain of custody (COC) will commence when each benthic and water quality sample is collected. While in the field, all samples will be under direct possession and control of the contractor or certified and qualified field staff. For chain of custody purposes, the research vessel will be considered a "controlled area." For both the chemistry/physical samples and the infauna samples, all sample information will be recorded on a daily COC form. This form will be completed in the field and will accompany all samples during transport and delivery to the laboratory. Minimum documentation of sample handling and custody will include the following (Appendix B; Weston Solutions 2014):

- Sample identification.
- Sample collection date and time.
- Any special notations on sample characteristics.
- Initials of the person collecting the sample.
- Date the sample was sent to the laboratory.
- Shipping company information.

The completed COC form will be placed in a sealable plastic envelope that will travel inside the ice chest containing the listed samples. Upon arrival at the laboratory, the sample delivery person will relinquish all samples. The date and time of sample delivery will be recorded and both parties will then sign off in the appropriate sections on the COC form at this time. Once completed, original COC forms will be archived. Samples delivered after regular business hours will be stored in a secure chain of custody refrigerator until the next day.

## 3.2 Laboratory Testing

To evaluate habitat conditions within the aquaculture sub-permit area and reference sites, analysis of sediment samples will include sediment grain size, percent organic matter, sediment porosity, redox potential, sulfide concentration, toxicity testing, infauna taxonomic analysis, as well as water quality sampling. Samples will be tested in accordance with EPA standards at a NOAA Fisheries Office of Aquaculture and California Department of Public Health (CDPH) approved facility. For this study, we use an approach in which the lines of evidence (LOE) are sediment toxicity, sediment chemistry, benthic community condition, and water quality which evaluates the severity of biological effects

to provide a final overall assessment of each sample site. The results of the analysis are based on a multiple lines of evidence (MLOE) approach in which the LOE's are combined into one habitat value per plot. Hence, this approach evaluates the severity of all effects to provide a final aquaculture plot-level assessment.

## 3.2.1 SEDIMENT CHEMISTRY

Analysis of sediment samples, as described in Wildish et al. (1999, 2004), includes redox, sulfide, sediment porosity, and sediment percent organic matter. Oxidation-reduction potential (redox) analysis is a measure of oxidation reduction potential in sediments and is an indirect indicator of aerobic versus anaerobic conditions in the sediment. For sulfide analysis, the total dissolved sulfide is measured. This is a measure of the accumulation of soluble sulfides (a product of reduction that occurs in anaerobic conditions). The total dissolved sulfide is an indicator of habitat degradation from organic loading. Sediment porosity is the percentage of pore volume (void space) within the benthic sediments. It is an indirect measure of grain size and is used to detect changes in sediment consistency which can occur from shellfish feces or pseudofeces. Sediment percent organic matter (POM) is a measure of the portion of sediment that is biological (plant or animal) in origin, which describes organic loading. Chemical analyses of sediment will include total organic carbon (TOC), and the select trace metals, chlorinated pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Individual parameters and reporting limits are listed in Appendix C (Weston Solutions 2014).

## 3.2.2 SEDIMENT TOXICITY

Toxicity testing involves a short-term survival test, a sublethal endpoint test, and an assessment of sediment toxicity. Amphipod bioassay procedures will be followed as outlined in published protocols (PSEP, 1995; ASTM, 2004a). These include use of both a non-toxic (negative) control using clean, nontoxic sediments; toxic (positive) controls using a reference toxicant in a dilution series, use of healthy test organisms; observance of sediment holding times, proper equipment-cleaning procedures, and standard laboratory procedures; measurement and maintenance of water quality, and blind testing. The laboratory will be responsible for the identifying, collecting, and testing a non-toxic control sediment. These sediments must be un-contaminated, collected outside the study area, and shown from previous tests to be not toxic to sensitive organisms. The negative controls must be tested with each batch of samples from the field using the same methods applied to the test samples and at least the same number of replicates. The results from tests of the negative controls are highly important, because they will be used in statistical analyses to classify samples as either toxic or non-toxic. The maximum holding time for the samples shall be no more than 10 days from the date of collection. Categorization values are listed in Appendix C.

## 3.2.3 BENTHIC COMMUNITY

The benthic infauna samples will be stored in a formalin solution for initial preservation for transportation to the laboratory. The samples will then be transferred from formalin to 70% ethanol for laboratory processing. The organisms will be sorted to taxonomic group using a dissecting and high-power compound microscope (Michelson 2009) into five

major phyletic groups: polychaetes, crustaceans, mollusks, echinoderms, and miscellaneous minor phyla. A qualified taxonomist will identify each organism to species or to the lowest practical taxonomic level (Michelson 2009). Taxonomists will use the most recent version (12<sup>th</sup> Edition) of the Southern California Association of Marine Invertebrate Taxonomists (SCAMIT) taxonomic listing for nomenclature and orthography. Categorization values are listed in Appendix C.

### 3.2.4 WATER QUALITY

As described above, water column measurements of physical and chemical characteristics of seawater such as water temperature, hydrogen ion (pH) concentration, and salinity are reliable indicators of the water quality of the marine ecosystem. Water quality parameters measured include: temperature (°C), pH, pH(mV), Oxidation Reduction Potential (ORP) (mu), conductivity (ms/cm), turbidity (NTU), Dissolved Oxygen (DO) (mg/L), percent DO, Total Dissolved Solids (TDS) (g/L), salinity (ppt), and Seawater Specific Gravity (ot). Water quality parameters will be sent to the lab, along with the benthic samples, for analysis. Thresholds for water quality parameters follow EPA water quality standards.

# 4 DATA ANALYSIS

### 4.1 Data Review and Management

Field data and observations recorded on field logs will be kept in the project binder aboard the research vessel during sampling. A new log will be completed for every plot. Samples will be averaged in order to have one set of values per plot. All logs will be reviewed after each station is sampled for QA/QC. This information will be entered into a VSE database upon completion of sampling, and original data logs will be provided to VPD. All entries will be independently verified for accuracy by another individual on the VPD or an independent VPD contractor, and necessary corrections will be made.

## 4.2 Sediment Toxicity

Toxicity analysis from the contract toxicology lab will include: data values for all parameters measured at each station; measures of within sample variability, sample and test organism holding time, and test organism lengths; a report noting methods used; quality control results; and an electronic version of the data. Sediment toxicity test results from each station will be statistically compared to control test results; normalized to the control survival; and categorized as nontoxic, low, moderate, or high toxicity.

### 4.3 Sediment Chemistry

All sediment chemistry data will be reported in QA1 format (PTI Environmental Services 1989), as used by USACE to establish if data are acceptable for determining the suitability of sediments for unconfined open-water disposal. The final QA1 report will contain the following information and deliverables: a QA1 narrative discussing data quality in relation to study objectives and data criteria; all associated QC data (LIMS QC reports and worklists), copies of field sheets and COC forms; and a comprehensive report containing all analytical and field data, and indicating any levels that are above standard limits.

## 4.4 Benthic Community

The mean abundance and richness of each major benthic taxon for both sampling sites and reference sites will be reported. Various diversity indices will also be calculated for each sampling station. Data will be compared to regional benthic data for the Ventura region and the Southern California Bight. A narrative explaining the results, including any anomalies and statistical evaluations, will be included.

### 4.5 Water Quality

Water quality parameters for both sampling sites and reference sites will be reported. Data will be compared to regional water quality data for the Ventura region and the Southern California Bight. A narrative explaining the results, including any anomalies and statistical evaluations, will be included.

## 4.6 Statistical Analysis

A non-parametric multivariate approach was used to test the proposed hypotheses because it provides a way to determine and explore any observed differences in assemblage composition (Hartstein and Rowden 2004). Spatial and temporal fluctuations in sediment toxicity, sediment chemistry, the benthic community, and water quality parameters, will be modelled. Sampling stations and reference stations are considered as the spatial factor whereas the sampling period (month, year) represents the temporal factor. Interaction effects between station and season will be taken into account. When a significant difference (p<0.05) for an effect is observed, the means will be analyzed by multiple comparison tests. Akaike's information criterion (AIC), and collinearity will also be investigated. All statistical analyses will be carried out using a statistical software package capable of multivariate analysis.

# 5 STRESSOR IDENTIFICATION

### 5.1 Pollutant Confirmation, Source Identification and Management

Each aquaculture plot will be evaluated based on the analysis above and a sub-permit assessment will be provided indicating any biological effects on the environment determined by the toxicity, chemistry, water quality and benthic community condition. Based on the severity of biological effects, a sub-permit-level assessment will be made with the following categorical assignments (Weston Solutions 2014):

- **Unimpacted**: High confidence that that mussel aquaculture is not resulting in adverse impacts to the habitat and marine life.
- Likely Unimpacted: Aquaculture activities are not causing adverse impacts to aquatic life, but some disagreement among the LOE reduces the certainty that the station is unimpacted.
- **Possibly Impacted**: Aquaculture activities at the sub-permit site may be causing adverse impacts to aquatic life, but the impacts are either small or uncertain due to disagreement among the LOE.
- **Likely Impacted**: Evidence for aquaculture-related impacts to aquatic life at the sub-permit is persuasive, even if there is some disagreement among the LOE.
- Impacted: results show that mussel aquaculture is causing adverse impacts to the habitat and marine life.
- **Inconclusive**: Additional information is needed before a determination can be made.

SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

# 6 REPORTING

VPD staff or an independent VPD contractor will be responsible for analyzing annual sediment and benthos data, water quality data, summarizing data, and producing annual reports. These reports will be a high-level overview of work and conclusions, with detailed data summarizing figures and tables attached as appendices. A variety of traditional formal and informal reporting formats will be used, with the data made available to NOAA Fisheries Office of Aquaculture and other regulatory agencies. The annual report will evaluate methods, interpret data, provide an aquaculture impact assessment and include recommendations for adaptive management, as necessary.

SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

# 7 CONCLUSION

There is growing international awareness of the need for aquaculture to be ecologically sustainable (Black 2001) and the VPD recognizes that aquaculture in the marine environment needs to be undertaken in an informed, controlled and ecologically sustainable and responsible manner. An ecologically sustainable industry should only utilize environmental resources in ways that do not interfere with other users of the environment; do not reduce the scope for future users to benefit from the environmental resources; and do not significantly alter environmental quality and biodiversity (Black 2001). The proposed monitoring program has been designed to identify if any significant changes to the marine benthic environment within or immediately adjacent to the project site are occurring due to the presence of the farm and will provide the baseline conditions/parameters against which project conditions can be assessed. This monitoring program will be reviewed after two years of sampling to determine if reported impacts warrant modifications to the sampling protocol. If, during the monitoring program, significant impacts are found, then appropriate adaptive management regimes will be employed to ameliorate these impacts. Such adaptive management will depend on the character, severity, and frequency of impacts, as well as whether the impact is project-wide or isolated within a particular sub-permit area or areas.

SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

# 8 REFERENCES

- Black, K.D. 2001. Sustainability of aquaculture. Pp. 199–212 in: Black, K.D. Ed. Environmental impacts of aquaculture. Sheffield Academic Press, Sheffield, United Kingdom.
- California Fish and Game Commission (CFGC). 2018. State of California, California Natural Resources Agency, California Fish and Game Commission, Mitigated Negative Declaration for Santa Barbara Mariculture Company Continued Shellfish Aquaculture Operations on State Water Bottom Lease Offshore Santa Barbara, California. 143 pp.
- Donnan, D.W. 2001: Aquaculture in the age of integrated coastal management (ICM). Pp. 182–198 in: Black, K.D. (Ed.) Environmental Impacts of Aquaculture. Sheffield Academic Press, Sheffield, United Kingdom.
- Dudek. 2018a. Biological Assessment. Prepared for the Ventura Port District for the Ventura Shellfish Enterprise.
- Dudek. 2018b. Essential Fish Habitat (EFH) Assessment. Prepared for the Ventura Port District for the Ventura Shellfish Enterprise.
- Dutch, M., Partridge, V., Weakland, S., Burgess, D., and A. Eagleston. 2008. Quality Assurance Monitoring Plan. The Puget Sound Sediment Monitoring Program. Environmental Assessment Program. Washington State Department of Ecology. Olympia, Washington. Publication No. 18-03-109
- PTI Environmental Services. 1989. Puget Sound Dredged Disposal Analysis Guidance Manual Data Quality Evaluation for Proposed Dredged Material Disposal Projects. Prepared for the Washington State Department of Ecology by PTI Environmental Services. Bellevue, Washington.
- Fernandes, T.F.; Eleftheriou, A.; Ackefors, H.; Eleftheriou, M.; Ervik, A.; Sanchez-Mata, A.; Scanlon, T.; White, P.; Cochrane, S.; Pearson, T.H.; Read, P.A. 2001: The scientific principles underlying the monitoring of the environmental impacts of aquaculture. *Journal of Applied Ichthyology* 17(4): 181–193.
- Gentry R.R., S.E. Lester, C.V. Kappel, C. White, T.W. Bell, J. Stevens, and S.D. Gaines. 2017. "Offshore Aquaculture: Spatial Planning Principles for Sustainable Development." *Ecology and Evolution*. 7:733–743. doi: 10.1002/ece3.2637.
- Hargrave, B.T. [ed.]. 1994. Modelling benthic impacts of organic enrichment from marine aquaculture. Can. Tech. Rep. Fish. Aquat. Sci. 1949: xi + 125p.
- Hargrave, B.T. 2010. Empirical relationships describing benthic impacts of salmon aquaculture. Aquacult. Enivron. Interact. 1: 33-45.
- Hartstein, N.D., and A.A. Rowden. 2004. Effect of biodeposits from mussel culture on macroinvertebrate assemblages at sites of different hydrodynamic regime. Marine Environmental Research 57:339-357.

# SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

- Mickelson, S. 2009. Elliott West CSO Treatment Facility and Denny Way CSO, Post-Operation Sediment Monitoring, Year 4.
   Denny Way CSO Areas A and B Nearshore Sediment Remediation Project, Post-Construction Sediment Monitoring, Year 1. Areas C, D, and E Monitored Natural Recovery, Year 6. Sampling and Analysis Plan. Prepared for the King County Department of Natural Resources and Parks, Wastewater Treatment Division, by the King County Department of Natural Resources and Parks, Marine and Sediment Assessment Group.
- National Oceanic and Atmospheric Administration (NOAA). 2011. "National Oceanic and Atmospheric Administration Marine Aquaculture Policy." NOAA Fisheries. Accessed April 15, 2019 from the NOAA website: http://www.nmfs.noaa.gov/aquaculture/docs/policy/noaa\_aquaculture\_policy\_2011.pdf.
- NOAA. 2017. United States West Coast, California. Port Hueneme to Santa Barbara. Mercator Projection. Nautical Chart. Washington, DC. U.S. Department of Commerce, NOAA, National Ocean Science, Coast Survey. 30th Ed. June 2013. Last correction 7/3/2017.
- NOAA. 2018. "Coastal Aquaculture Siting and Sustainability Technical Report, Ventura Shellfish Enterprise: Aquaculture Siting Analysis Results." Prepared by Coastal Aquaculture Siting and Sustainability Program, within the Marine Spatial Ecology Division of the National Centers for Coastal and Ocean Science, National Ocean Service, NOAA. September 19.
- Nova Scotia Fisheries and Aquaculture (NSFA). 2014. Standard Operating Procedures for the Environmental Monitoring of Marine Aquaculture in Nova Scotia. Nova Scotia Aquaculture Environmental Monitoring Program. 29 pp.
- Okumus, I., Bascinar, N., and M. Ozkan. 2002. The effects of phytoplankton concentration, size of mussel and water temperature on feed consumption and filtration rate of the Mediterranean Mussel (*Mytilus galloprovincialis Lmk*). Turkish Journal of Zoology. 26: 167-172.
- Pearson, T., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review 16: 229–311.
- Silvert, W.; Cromey, C.J. 2001: Modelling impacts. Pp. 154–181 in: Black, K.D. (Ed.) Environmental impacts of aquaculture. Sheffield Academic Press, Sheffield, United Kingdom.
- Souchu, P, Vaquer, A., Collos, Y., Landrein, S., Deslous-Paoli, J., and B. Bibent. 2001. Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon. Inter-Research. Marine Ecology Progress Series. 218: 141-152.
- Sowles, J.W. 2003. Water Quality and Benthic Impacts of Marine Aquaculture in Maine. Ecology Division. Maine Department of Marine Resources. Prepared for Governor's Task Force on Marine Aquaculture.

# SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

Statacorp. 2007. Stata Statistical Software: Release 10, College Station, TX.

- Striplin, P.L. 1988. Puget Sound Ambient Monitoring Program, Marine Sediment Quality Implementation Plan. Prepared for the Washington Department of Ecology Water Quality Programs Section and Puget Sound Water Quality Authority. Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Ambient Monitoring Section, Olympia, Washington 98504-6811.
- United States Geological Survey (USGS). 2013. California State Waters Map Series: offshore of Santa Barbara, California. Scientific Investigations. Map 3281. https://doi.org/10.3133/sim3281
- eston Solutions, Inc. 2014. Carlsbad WMA Sediment Monitoring Plan. Prepared for Carlsbad WMA Principal Copermittees. Carlsbad, California. Revised by AMEC Environment and Infrastructure, Inc., San Diego, California.
- Wilding T.A., and T.D. Nickell. 2013. Changes in Benthos Associated with Mussel (*Mytilus edulis L.*) Farms on the West-Coast of Scotland. PLoS ONE 8(7): e68313. doi:10.1371/journal.pone.0068313.
- Wilding, T.A. 2012. Changes in Sedimentary Redox Associated with Mussel (*Mytilus edulis L.*) Farms on the West-Coast of Scotland. PLoS ONE 7(9): e45159. doi:10.1371/journal.pone.0045159.
- Wildish, D.J., Akagi, H.M., Hamilton, N. and Hargrave, B.T. 1999. A recommended method for monitoring sediments to detect organic enrichment from mariculture in the Bay of Fundy. Can. Tech. Rep. Fish. Aquat. Sci. 2286: iii + 31 p.
- Wildish, D.J., Akagi, H.M., Hargrave, B.T. and Strain, P.M. 2004. Inter-laboratory calibration of redox potential and total sulfide measurements in interfacial marine sediments and the implications for organic enrichment assessment. Can. Tech. Rep. Fish. Aquat. Sci. 2546: iii + 25 p.

SEDIMENT AND WATER QUALITY MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

# APPENDIX A

Standard Field Sheet

# Appendix A

Field Data Sheet: Video and Grab Samples

| Date:                        |                 |           |    | Wind direction and sp                      | eed:               |                    |                            |
|------------------------------|-----------------|-----------|----|--------------------------------------------|--------------------|--------------------|----------------------------|
| Water body:                  |                 |           |    | Wave action:                               |                    |                    |                            |
| Lease name and #:            |                 |           |    | Direction and speed o                      | f current:         |                    |                            |
| Sampling Station ID:         |                 |           |    | Tide schedule:                             |                    |                    |                            |
| Latitude (decimal degrees):  |                 |           |    |                                            |                    |                    | afloor conditions and grab |
| Longitude (decimal degrees): |                 |           |    | sample, notes regardin<br>the SOP, etc.)   | g sampling diffi   | culties, weath     | er issues, deviations from |
| Dist. and dir. from WP:      |                 |           |    | the SOF, etc.)                             |                    |                    |                            |
| Time:                        |                 |           |    |                                            |                    |                    |                            |
| Recorder name:               |                 |           |    |                                            |                    |                    |                            |
| Sample collector:            |                 |           |    |                                            |                    |                    |                            |
| Type of sediment sampler:    |                 |           |    | Benthic Descriptor Ke                      | ey:                |                    |                            |
| Station Depth (m):           |                 |           |    | 1. Oxic layer thickness,<br>consistency    | gas bubbles, fe    | ed, faeces, se     | diment: colour, type and   |
| Water Temperature (°C):      |                 |           |    | 2. Degree of odour (stro                   | ong, slight, none  | )                  |                            |
| Video (y/n):                 |                 |           |    | 3. Flora/Fauna (e.g., ee polychaetes etc.) |                    |                    | rfish, beggiatoa,          |
| Number of grab attempts:     |                 |           |    |                                            |                    |                    |                            |
| Sediment Samples             | Sample<br>(y/n) | Sample ID | Se | diment Description <sup>1</sup>            | Grab<br>Depth (cm) | Odour <sup>2</sup> | Flora / Fauna <sup>3</sup> |
| Benthic Replicate A          |                 |           |    |                                            |                    |                    |                            |
| Benthic Replicate B          |                 |           |    |                                            |                    |                    |                            |
| Benthic Replicate C          |                 |           |    |                                            |                    |                    |                            |
|                              |                 |           |    |                                            |                    |                    |                            |

# APPENDIX B

# Chain of Custody Form

| DUC           |       |              | K   |
|---------------|-------|--------------|-----|
| 621 Chapala   | Stree | ət           |     |
| Santa Barbar  | a, CA | ۹ <u>9</u> 3 | 101 |
| Tel: 805-963- | 0651  |              |     |
| Fax: 805-963  | -2074 | 4            |     |

| 621 Chapala Street Chain of Custody          |        |            |       |                      |        |          | Page of                  |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            |                           |        |                |
|----------------------------------------------|--------|------------|-------|----------------------|--------|----------|--------------------------|-----|-----------------|---------------|-------------|--------|--------------|------------------|------------------------|---------------|---------------|------------|------------------|----------------------------|-----|----|--------|------------|---------------------------|--------|----------------|
| 621 Chapala Street                           |        |            |       |                      | GI     | a        |                          | U   | นวเ             | ouj           |             |        |              | Laboratory:      |                        |               |               |            |                  |                            |     |    |        | Lab Job #: |                           |        |                |
| Santa Barbara, CA 93101<br>Tel: 805-963-0651 |        |            |       | Lab Contact:         |        |          |                          |     |                 |               |             |        |              | Shipping Method: |                        |               |               |            |                  |                            |     |    |        |            |                           |        |                |
| Fax: 805-963-2074                            |        |            |       |                      |        |          |                          |     |                 |               |             |        |              | Du               | dek                    | Proj          | ect           | Man        | ager             | :                          |     |    |        |            | Duc                       | lek    | PM Email:      |
|                                              |        |            |       |                      |        | _        |                          |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            |                           |        | @dudek.com     |
| Project Name:                                |        |            | Pro   | oject I              | Num    | ber:     |                          |     |                 |               |             |        |              |                  |                        | 1             |               | A          | naly             | sis                        | -   |    |        |            | TA                        | AT     | Notes          |
|                                              |        |            |       |                      |        |          |                          |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            |                           |        |                |
| Sampled by:                                  |        |            | San   | npler                | · Sign | natu     | re:                      |     |                 |               |             |        |              | 1                |                        |               |               |            |                  |                            |     |    |        |            |                           |        |                |
|                                              |        |            |       |                      |        |          |                          |     |                 |               |             |        |              |                  |                        | 5M            |               |            |                  |                            |     |    |        |            | me                        |        |                |
|                                              |        |            |       |                      |        |          | Method                   |     |                 |               | T           |        |              |                  | 15M                    | MTBE 8015M    |               |            |                  | 6010/ 7000 Title 22 Metals |     |    |        |            | Standard Turn-Around Time | 72 hr  |                |
|                                              | Sample | Collection | ľ     | Matri                | X      | <u>Р</u> | reserved                 | 1   | Cor             | taine         | r Type<br>I | es and | <u>  No.</u> | -                | 80                     | [TB]          |               |            |                  | 2 M                        |     |    |        |            | rour                      | 48 hr  |                |
|                                              |        |            |       |                      |        |          |                          |     | 40 mL glass VOA | lar           | er          | >      |              |                  | TPH carbon chain 8015M | X/ N          |               |            | 31A              | tle 2                      |     |    |        |            | n-A                       |        |                |
|                                              |        |            |       |                      |        |          |                          |     | V SS            | oz. Glass Jar | Amber       | Poly   |              | 50B              | on o                   | 3TE           | 3015          | 270        | 808              | 0 Ti                       |     |    |        |            | Tur                       | 24 hr  |                |
|                                              |        |            |       |                      |        |          | е П                      |     | gla             | . GI          |             |        |              | \$ 82(           | carb                   | g)/ I         | (p)           | (s 8)      | ides             | 700                        |     |    |        |            | ard                       | : 5    |                |
|                                              | _      |            | Water | Soil                 |        | H Cl     | HNO <sub>3</sub><br>NONE |     | lm (            | ZO            |             |        |              | VOCs 8260B       | Hd                     | TPH(g)/ BTEX/ | TPH (d) 8015M | SVOCs 8270 | Pesticides 8081A | )10/                       |     |    |        |            | and                       | Other: |                |
| Sample ID                                    | Date   | Time       | 8     | Ň                    |        | Ξ        | ΗZ                       |     | 4(              |               |             |        |              | >                | H                      | H             | H             | 2          | P                | 9                          |     |    |        |            | SI                        | 0      |                |
|                                              |        |            | -     | $\left  \right $     |        |          |                          |     |                 |               |             |        | -            |                  | -                      |               | ╞             |            | -                |                            |     |    | -+     |            |                           |        |                |
|                                              |        |            |       |                      |        |          |                          |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            |                           |        |                |
|                                              |        |            |       |                      |        |          |                          |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            |                           |        |                |
|                                              |        |            |       |                      |        |          |                          |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            |                           |        |                |
|                                              |        |            |       | $\square$            |        |          |                          |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            |                           |        |                |
|                                              |        |            |       | $\square$            |        |          |                          |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            |                           |        |                |
|                                              |        |            |       | $\square$            |        |          |                          |     |                 |               |             |        |              |                  |                        | $\uparrow$    | $\uparrow$    |            | $\vdash$         |                            |     |    |        |            |                           |        |                |
|                                              |        |            |       | $\left  \right $     |        |          |                          |     |                 |               |             |        | +            |                  | $\square$              |               | ┢             |            |                  |                            |     |    |        |            |                           |        |                |
|                                              |        |            |       | $\left\{ - \right\}$ |        |          |                          |     |                 |               |             |        |              |                  | $\vdash$               | +             | ┢             |            | $\vdash$         |                            |     |    |        |            |                           |        |                |
|                                              |        |            |       | $\left\{ - \right\}$ |        |          |                          |     |                 |               |             |        | +            |                  | $\vdash$               |               | ┢             |            |                  |                            |     |    |        |            |                           |        |                |
|                                              |        |            | -     | $\left\{ -\right\}$  |        |          |                          |     |                 |               |             |        |              |                  | $\vdash$               | +             | ┼             | +          | $\vdash$         |                            |     |    | $\neg$ | _          |                           |        |                |
|                                              |        |            |       | $\left  - \right $   |        |          |                          |     |                 |               |             |        |              |                  | -                      | -             | +             | +          | +                |                            |     |    | _      |            |                           |        |                |
|                                              |        |            |       |                      |        |          |                          |     |                 |               |             |        |              | _                |                        |               |               |            |                  |                            |     |    |        |            |                           |        |                |
|                                              |        | -          | Total | l# 01                | fcont  | tain     | ers per ty               | ype |                 |               |             |        |              | Tot              | al C                   | Conta         | ine           | rs:        |                  |                            |     |    |        |            |                           |        |                |
| Relinquished by:                             |        | Company    |       |                      |        | Tim      |                          |     | Recei           | ved b         | y:          |        |              | Col              | mpa                    | any           | Da            | ate        |                  |                            | Tim | ne |        |            |                           |        | Sample Receipt |
|                                              |        |            |       |                      |        |          |                          |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            | Sam                       | ple    | es Intact      |
|                                              |        |            |       |                      |        |          |                          |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            | Coc                       | ler '  | Temp:          |
|                                              |        |            |       |                      |        |          |                          |     |                 |               |             |        |              |                  |                        |               |               |            |                  |                            |     |    |        |            | Con                       | for    | ms to COC      |

# APPENDIX C

Laboratory Method Detection Limits and Recommended Practical Quantitation Limits for all Testing Parameters: Sediment Chemistry, Sediment Toxicity, Benthic Community, and Water Quality

# Appendix C

## Parameters and Reporting Limits

## Chemical and Physical Parameters for Sediment Samples

| Parameter                            | Reporting Limit |
|--------------------------------------|-----------------|
| Physical Tests                       |                 |
| Grain Size                           | 1.00%           |
| Percent Solids                       | 0.10%           |
| Total Organic Carbon (TOC)           | 0.01%           |
| Metals                               |                 |
| Cadmium (Cd)                         | 0.09 mg/kg      |
| Copper (Cu)                          | 52.8 mg/kg      |
| Lead (Pb)                            | 25.0 mg/kg      |
| Mercury (Hg)                         | 0.09 mg/kg      |
| Zinc (Zn)                            | 60.0 mg/kg      |
| Organochlorine Pes                   | ticides         |
| 2,4'-DDD                             | 0.50 μ g/kg     |
| 2,4'-DDE                             | 0.50 μ g/kg     |
| 2,4'-DDT                             | 0.50 μ g/kg     |
| 4,4'-DDD                             | 0.50 μ g/kg     |
| 4,4'-DDE                             | 0.50 μ g/kg     |
| 4,4'-DDT                             | 0.50 μ g/kg     |
| Chlordane-alpha                      | 0.50 μ g/kg     |
| Chlordane-gamma                      | 0.54 μ g/kg     |
| Dieldrin                             | 2.5 μ g/kg      |
| trans-Nonachlor                      | 4.6 μ g/kg      |
| PCB Congeners                        | S               |
| 2,4'-Dichlorobiphenyl                | 3.0 μ g/kg      |
| 2,2',5-Trichlorobiphenyl             | 3.0 μ g/kg      |
| 2,4,4'-Trichlorobiphenyl             | 3.0 μ g/kg      |
| 2,2',3,5'-Tetrachlorobiphenyl        | 3.0 μ g/kg      |
| 2,2',5,5'-Tetrachlorobiphenyl        | 3.0 μ g/kg      |
| 2,3',4,4'-Tetrachlorobiphenyl        | 3.0 μ g/kg      |
| 2,2',4,5,5'-Pentachlorobiphenyl      | 3.0 μ g/kg      |
| 2,3,3',4,4'-Pentachlorobiphenyl      | 3.0 μ g/kg      |
| 2,3',4,4',5-Pentachlorobiphenyl      | 3.0 μ g/kg      |
| 2,2',3,3',4,4'-Hexachlorobiphenyl    | 3.0 μ g/kg      |
| 2,2',3,4,4',5'-Hexachlorobiphenyl    | 3.0 μ g/kg      |
| 2,2',4,4',5,5'-Hexachlorobiphenyl    | 3.0 μ g/kg      |
| 2,2',3,3',4,4',5-Heptachlorobiphenyl | 3.0 μ g/kg      |
| 2,2',3,4,4',5,5'-Heptachlorobiphenyl | 3.0 μ g/kg      |

| 2,2',3,4',5,5',6-Heptachlorobiphenyl     | 3.0 μ g/kg  |
|------------------------------------------|-------------|
| 2,2',3,3',4,4',5,6-Octachlorobiphenyl    | 3.0 μ g/kg  |
| 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl | 3.0 μ g/kg  |
| Decachlorobiphenyl                       | 3.0 μ g/kg  |
| PAHs (low molecular w                    | veight)     |
| Acenaphthene                             | 20.0 μ g/kg |
| Anthracene                               | 20.0 μ g/kg |
| Phenanthrene                             | 20.0 μ g/kg |
| Biphenyl                                 | 20.0 μ g/kg |
| Naphthalene                              | 20.0 μ g/kg |
| 2,6-Dimethylnaphthalene                  | 20.0 μ g/kg |
| Fluorene                                 | 20.0 μ g/kg |
| 1-Methylnaphthalene                      | 20.0 μ g/kg |
| 2-Methylnaphthalene                      | 20.0 μ g/kg |
| 1-Methylphenanthrene                     | 20.0 μ g/kg |
| PAHs (high molecular v                   | veight)     |
| Benzo(a)anthracene                       | 80.0 μ g/kg |
| Benzo(a)pyrene                           | 80.0 μ g/kg |
| Benzo(e)pyrene                           | 80.0 μ g/kg |
| Chrysene                                 | 80.0 μ g/kg |
| Dibenzo(a,h)anthracene                   | 80.0 μ g/kg |
| Fluoranthene                             | 80.0 μ g/kg |
| Perylene                                 | 80.0 μ g/kg |
| Pyrene                                   | 80.0 μ g/kg |

DDD Dichlorodiphenyldichloroethane

DDE dichlorodiphenyldichloroethylene

DDT dichlorodiphenyltrichloroethane

mg/kg milligrams per kilogram

 $\mu$  g/kg micrograms per kilogram

|                                | Test Conditio              | ns                      |                  |  |  |  |  |
|--------------------------------|----------------------------|-------------------------|------------------|--|--|--|--|
| 10-Day Whole Sediment Bioassay |                            |                         |                  |  |  |  |  |
| Test Species <sup>1</sup>      | E. estuarius               | L. plumulosus           | R. abronius      |  |  |  |  |
| Test Procedures                | USEPA                      | (1994); ASTM E1367-0    | 3 (2006)         |  |  |  |  |
| Test Type                      | Sta                        | tic - Acute Whole Sedir | nent             |  |  |  |  |
| Test Duration                  |                            | 10 days                 |                  |  |  |  |  |
| Storage Conditions             | 4 °(                       | 2, dark, minimal head s | расе             |  |  |  |  |
| Age/Size Class                 | 3-5 mm                     | 2-4 mm; immature        | 3-5 mm           |  |  |  |  |
| Grain Size Tolerance           | 0.6-100% sand              | 0-100% sand             | 10-100% sand     |  |  |  |  |
| Temperature                    | 15 ± 1 °C                  | 25 ± 1 °C               | 15 ± 1 °C        |  |  |  |  |
| Salinity                       | 20 ± 2 ppt                 | 20 ± 2 ppt              | 28 ± 2 ppt       |  |  |  |  |
| Dissolved Oxygen               | Maintaining 90% saturation |                         |                  |  |  |  |  |
| Total Ammonia                  | < 60 mg/L                  | < 60 mg/L               | < 30 mg/L        |  |  |  |  |
| Test Chamber                   |                            | 1 L glass               |                  |  |  |  |  |
| Exposure Volume                | 2 cm                       | n sediment, 800 mL sea  | water            |  |  |  |  |
| Replicates/Sample              |                            | 5                       |                  |  |  |  |  |
| Number of Organisms/Replicate  |                            | 20                      |                  |  |  |  |  |
| Photoperiod                    |                            | Continuous light        |                  |  |  |  |  |
| Feeding                        |                            | None                    |                  |  |  |  |  |
| Water Renewal                  |                            | None                    |                  |  |  |  |  |
| Aeration                       |                            | Constant gentle aeratio | on               |  |  |  |  |
|                                | Mean contro                | survival > 90%; >80% s  | survival in each |  |  |  |  |
| Acceptability Criteria         |                            | replicate               |                  |  |  |  |  |

## Summary of Conditions for 10-Day Whole Sediment Amphipod Bioassay

<sup>1</sup> Test species will depend on species found on-site and the characteristics of the sediment sample such as grain size, salinity and constituents.

mg/L - milligrams per liter

# Summary of Conditions for 48-Hour *M. galloprovincialis* Sediment-Water Interface Bioassay

|                               | Test Conditions                                      |  |  |  |  |  |
|-------------------------------|------------------------------------------------------|--|--|--|--|--|
| 48-Hour <i>M. gallopro</i>    | vincialis Sediment-Water Interface Bioassay          |  |  |  |  |  |
| Test Species                  | M. galloprovincialis                                 |  |  |  |  |  |
| Test Procedures               | USEPA (1995), Anderson et al. (1996)                 |  |  |  |  |  |
| Test Type                     | Static - Acute sediment-water interface              |  |  |  |  |  |
| Duration                      | 48 hours                                             |  |  |  |  |  |
| Sample Storage Conditions     | 4 °C, dark, minimal head space                       |  |  |  |  |  |
| Age/Size Class                | < 4 hour old larvae                                  |  |  |  |  |  |
| Temperature                   | 15 ± 1 °C                                            |  |  |  |  |  |
| Salinity                      | 32 ± 2 ppt                                           |  |  |  |  |  |
| Dissolved Oxygen              | Maintaining 90% saturation                           |  |  |  |  |  |
| Total Ammonia                 | < 4 mg/L                                             |  |  |  |  |  |
|                               | Polycarbonate core tube 7.3-cm inner diameter, 16 cm |  |  |  |  |  |
| Test Chamber                  | high                                                 |  |  |  |  |  |
| Exposure Volume               | 5 cm sediment, 300 mL water                          |  |  |  |  |  |
| Replicates/Sample             | 4                                                    |  |  |  |  |  |
| Number of Organisms/Replicate | Approximately 250 larvae                             |  |  |  |  |  |
| Photoperiod                   | 16 hours light: 8 hours dark                         |  |  |  |  |  |
| Feeding                       | None                                                 |  |  |  |  |  |
| Water Renewal                 | None                                                 |  |  |  |  |  |
| Aeration                      | Constant gentle aeration                             |  |  |  |  |  |
| Acceptability Criteria        | Mean control normal-alive > 80%                      |  |  |  |  |  |

# Summary of Conditions for 28-Day Whole Sediment *N. arenaceodentata* Bioassay

|                                                   | Test Conditions                              |  |  |  |  |
|---------------------------------------------------|----------------------------------------------|--|--|--|--|
| 28-Day Whole Sediment N. arenaceodentata Bioassay |                                              |  |  |  |  |
| Test Species                                      | N. arenaceodentata                           |  |  |  |  |
| Test Procedures                                   | ASTM E1562 (2002), Farrar and Bridges (2011) |  |  |  |  |
| Test Type                                         | Static - Acute Whole Sediment/28 days        |  |  |  |  |
| Duration                                          | 4 °C, dark, minimal head space               |  |  |  |  |
| Sample Storage Conditions                         | < 7 days post-emergence                      |  |  |  |  |
| Age/Size Class                                    | 5-100% sand                                  |  |  |  |  |
| Temperature                                       | 20 ± 1 °C                                    |  |  |  |  |
| Salinity                                          | 30 ± 2 ppt                                   |  |  |  |  |
| Dissolved Oxygen                                  | Maintaining 90% saturation                   |  |  |  |  |
| Total Ammonia                                     | < 20 mg/L                                    |  |  |  |  |
| Test Chamber                                      | 300 mL glass                                 |  |  |  |  |
| Exposure Volume                                   | 2 cm sediment, 125 mL seawater               |  |  |  |  |
| Replicaes/Sample                                  | 10                                           |  |  |  |  |
| Number of                                         |                                              |  |  |  |  |
| Organisms/Replicate                               | 1                                            |  |  |  |  |
| Photoperiod                                       | 12 hours light: 12 hours dark                |  |  |  |  |
| Feeding                                           | Twice per week                               |  |  |  |  |
| Water Renewal                                     | Weekly                                       |  |  |  |  |
| Aeration                                          | Constant gentle aeration                     |  |  |  |  |
| Acceptability Criteria                            | Mean control survival > 80%                  |  |  |  |  |

## Sediment Toxicity Characterization Values

|                             |                        | Statistical     |                       | Low                   | Moderate              | High                  |
|-----------------------------|------------------------|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Test Type                   | Endpoint               | Significance    | Nontoxic <sup>1</sup> | Toxicity <sup>2</sup> | Toxicity <sup>2</sup> | Toxicity <sup>2</sup> |
|                             | E. estuaries Survival  | Significant     | 90 to 100             | 82 to 89              | 59 to 81              | <59                   |
|                             | E. ESLUARIES SULVIVAL  | Not significant | 82 to 100             | 59 to 81              |                       | <59                   |
| Shot-Term<br>Survival Tests | L. plumulosus Survival | Significant     | 90 to 100             | 78 to 89              | 56 to 77              | <56                   |
|                             | L. plumulosus sulvival | Not significant | 78 to 100             | 56 to 77              |                       | <56                   |
|                             | R. abronius Survival   | Significant     | 90 to 100             | 83 to 89              | 70 to 82              | <70                   |
|                             | R. abronius Survival   | Not significant | 83 to 100             | 70 to 82              |                       | <70                   |
|                             | N. arenaceodentata     | Significant     | 90 to 100             | 68 to 90              | 46 to 67              | <46                   |
|                             | Growth                 | Not significant | 68 to 100             | 46 to 67              |                       | <46                   |
| Sublethal Tests             | M. galloprovincialis   | Significant     | 80 to 100             | 77 to 79              | 42 to 76              | <42                   |
|                             | Normal-Alive           | Not significant | 77 to 79              | 72 to 76              |                       | <42                   |

<sup>1</sup> Expressed as a percent.

<sup>2</sup> Expressed as a percent of control.

| Sediment Chemistry G                 | Sediment LOE                |                   |
|--------------------------------------|-----------------------------|-------------------|
| California Logistic Regression Model | <b>Chemical Score Index</b> | Category          |
| <0.33                                | >1.69                       | Minimal Exposure  |
| 0.33 - 0.49                          | 1.69 - 2.33                 | Low Exposure      |
| 0.50 - 0.66                          | 2.34 - 2.99                 | Moderate Exposure |
| >0.66                                | >2.99                       | High Exposure     |

## Sediment Chemistry Characterization Values

## Benthic Index Characterization Values

| Benthic Response<br>Index | Relative Benthic<br>Index | Index of Biotic<br>Integrity | River Invertebrate Prediction<br>and Classification System | Index                   |
|---------------------------|---------------------------|------------------------------|------------------------------------------------------------|-------------------------|
| <39.96                    | 0                         | >0.27                        | >0.90 to <1.10                                             | Reference               |
| 39.96 - 49.14             | 1                         | 0.17 - 0.27                  | 0.75 - 0.90 or 1.10 - 1.25                                 | Low Disturbance         |
| 49.15 - 73.26             | 2                         | 0.09 - 0.16                  | 0.33 - 0.74 or >1.25                                       | Moderate<br>Disturbance |
| >73.26                    | 3                         | <0.09                        | <0.33                                                      | High Disturbance        |

(Weston Solutions 2014)

# Appendix <del>D</del><u>F</u>

Spill Prevention and Response Plan\*

\* Any revisions to the management plans will be updated after receiving comments from relevant regulatory agencies.

# **SPILL PREVENTION AND RESPONSE PLAN** FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

PREPARED FOR:

## **VENTURA PORT DISTRICT**

1603 Anchors Way Ventura, California 93001 Contact: Brian Pendleton

PREPARED BY:

## DUDEK

621 Chapala Street Santa Barbara, California 93101 Contact: John H. Davis IV, Senior Coastal Ecologist jdavis@dudek.com 805.252.7996

## AUGUST 2019

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# TABLE OF CONTENTS

## SECTION

## PAGE

| 1 | INTRO                             | DUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                  |
|---|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 2 | SITE D<br>2.1<br>2.2              | ESCRIPTION<br>Project Description<br>Project Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .3                                                 |
| 3 | PROJE<br>3.1<br>3.2<br>3.3<br>3.4 | CT OPERATIONS<br>Potential Spill Sources<br>Spill Quantity Estimates<br>Effects on Wildlife and the Environment<br>Effects on Aquaculture                                                                                                                                                                                                                                                                                                                                                                            | .5<br>.5<br>.5                                     |
| 4 | LAWS 4.1<br>4.2                   | AND REGULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                  |
| 5 | <b>SPILL</b> 5.1 5.2              | PREVENTION MEASURES AND EQUIPMENT       1         Measures for Spill Prevention       1         5.1.1       Vessel Maintenance       1         5.1.2       Fueling up at the Pump       1         5.1.3       Vessel Underway and During Construction Activities       1         Spill Response Equipment       1                                                                                                                                                                                                    | 4<br> 4<br> 4                                      |
| 6 | EMERC<br>6.1<br>6.2<br>6.3<br>6.4 | GENCY RESPONSE PROCEDURES       1         Responsible Party       1         When to Notify       1         Information to Provide       1         Emergency Notification Contact List       1         6.4.1       Petroleum (oil) or Chemical Spill Emergency       1         6.4.2       Additional spill reporting       1         6.4.3       Oiled Wildlife       2         6.4.4       Sick or Injured Wildlife that is not Oiled       2         6.4.6       Penalties       2         Personal Safety       2 | 17<br>17<br>18<br>18<br>18<br>19<br>22<br>22<br>22 |
| 7 |                                   | _USION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |
| 8 |                                   | ENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 0 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                  |

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## APPENDICES

| А     | Federal Reportable Quantities  |   |
|-------|--------------------------------|---|
| В     | Important Contact Information  |   |
| С     | EPCRA Reporting Requirements   |   |
| FIGUI | RES                            |   |
| 1     | Project Location               | 7 |
| 2     | Ventura County Sensitive Areas | 9 |
|       |                                |   |

### TABLE

| 1 | Reporting Requirements for Different Types of Spills |
|---|------------------------------------------------------|
| - | eporting requirements for Binterent Types of opins   |

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 1 INTRODUCTION

The Spill Prevention and Response Plan (SPRP) defines the Ventura Shellfish Enterprise (VSE) permittee obligations with respect to preventing and reporting spills. This plan was developed in consultation with National Oceanic and Atmospheric Administration (NOAA) Fisheries, the VSE Project Management Team, and Project Stakeholders. The VSE project will establish a commercial offshore bivalve aquaculture operation based from the Ventura Harbor in Ventura, California, focused on the cultivation of Mediterranean mussels (*Mytilus galloprovincialis*). Each grower/producer shall comply with the SPRP for vessels and work barges that will be used during project construction and operations. Each grower/producer operating in the project area shall be trained in, and adhere to, the emergency procedures and spill prevention and response measures specified in the SPRP during all project operations.

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 2 SITE DESCRIPTION

## 2.1 Project Description

The project consists of twenty 100-acre plots (total of 2,000 acres) located in open federal waters of the Santa Barbara Channel (Channel) in the Southern California Bight (SCB), northwest of Ventura Harbor, with approximate depths at the project site ranging from 80 to 114 feet below sea level, with an average depth of 98 feet. The plot locations are shown in Figure 1, with latitude and longitude coordinates for the outer corners indicated. Each of the 20 plots are 2,299.5 feet by 1,899.5 feet, for an average plot size of 100.27 acres. Each plot will contain up to 24 lines (12 end-to-end pairs), with each line consisting of 575 feet of backbone length and 250 feet of horizontal scope on each end. There will be a 50 foot setback on each end of the pairs (for a total of 100 feet of spacing between lines of adjacent parcels) and 50 foot spacing between the two center pins. Parallel lines will be spaced 150 feet apart, with a 125 foot setback at each of the long sides (for a total of 250 feet of spacing between lines of adjacent parcels). The mussels will be grown and harvested by grower/producers who would sub-permit the plots from Ventura Port District (VPD), and the mussel product will be landed at Ventura Harbor.

## 2.2 Project Location

The project's twenty 100-acre plots are approximately 3.53 miles from the shore. The closest distance from the plots to the 3-mile nautical line is a minimum of 2,900 feet, with an average closest distance of over 3,000 feet. The closest distance from the growing area to the City of Ventura city limit is 4.5 miles. Ventura Harbor is 4.1 miles from the closest plot (8 miles from the most distant plot). The sub-permit sites are located on sandy bottom habitat outside of any rocky reef habitat, as evaluated in Gentry et al. 2017 and illustrated by NOAA United States West Coast nautical charts (NOAA 2017a).

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

#### INTENTIONALLY LEFT BLANK

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 3 PROJECT OPERATIONS

### 3.1 Potential Spill Sources

Spills are defined as discharges of hazardous substances that adversely impact or threaten to adversely impact, human health, welfare or the environment and require an immediate response. Many spills must be reported to Federal and State agencies and require cleanup. Substances commonly subject to these requirements when spilled include petroleum, solvents, and oils. Discharges into secondary containment structures are not considered discharges to the environment. Potential spill sources during construction and regular operation at the aquaculture farm may be fuel (diesel), oil, hydraulic fluid and any boat-based chemicals.

## 3.2 Spill Quantity Estimates

Vessels used in regular maintenance and harvesting operations have varied fuel capacities based on boat length/type (boat length 25-40 feet) corresponding to a fuel capacity of 100-500 gallons, and may have additional fuel (diesel) containers of approximately 5-10 gallons on board for skiffs and for emergencies. For example, a Radon commercial vessel that will likely be used for project activities have a fuel capacity of 300 to 500 gallons. Barges that will be used during construction will have considerably more fuel capacity, with additional oil and fuel canisters on board. For example, an Arapaho Derrick Barge at 350 foot by 100 foot has a fuel capacity of 360,000 gallons.

### 3.3 Effects on Wildlife and the Environment

Oil spills can cause catastrophic damage to the environment and our economy. Habitats affected by oil spills can take decades to recover. Impacts to the fishing industry can be severe, as short-term closures can limit access to fishing grounds and impacts from the spill make their way through the food web (SBCK 2019). Regions such as Ventura County whose economies rely on tourism and recreation are particularly vulnerable as beach closures and environmental damage reduce tourism rates.

Wildlife can face short-term and long-term impacts ranging from behavior modification, limited food availability, and hypothermia to organ damage, reduced reproduction, neurological deficits, and death (OR&R 2019a, Santa Barbara Channel Keepers [SBCK] 2019). In seabirds, the primary issue is hypothermia. When oil comes in contact with feathers, it breaks down the interlocking structure, that keeps cold water out and warm air in. As seabirds preen themselves, internal organs can also be affected. Ingesting oil can harm the gastrointestinal tract. If the volatile components of the oil are inhaled, they can lead to pneumonia, neurological damage, or absorption of chemicals that can lead to cancer (Office of Spill Prevention and Response [OSPR] 2015). If oil reaches eggs, it can cause death or developmental defects. Sea otters are similar in that they can also become hypothermic. In other marine mammals such as pinnipeds and cetaceans, oil exposure affects the internal organs and causes reproductive failure (OSPR 2015). Species most affected by oil spills are sea otters and seabirds (NOAA's Office of Response and Restoration [OR&R] 2019a).

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

The Ventura County coastline has several Environmentally Sensitive Sites, as described by the California Department of Fish and Wildlife (CDFW), each site has ranking index developed in order to identify the relative sensitivities of these sites to oil and therefore determine protection priority in the case of a spill (Figure 2). In relation to the Project Site, the Environmentally Sensitive Sites that are closest to the aquaculture farm include 4-740-A Ventura River, 4-740-C Ventura Harbor, and 4-743-A San Buena Ventura State Beach<sup>1</sup> (CDFW 2018).

## 3.4 Effects on Aquaculture

After a chemical spill (such as an oil spill) near aquaculture operations, there is a concern regarding contaminated seafood. Some seafood species are more likely than others to accumulate polycyclic aromatic hydrocarbons (PAHs), some of which may cause cancer or cause a disagreeable flavor in seafood (Office of Environmental Health Hazard Assessment [OEHHA] 2015). Unfortunately, due to their sessile nature, mussels cannot escape from spills and are more likely than other species to retain PAHs. Therefore, oil spills can significantly impact the project, as they could result in the shellfish grown on the project site becoming unmarketable and result in the project site losing its classification as an approved shellfish growing area. An oil spill can also trigger regulatory and enforcement action by the U.S. Food and Drug Administration (FDA), U.S. Environmental Protection Agency and/or the California Department of Public Health (CDPH).

<sup>&</sup>lt;sup>1</sup> Environmental Sensitivity Ranking: Category A- Extremely Sensitive; Category B- Very Sensitive and Category C- Sensitive.



DATE OF PREPARATION: 8/30/2018

DUDEK  6,250 12,500 Feet

**Project Location** Ventura Shellfish Enterprise Project

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

# **Figure 2: Environmentally Sensitive Sites**



Section 9813 - Ventura County

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 4 LAWS AND REGULATIONS

### 4.1 Federal

### **Oil Pollution Act**

The Oil Pollution Act (OPA) of 1990 streamlined and strengthened the US Environmental Protection Agency's (EPA) ability to prevent and respond to catastrophic oil spills. A trust fund financed by a tax on oil is available to clean up spills when the responsible party is incapable or unwilling to do so. The OPA requires oil storage facilities and vessels to submit plans detailing how they will respond to large discharges. The OPA also requires the development of Area Contingency Plans to prepare and plan for oil spill response on a regional scale.

### **Clean Water Act**

The Clean Water Act (CWA) establishes the basic structure for regulating discharges of pollutants into the waters of the United States and regulating quality standards for surface waters. Under the CWA, EPA has implemented pollution control programs such as setting wastewater standards for industry. EPA has also developed national water quality criteria recommendations for pollutants in surface waters. The CWA made it unlawful to discharge any pollutant from a point source into navigable waters, unless a permit was obtained.

### **Federal Endangered Species Act**

The federal Endangered Species Act (ESA) of 1973 (16 USC 1531 et seq.), as amended, is administered by the U.S. Fish and Wildlife Service (USFWS) and NOAA Fisheries. This legislation is intended to provide a means to conserve the ecosystems upon which endangered and threatened species depend and provide programs for the conservation of those species, thus preventing extinction of plants and wildlife. Under provisions of Section 9(a)(1)(B) of FESA, it is unlawful to "take" any listed species. "Take" is defined in Section 3(19) of FESA as, "harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct." Additionally, Section 7(a)(2) of the ESA directs federal agencies to consult with the USFWS or NOAA Fisheries for any actions that "may affect" listed species.

FESA provides for designation of Critical Habitat, defined in Section 3(5)(A) as specific areas within the geographical range occupied by a species where physical or biological features "essential to the conservation of the species" are found and "which may require special management considerations or protection." Critical Habitat may also include areas outside the current geographical area occupied by the species that are nonetheless "essential for the conservation of the species."

### National Environmental Policy Act

The national commitment to the environment was formalized through the passage of the National Environmental Policy Act (NEPA) of 1969. NEPA establishes a national environmental policy and provides a framework for

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

environmental planning and decision making by Federal agencies. NEPA directs Federal agencies, when planning projects or issuing permits, to conduct environmental reviews to consider the potential impacts on the environment by their proposed actions. NEPA established a supplemental mandate for Federal agencies to consider the potential environmental consequences of their proposals, document the analysis, and make this information available to the public for comment prior to implementation. The environmental protection policy established in NEPA, Section 101, is supported by a set of "action forcing" provisions in Section 102 that form the basic framework for Federal decision making and the NEPA process. While NEPA established the basic framework for integrating environmental considerations into Federal decision making, it did not provide the details of the process for which it would be accomplished. Federal implementation of NEPA is the charge of the Council on Environmental Quality (CEQ), which interpreted the law and addressed NEPA's action forcing provisions in the form of regulations and guidance.

### **Marine Mammal Protection Act**

All marine mammals are afforded protection under the Marine Mammal Protection Act (16 USC 1361 et. seq.). With limited exception, the Act makes it illegal to "take" a marine mammal without authorization granted by the NOAA Fisheries. "Take" is defined as harassing, hunting, capturing, or killing, or attempting to harass, hunt, capture, or kill any marine mammal. "Harassment" is defined as pursuit, torment, or annoyance, which has the potential to injure a marine mammal in the wild, or has the potential to disturb a marine mammal in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering. Take authorization must be granted by the NOAA Fisheries.

### 4.2 State

### Lempert-Keene-Seastrand Oil Spill Prevention and Response Act

California's Lempert-Keene-Seastrand Oil Spill Prevention and Response Act (1990) covers all aspects of marine oil spill prevention and response in California. It established the OSPR and gave the agency very broad powers to provide best achievable protection of California's natural resources by preventing, preparing for, and responding to oil spills and enhancing affected resources.

### California Coastal Act

The California Coastal Commission (CCC) was established by voter initiative in 1972 and was made permanent by the California Legislature through the adoption of the CCA of 1976 (Public Resources Code Section 30000 et seq.). The CCC, in partnership with coastal cities and counties, plans and regulates the use of land and water in the coastal zone. Under the CCA, cities and counties are responsible for preparing a Local Coastal Plan (LCP) in order to obtain authority to issue a Coastal Development Permit (CDP) for projects within their jurisdiction. LCPs consist of land use plans, zoning ordinances, zoning maps, and other implementing actions that conform to CCA policies. Until an agency has a fully certified LCP, the CCC is responsible for issuing CDPs. County of Ventura (County) has a fully certified LCP that was last updated in April 2017, but is currently completing a series of amendments to the LCP, which is the document

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

that defines the County's goals, policies, programs, and land use regulations for the coastal zone.. The jurisdiction of the Ventura County LCP includes Ventura Harbor and a portion of the transit associated with the project within the Coastal Zone, but the project site is outside the LCP jurisdiction in federal waters.

Under the CCA, Section 30107.5, environmentally sensitive habitat areas are areas within the coastal zone that are "designated based on the presence of rare habitats or areas that support populations of rare, sensitive, or especially valuable species or habitats." In addition, the CCC regulates impacts to coastal wetlands defined in Section 30121 of the CCA as, "lands within the coastal zone which may be covered periodically or permanently with shallow water and include saltwater marshes, freshwater marshes, open or closed brackish water marshes, swamps, mudflats, and fens." The CCA requires that most development avoid and buffer coastal wetland resources in accordance with Sections 301231 and 30233, including limiting the filling of wetlands to certain allowable uses.

### **California Endangered Species Act**

The CDFW administers California Endangered Species Act (CESA) (California Fish and Game Code, Section 2050 et seq.), which prohibits the "take" of plant and animal species designated by the Fish and Game Commission as endangered or threatened in the State of California. Under CESA Section 86, take is defined as "hunt, pursue, catch, capture, or kill, or attempt to hunt, pursue, catch, capture, or kill." CESA Section 2053 stipulates that state agencies may not approve projects that will "jeopardize the continued existence of any endangered species or threatened species or result in the destruction or adverse modification of habitat essential to the continued existence of those species, if there are reasonable and prudent alternatives available consistent with conserving the species or its habitat which would prevent jeopardy."

CESA Sections 2080 through 2085 address the taking of threatened, endangered, or candidate species by stating, "No person shall import into this state, export out of this state, or take, possess, purchase, or sell within this state, any species, or any part or product thereof, that the Commission determines to be an endangered species or a threatened species, or attempt any of those acts, except as otherwise provided in this chapter, the Native Plant Protection Act (Fish and Game Code, Sections 1900–1913), or the California Desert Native Plants Act (Food and Agricultural Code, Section 80001)."

### California Fish and Game Code

According to Sections 3511 and 4700 of the Fish and Game Code, which regulate birds and mammals, respectively, a "fully protected" species may not be taken or possessed without a permit from the Fish and Game Commission, and "incidental takes" of these species are not authorized.

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 5 SPILL PREVENTION MEASURES AND EQUIPMENT

## 5.1 Measures for Spill Prevention

# 5.1.1 VESSEL MAINTENANCE

- Maintain engine to manufacturer's specifications.
- Replace cracked or worn hydraulic lines and fittings before they fail. Lines can wear out from sun and heat exposure or abrasion.
- Routinely inspect engine for signs of a potential oil leak, and properly repair as needed.
- Use a bilge sock out of oil absorbent pads to prevent oily water discharge.
- Use an absorbent pad or a fuel collar to catch drips when using chemicals or fuel.
- Fuel, lubricants and chemicals must be labeled, stored and disposed of in a safe and responsible manner, and marked with warning signs.
- All hydraulic fluid to be used for installation, maintenance, planting, and harvesting activities shall be vegetable based.
- Spill prevention and response equipment shall be kept onboard project vessels at all times.

## 5.1.2 FUELING UP AT THE PUMP

- Avoid overflows while refueling by knowing the capacity of your tank and leaving some room for fuel expansion.
- Shut off your bilge pump while refueling.
- Use an absorbent pad or a fuel collar to catch drips.

# 5.1.3 VESSEL UNDERWAY AND DURING CONSTRUCTION ACTIVITIES

- Provide secondary containment for all oils stored in quantities greater than 5 gallons.
- Use an absorbent pad or a fuel collar to catch drips when using chemicals or fuel.
- At-sea vessel or equipment fueling/refueling activities is prohibited.
- Spill prevention and response equipment shall be kept onboard project vessels at all times.
- Precautions shall be taken to prevent spills, fires and explosions, and procedures and supplies shall be readily available to manage chemical and fuel spills or leaks.

# 5.2 Spill Response Equipment

General purpose spill kits, such as sorbent kits, will be used in regular operations vessels as a precaution. Sorbent kits consists of various types of sorbents such as booms, pillows and pads for use at any oil spill location on board a vessel. Chemical absorbing pads are also a part of the kit.

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

The spill kit for vessels for all commercial vessels involved in the placing of anchors should contain sorbents with a total absorbing capacity of 1/2 barrel of oil together with appropriate personal protective equipment and instructions on proper oil spill response procedures. A spill kit for vessels engaged in aquaculture shall include absorbent pads or other media that can be accommodated within a five gallon commercial spill kit, together with appropriate personal protective equipment and instructions on proper and instructions on proper oil spill response procedures.

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# INTENTIONALLY LEFT BLANK

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 6 EMERGENCY RESPONSE PROCEDURES

All significant releases or threatened releases of a hazardous material, including oil and radioactive materials, requires emergency notification to government agencies. Reportable spills of hazardous substances include those that:

- Impact or threaten to impact human health;
- Impact or threaten to impact the environment;
- Create a fire, explosion or safety hazard;
- Are not immediately cleaned up or evaporated; or
- Exceed state or federal reportable quantities.

# 6.1 Responsible Party

The person who possesses or controls the hazardous substance or who causes the discharge is known as the responsible party and is responsible for notification and cleanup.

Requirements for immediate notification of all significant spills or threatened releases cover: owners, operators, licensees, persons in charge, and employers. Notification is required regarding significant releases from: facilities, vehicles, vessels, pipelines and railroads.

**State law:** Handlers, any employees, authorized representatives, agent or designees of handlers shall, upon discovery, immediately report any release or threatened release of hazardous materials (Health and Safety Code §25510).

Federal law: Notification to the National Response Center is required for all releases that equal or exceed federal reporting quantities:

- (EPCRA) Owners and Operators to report, and
- (CERCLA) Person in Charge to report

# 6.2 When to Notify

California law requires that anyone who spills a substance that could endanger humans or wildlife in or near California waters must report (Cal OES 2014). Anyone who witnesses a spill is encouraged to report it as well. Report spills as quickly as possible, since rapid response helps to lessen the damage. All significant spills or threatened releases of hazardous materials, including oil and radioactive materials must be immediately reported. Notification must be made by telephone. Written Follow-Up Reports (Section 304) are required within 7 days if the release equals or exceeds the Federal Reportable Quantities (Cal OES 2014; Appendix A; EPA 2002).

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 6.3 Information to Provide

State notification requirements for a spill or threatened release to include:

- Identity of caller
- Exact location, date and time of spill, release or threatened release
- Substance (i.e. oil, gas, diesel, etc.), quantity involved, and isotope if necessary
- Chemical name (if known, it should be reported if the chemical is extremely hazardous)
- Description of what happened
- If oiled or threatened wildlife are present
- Information or thoughts on who spilled the material
- Any suspicious activity observed at the spill site

Federal notification requires additional information for spills (CERCLA chemicals (EPA 2015)) that exceed federal reporting requirements (Appendix A), which includes:

- Medium or media impacted by the release
- Time and duration of the release
- Proper precautions to take
- Known or anticipated health risks
- Name and phone number for more information

# 6.4 Emergency Notification Contact List

# 6.4.1 PETROLEUM (OIL) OR CHEMICAL SPILL EMERGENCY

- 1. Stop the spill and warn others in the area immediately.
- 2. Shut off any ignition sources, including cigarettes.
- 3. Contain the spill using absorbent materials if the spill is relatively small in nature and after the spilled chemical and its hazardous properties have been properly identified and assessed. Collect absorbent materials and treat as hazardous waste and dispose of materials accordingly as required under State and Federal law.
- 4. Cover or block any drains to contain the spill to the vessel.
- 5. First call: the U.S. Coast Guard followed by 911 (or local emergency response agency)

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

- 6. Then report the spill immediately to:
  - <u>State Law</u>: 1-800-852-7550 Cal OES State Warning Center Who reports: handlers, any employees, authorized representatives, agent or designees of handlers shall, upon discovery, immediately report any release or threatened release of hazardous materials.
  - <u>Federal Law</u>: 1-800-424-8802 National Response Center. Notification to the National Response Center is required for all releases that equal or exceed federal reporting quantities.
     Who reports: (EPCRA) Owners and Operators to report, and (CERCLA) Person in Charge to report.

Spills of oil or hazardous materials to water must be reported immediately to help reduce impacts to the environment. Failure to report a spill could result in penalties. There are no penalties for reporting a spill unnecessarily, but there can be significant penalties for not reporting one.

# 6.4.2 ADDITIONAL SPILL REPORTING

Spill geographic location and type of spill dictates the agencies that need to be contacted. For VSE, which includes coastal areas, harbors, and state and federal waters, the primary contact agency for reporting spills will be the U.S. Coast Guard and Cal OES. Table 1 indicates required contacts to notify in the event of a spill, with the primary contact highlighted in bold type. See Appendix B for a list of important phone numbers.

**State Agencies**: California Office of Emergency Services, California Department of Public Health, State Emergency Response Commission (SERC), Office of Spill Prevention and Response, California Department of Fish and Wildlife. The California State Emergency Response Commission (SERC) established six emergency planning districts having the same boundaries as the Mutual Aid Regions. The SERC appointed a Local Emergency Planning Committee (LEPC) for each planning district, known as regions, and supervises and coordinates their activities. LEPC Region I is comprised of Los Angeles, Orange, San Luis Obispo, Santa Barbara, and Ventura.

**Federal Agencies**: U.S. Environmental Protection Agency, U.S. Department of Fish and Wildlife, U.S. Food and Drug Administration, U.S. Coast Guard, and NOAA. Under the National Contingency Plan and the National Response Plan, NOAA is responsible for providing scientific support to the Federal On-Scene Coordinator, often the U.S. Coast Guard, for oil and hazardous material spills. While the U.S. Coast Guard oversees all responses to oil spills and chemical accidents in U.S. navigable waters, NOAA's Office of Response and Restoration (OR&R) provides them with the science-based expertise and support they need to make informed decisions during these emergency responses (OR&R 2019b).

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### Table 1: Reporting Requirements for Different Types of Spills

| Type of spill                                                                                                                                                                                           | Reporting requirements                                                                                                                                                                              | Required contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First call: 911 (or local emergency response agency<br>Then call: Cal OES State Warning Center (for spills<br>(800) 852-7550 or (916) 845-8911<br>Then refer to the table below for other agencies to c | in State waters and onshore)                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Petroleum (oil) discharges and hazardous<br>substance spills in waterways                                                                                                                               | <ul> <li>Report it immediately.</li> <li>Report spills that occur anywhere in<br/>California by calling these State and federal<br/>phone numbers that are available 24 hours<br/>a day:</li> </ul> | <ul> <li>The National Response Center: 1-800-424-8802 (if the spill equals or exceeds CERCLA Federal Reportable Quantities, Appendix A)</li> <li>United States Coast Guard, Sector: Los Angeles/Long Beach: (310) 521-3805</li> <li>OSPR West Coast Spill Hotline: 1-800-OILS-911</li> <li>California Department of Fish and Wildlife's CalTIP line: 1-888-DFG-CALTip (1-888-334-2258)</li> <li>US Food and Drug Administration: 866-300-4374</li> <li>California Department of Public Health Preharvest Shellfish Program: 510-412-4635</li> </ul>                                          |
| Release of hazardous or extremely hazardous<br>substance                                                                                                                                                | <ul> <li>Report it immediately.</li> <li>See full EPCRA reporting requirements (Appendix C).</li> </ul>                                                                                             | <ul> <li>United States Coast Guard, Sector: Los Angeles/Long<br/>Beach: (310) 521-3805</li> <li>The National Response Center: 1-800-424-8802 (if the spill<br/>equals or exceeds CERCLA Federal Reportable<br/>Quantities, Appendix A)</li> <li>The State Emergency Response Commission (SERC) at 1-<br/>800-258-5990</li> <li>Your Local Emergency Planning Committee (LEPC)- Cal<br/>OES, Southern Region: 1-562-795-2937</li> <li>US Food and Drug Administration: 866-300-4374</li> <li>California Department of Public Health Preharvest Shellfish<br/>Program: 510-412-4635</li> </ul> |

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### Table 1: Reporting Requirements for Different Types of Spills

| Type of spill   | Reporting requirements | Required contacts                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hazardous waste | Report it immediately. | <ul> <li>United States Coast Guard, Sector: Los Angeles/Long<br/>Beach: (310) 521-3805</li> <li>The National Response Center: 1-800-424-8802 (if the spill<br/>equals or exceeds CERCLA Federal Reportable<br/>Quantities, Appendix A)</li> <li>OSPR West Coast Spill Hotline: 1-800-OILS-911</li> <li>US Food and Drug Administration: 866-300-4374</li> <li>California Department of Public Health Preharvest Shellfish<br/>Program: 510-412-4635</li> </ul> |
| Sewage releases | Report it immediately. | <ul> <li>United States Coast Guard, Sector: Los Angeles/Long<br/>Beach: (310) 521-3805</li> <li>California Governor's Office of Emergency Services,<br/>California State Warning Center: (800) 852-7550 or (916)<br/>845-8911 (state waters, spills of 1000 gallons or more)</li> <li>US Food and Drug Administration: 866-300-4374</li> <li>California Department of Public Health Preharvest Shellfish<br/>Program: 510-412-4635</li> </ul>                  |

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 6.4.3 OILED WILDLIFE

To report oiled or sick wildlife during a spill, please contact the Oiled Wildlife Care Network (OWCN) at (877) UCD-OWCN.

# 6.4.4 SICK OR INJURED WILDLIFE THAT IS NOT OILED

To report inured or sick wildlife that is not oiled please contact the Channel Islands Marine and Wildlife Institute (CIMWI) at (805) 567-1505 for any marine mammals (seals, sea lions, dolphins, otters, etc.) or the Santa Barbara Wildlife Care Network (SBWCN) at (805) 681-1080 for all other animals. For stranded whales, dolphins or porpoise call Channel Islands Cetacean Research Unit (CICRU) at (805) 896-0858.6.4.5 Written Reports

Different laws have different time requirements and criteria for submitting written reports (Cal OES 2014). After a spill or release of hazardous materials, including oil and radioactive materials, immediate verbal emergency notification should be followed up as soon as possible with a Written Follow-Up Report, if required, to the following agencies:

- California Governor's Office of Emergency Services Section 304 Follow Up Report.
- 2. The responsible regulating agency such as:
  - o California Department of Health Services, Radiological Health Branch, Radiological Incident Reporting.
  - o Department of Toxic Substances Control, Facility Incident or Tank System Release Report.
  - o Cal/OSHA, serious injury or harmful exposure to workers.
- 3. U.S. DOT and DOE, transportation-related incidents.

# 6.4.6 PENALTIES

Federal and state laws provide for administrative penalties of up to \$25,000 per day for each violation of emergency notification requirements. Criminal penalties may also apply (Cal OES 2014).

# 6.5 Personal Safety

Exposure to oil, associated fumes, and other chemicals can be extremely dangerous to your health, with effects ranging from eye and skin irritation to breathing problems to serious life-threating health conditions. Specialized training and equipment are necessary to safely and appropriately respond to spills. It is imperative that people remain out of the affected area and allow official trained response agency personnel to access the area and respond. Handling wildlife can be dangerous to both you and the animal. Therefore, oiled wildlife requires special care to maximize survival and recovery potential (SBCK 2019). When cleaning up a small spill, use appropriate protective equipment, including protective gloves and goggles.

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 7 CONCLUSION

The Spill Prevention and Response Plan for the Ventura Shellfish Enterprise provides guidelines and contact numbers in the event of a spill and will, as followed by owners/operators, allow for quick and decisive action to protect the marine environment and our natural resources.

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## INTENTIONALLY LEFT BLANK

### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 8 REFERENCES

- California Department of Fish & Wildlife (CDFW). 2018. LA-LB Spill Contingency Plan. Accessed March 8, 2019 from the CDFW website: https://www.wildlife.ca.gov/OSPR/Preparedness/LA-LB-Spill-Contingency-Plan.
- California Governor's Office of Emergency Services (Cal OES). 2014. California Hazardous Materials Spill / Release Notification Guidance. Accessed March 11, 2019 from the Cal OES website: https://www. caloes.ca.gov/FireRescueSite/Documents/CalOES-Spill\_Booklet\_Feb2014\_FINAL\_BW\_Acc.pdf
- EPA. 2015. List of Lists. Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act. Office of Solid Waste and Emergency Response. United States Environmental Protection Agency. EPA 550-B-15-001.
- EPA. 2002. Environmental Protection Agency. 40 CFR Part 302. [SW H-FRL-7241-8]. RIN 2050-AE88. Federal Register. Rules and Regulations. Vol. 67, No 131.
- NOAA. 2017a. United States West Coast, California. Port Hueneme to Santa Barbara. Mercator Projection. Nautical Chart. Washington, DC. U.S. Department of Commerce, NOAA, National Ocean Science, Coast Survey.
   30th Ed. June 2013. Last correction 7/3/2017.
- Office of Environmental Health Hazard Assessment (OEHHA). 2015. Oil Spills and Seafood. Accessed February 27, 2019 from the OEHHA website: https://oehha.ca.gov/public-information/fact-sheets
- Office of Environmental Health Hazard Assessment and California Environmental Protection Agency (OEHHA and CEPA). 2015. Protocol For Seafood Risk Assessment To Support Fisheries Re-opening Decisions For Aquatic Oil Spills in California. November 2013 (Updated March 2015).
- Office of Response and Restoration (OR&R). 2019a. How Oil Harms Animals and Plants in Marine Environments. National Oceanic and Administrative Administration. U.S. Department of Commerce. Accessed February 25, 2019 from the OR&R website: https://response.restoration. noaa.gov/oil-and-chemical-spills/oil-spills/how-oil-harms-animals-and-plants-marine-environments.html
- Office of Response and Restoration (OR&R). 2019b. Oil and Chemical Spills. National Oceanic and Administrative Administration. U.S. Department of Commerce. Accessed February 25, 2019 from the OR&R website: https://response.restoration.noaa.gov/oil-and-chemical-spills
- Office of Spill Prevention and Response (OSPR). 2015. Effects of Oil on Wildlife. Office of Spill Prevention and Response. Accessed March 4, 2019 from the OSPR website: https://calspillwatch.dfg.ca.gov/Fact-Sheets
- Santa Barbara Channelkeeper (SBCK). 2019. Oil Spill Resource Guide. Accessed February 26, 2019 from the SBCK website: https://www.sbck.org/current-issues/oil-and-gas/oil-spill-resource-guide/

#### SPILL PREVENTION AND RESPONSE PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

# APPENDIX A

# Federal Reportable Quantities

#### ENVIRONMENTAL PROTECTION AGENCY

#### 40 CFR Part 302

[SW H-FRL-7241-8]

#### RIN 2050-AE88

#### Correction of Typographical Errors and Removal of Obsolete Language in Regulations on Reportable Quantities

**AGENCY:** Environmental Protection Agency (EPA). **ACTION:** Direct final rule.

**SUMMARY:** The Environmental Protection Agency (EPA or "the Agency") is correcting errors and removing obsolete or redundant language in regulations regarding notification requirements for releases of hazardous substances under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

Consistent with ongoing regulatory reinvention initiatives within the Agency, EPA has reviewed the CERCLA release reporting regulations and has identified several categories of errors, including: typographical errors in the table of CERCLA hazardous substances; definitions made legally obsolete because of changes in CERCLA's statutory provisions; and redundant or unnecessary information.

**DATES:** This rule is effective on September 9, 2002, unless EPA receives written adverse comments by August 8, 2002. If the effective date is delayed, timely notice will be published in the **Federal Register**.

ADDRESSES: Comments: Interested parties may submit an original and two copies of comments referencing docket number 102RQ–CORRECT to (1) if using regular U.S. Postal Service mail: Docket Coordinator, Superfund Docket Office, (Mail Code 5201G), U.S. Environmental Protection Agency Headquarters, Ariel Rios Building, 1200 Pennsylvania Avenue, NW., Washington, DC 20460; or (2) if using special delivery such as overnight express service: Superfund Docket Office, Crystal Gateway One, 1st Floor, 1235 Jefferson Davis Highway, Arlington, VA 22202.

*Release Notification:* The toll-free telephone number of the National Response Center is 800/424–8802; in the Washington, DC metropolitan area, the number is 202/267–2675. The facsimile number for the National Response Center is 202/267–2165 and the telex number is 892427.

Docket: You may inspect copies of materials relevant to this rulemaking at the U.S. EPA Superfund Docket Office, located at Crystal Gateway One, 1st Floor, 1235 Jefferson Davis Highway, Arlington, VA 22202 [Docket Number 102RQ-CORRECT]. The docket is open from 9:00 a.m. to 4:00 p.m., Monday through Friday, excluding Federal holidays. To review docket materials, we recommend that you make an appointment by calling 703/603-9232. You may copy a maximum of 100 pages from any regulatory docket at no cost. Additional copies cost \$0.15 per page. The Docket Office will mail copies of materials to you if you are located outside the Washington, DC metropolitan area.

FOR FURTHER INFORMATION CONTACT: For general information, contact the RCRA, Superfund, and EPCRA Hotline at 800/ 424–9346 (in the Washington, DC metropolitan area, contact 703/412-9810). The Telecommunications Device for the Deaf (TDD) Hotline number is 800/553–7672 (in the Washington, DC metropolitan area, contact 703/412-3323). For information on specific aspects of the rule, contact Lynn Beasley of the Office of Emergency and Remedial Response (5204G), U.S. Environmental Protection Agency, Ariel Rios Building, 1200 Pennsylvania Avenue, NW., Washington, DC 20460. Ms. Beasley's e-mail address is beasley.lynn@epa.gov and her telephone number is 703/603–9086.

#### POTENTIALLY AFFECTED ENTITIES

**SUPPLEMENTARY INFORMATION:** *Outline of This Document:* The contents of this preamble are listed in the following outline:

#### I. Introduction

- A. Who Potentially Will Be Affected by this Final Rule?
- B. What are the Reporting Requirements Under CERCLA and EPCRA?
- C. What is the Purpose of this Rule?
- D. Why is EPA Making These Changes in a Final Rule, Without Prior Opportunity for Comment?
- II. Corrections and Other Changes Made to 40 CFR Part 302 in Today's Rulemaking
- A. Revisions to 40 CFR 302.2 (Abbreviations)
- B. Revisions to 40 CFR 302.3 (Definitions)
- C. Revisions to 40 CFR 302.5
- (Determination of Reportable Quantities) D. Revisions to 40 CFR 302.6 (Notification Requirements)
- E. Revisions to 40 CFR 302.7 (Penalties)
- F. Revisions to 40 CFR 302.8 (Continuous Releases)
- G. Revisions to 40 CFR 302.4 (Designation of Hazardous Substances)
- 1. Formatting Changes to Table 302.4 a. Regulatory Synonyms Column
- b. Statutory RQ Column c. Final RQ Category Column
- 2. Revisions to the Note Preceding Table 302.4
- 3. Corrections to Errors in Table 302.4
- a. What Corrections Are Being Made to Entries for Individual Substances?
- b. What Corrections Are Being Made to Entries for F- and K-Waste Streams?c. What Corrections Are Being Made to
- Footnotes in Table 302.4?
- d. Why Are Other Errors in Table 302.4 Not Addressed in Today's Rule?
- H. Revisions to Appendix A of 40 CFR 302.4
- III. Administrative Requirements

#### I. Introduction

A. Who Potentially Will Be Affected by This Final Rule?

This final rule may affect the following entities: (1) Persons in charge of vessels or facilities that may release CERCLA hazardous substances into the environment; and (2) entities that plan for or respond to such releases.

| Type of entity                      | Examples of affected entities                                                                                 |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Industry                            | Manufacturers, handlers, transporters, and other users of CERCLA hazardous substances.                        |
| State, Local, or Tribal Governments | State Emergency Response Commissions, and Local Emergency Plan-<br>ning Committees.                           |
| Federal Government                  | National Response Center, and any Federal agency that may release or respond to releases of these substances. |

EPA does not intend for this table to be exhaustive, but rather to provide a guide for readers regarding entities likely to be affected by this action. Other entities not listed in the table may also be affected. You can determine whether your organization is affected by examining the changes being made to 40 CFR part 302. If you have questions about the applicability of this action to a particular entity, consult the contact names and phone numbers listed in the

#### preceding FOR FURTHER INFORMATION CONTACT section of this preamble.

# B. What Are the Reporting Requirements Under CERCLA and EPCRA?

The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), 42 U.S.C. 9601 *et seq.*, as amended, gives the Federal government broad authority to respond to releases or threats of releases of hazardous substances from vessels and facilities. The term "hazardous substance" is defined in section 101(14) of CERCLA by reference to various Federal environmental statutes.

Under CERCLA section 103(a), the person in charge of a vessel or facility from which a CERCLA hazardous substance has been released in a quantity that equals or exceeds its reportable quantity (RQ) must immediately notify the National Response Center (NRC) of the release. A release is reportable if an RQ or more is released within a 24-hour period (see 40 CFR 302.6). In addition to the reporting requirements under CERCLA section 103, section 304 of the Emergency Planning and Community Right-to-Know Act of 1986, 42 U.S.C. 11001 et seq., requires owners or operators of certain facilities to report releases of extremely hazardous substances and CERCLA hazardous substances to State and local authorities (see 40 CFR 355.40). After the release of a hazardous substance in a quantity equal to or greater than its RQ, facility owners or operators must immediately notify the community emergency coordinator for each local emergency planning committee for any area likely to be affected by the release, and the State emergency response commission of any State likely to be affected by the release.

Section 102(b) of CERCLA establishes RQs of one pound ("statutory RQs") for releases of most CERCLA hazardous substances. Under section 102(a) of CERCLA, the Administrator of EPA has the authority to adjust these RQs by regulation ("adjusted RQs"). The list of CERCLA hazardous substances and RQs is codified in Table 302.4 of 40 CFR 302.4.

#### C. What Is the Purpose of This Rule?

EPA and other Federal agencies periodically review the regulations they administer to identify those rules that are obsolete or unduly burdensome. For example, on June 29, 1995, EPA published a final rule (60 FR 33912) eliminating a number of legally obsolete regulations. Now we are taking another step in the ongoing review of our rules. EPA has reviewed 40 CFR part 302 and is correcting typographical errors in the table of hazardous substances. We also are revising regulatory text to make it more concise, conform more closely to statutory language, and eliminate text that is redundant or legally obsolete. All of these changes are editorial and do not affect any substantive aspects of the CERCLA release reporting program.

Because these corrections are editorial, EPA does not anticipate that any costs will be associated with this rulemaking. Rather, we expect that these corrections will serve to reduce confusion among the regulated community and government authorities about release reporting regulations contained in 40 CFR part 302 and, therefore, reduce the burden of complying with these regulations.

#### D. Why Is EPA Making These Changes in a Final Rule, Without Prior Opportunity for Comment?

EPA is publishing this rule without prior proposal because we view these changes as noncontroversial amendments and anticipate no adverse comment. Section 553 of the Administrative Procedure Act, 5 U.S.C. 553(b)(3)(B), provides that, when an agency for good cause finds that notice and public procedure is impracticable, unnecessary, or contrary to the public interest, the agency may issue a rule without providing notice and an opportunity for public comment. EPA has determined that there is good cause for making today's rule final without prior proposal and opportunity for comment because the removals and revisions contained in this final rule are editorial and do not affect any substantive aspects of the CERCLA release reporting program. Thus, notice and public comment procedure are unnecessary. EPA finds that this constitutes good cause under 5 U.S.C. 553(b)(3)(B). For the same reason, EPA has also determined that it has good cause under 5 U.S.C. 553(d) to make the rule effective upon publication.

#### II. Corrections and Other Changes Made to 40 CFR Part 302 in Today's Rulemaking

The following section describes the specific corrections that EPA is making to 40 CFR part 302 in today's rulemaking.

#### A. Revisions to 40 CFR 302.2 (Abbreviations)

EPA believes that listing abbreviations in 40 CFR 302.2 is unnecessary, because these terms: (1) Are defined elsewhere in 40 CFR part 302 (as is the case with "CASRN" and "kg"); (2) are not used in this CFR part (as in the case of "lb" for pound); or (3) would more appropriately be defined when the term is first used (such as "RQ" and "RCRA"). For these reasons, EPA is removing and reserving 40 CFR 302.2.

# *B. Revisions to 40 CFR 302.3* (*Definitions*)

The definition of "release" in 40 CFR 302.3 was, at the time we codified it in the CFR in 1985, the same as the statutory definition of this term in CERCLA section 101(22). The Superfund Amendments and Reauthorization Act of 1986 (SARA), however, changed the statutory definition; for this reason, we are revising the definition of "release" in 40 CFR 302.3 to reflect these amendments, which included language regarding abandonment or discarding of containers. EPA proposed this change in a July 19, 1988, proposed rule (53 FR 27268) and did not receive any adverse comments on this issue.

In addition, the definition of "reportable quantity" in 40 CFR 302.3 is being changed to add the abbreviation "(RQ)" so that the term is defined when first used in 40 CFR part 302.

#### C. Revisions to 40 CFR 302.5 (Determination of Reportable Quantities)

Section 302.5(b) refers to toxicity identified in the Resource Conservation and Recovery Act (RCRA) regulations at 40 CFR 261.24. In 1990, EPA revised 40 CFR 261.24 as well as Table 302.4 to delete references to the terms "extraction procedure" and "EP" toxicity. To be consistent with these changes, EPA is revising paragraph (b) of 40 CFR 302.5 to delete references to "EP" toxicity.

#### D. Revisions to 40 CFR 302.6 (Notification Requirements)

An additional Washington phone number ((202) 267–2675), a facsimile number ((202) 267–2165), and a telex number (892427) are being added to the list of National Response Center (NRC) phone numbers in paragraph (a) of 40 CFR 302.6.

#### E. Revisions to 40 CFR 302.7 (Penalties)

The penalty description in 40 CFR 302.7(a)(3) was, at the time we codified it in the CFR in 1985, consistent with the penalty provisions in CERCLA section 103(b). In 1986, however, SARA changed CERCLA section 103(b) to include language regarding submission of false information. EPA proposed this change in the July 19, 1988 proposed rule and did not receive any adverse comments on this issue. Thus, EPA is revising paragraph (a)(3) of 40 CFR 45316

302.7 to conform to the revised language of CERCLA section 103(b).

#### F. Revisions to 40 CFR 302.8 (Continuous Releases)

The reference to paragraph (a) in 40 CFR 302.8(e)(1)(iv)(H) and 40 CFR 302.8(f)(4)(viii) is incorrect, and is being changed to reference paragraph (b).

#### G. Revisions to 40 CFR 302.4 (Designation of Hazardous Substances)

Because corrections and other changes to Table 302.4 that are described below are numerous and pervasive, we are reprinting Table 302.4 in its entirety in today's rule. We hope that this reprint of Table 302.4 will prove to be a useful resource for the public and the regulated community until such time as the revised volume of 40 CFR part 302 that contains these changes is published. Amendatory instruction 5 in today's direct final rule accounts for the removal of the previous version of Table 302.4, and its replacement with the version published in today's final rule.

1. Formatting Changes to Table 302.4

Three columns in Table 302.4 of 40 CFR 302.4 contain information that is duplicated elsewhere in the table or is no longer relevant to the listing of hazardous substances and reportable quantities. For this reason, EPA is deleting these columns from Table 302.4 in today's rulemaking.

We believe that deleting these columns will serve to: (1) Simplify the table and reduce confusion among the regulated community and government authorities about its use; (2) reduce the number of typographical and other errors that are introduced into the table; and (3) allow the table to be printed in a "portrait" rather than "landscape" format, resulting in a reduction in the number of CFR pages. A description of each of the columns identified for deletion is included below.

#### a. Regulatory Synonyms Column

EPA lists substances in Table 302.4 by the names used in certain other environmental statutes (e.g., RCRA, the CWA, or the Clean Air Act (CAA)) or in their implementing regulations. When the substance is known by different names in different regulatory programs, EPA lists these names as separate entries in Table 302.4's Hazardous Substance column. In addition, Appendix A to Table 302.4 lists these synonyms together, by Chemical Abstracts Service Registry Number (CASRN). Because the synonyms are all listed alphabetically in the Hazardous Substance column, and because Appendix A provides a per-substance grouping of all these synonyms, the Regulatory Synonyms column includes only unnecessary duplicative information. Therefore, EPA is deleting this column from Table 302.4 in today's final rule.

#### b. Statutory RQ Column

When Table 302.4 was first published in the **Federal Register** in 1985, the Statutory RQ column served a useful purpose because (1) CWA hazardous substances generally had different statutory RQs than other CERCLA hazardous substances; and (2) the Agency had not yet adjusted many of the statutory RQs for these substances.

Today, however, all of the statutory RQs for the CWA hazardous substances have been adjusted and, for any new substance added to Table 302.4, the statutory RQ is always one pound. When new substances are added to the list, footnote "##" is added to the Final RQ Pounds column indicating that the substance has a one-pound statutory RQ; thus, the Statutory RQ column provides only redundant or obsolete information. In addition, this column can be a source of errors; for example, at least seven substances have had incorrect information in the Statutory RQ column. EPA is deleting the Statutory RQ column from Table 302.4 in today's final rule.

#### c. Final RQ Category Column

The "Final RQ Category" column was used in Table 302.4 in the first CERCLA reporting program final rule on April 4, 1985, because members of the regulated community were familiar with a similar association between letter categories and numerical RQs (X = 1 pound, A =10 pounds, B = 100 pounds, etc.) in the Clean Water Act (CWA) hazardous substance regulations (40 CFR part 117). The CWA categories, however, correspond to ranges of aquatic toxicity, while the CERCLA categories are simply another way of expressing the RQ value. EPA originally proposed the CWA categories (A, B, C, and D) in 1975, based on the hazardous material classification system for a 1973 international convention. A 1978 final rule for CWA RQs added another category (X).

The Category column provides little or no useful information on the CERCLA list of hazardous substances in Table 302.4, because the next column gives the RQ in pounds. Today, the category is a source of errors and confusion. For example, prior to today's rulemaking, the category for six substances was incorrectly listed as X, even though the RQs are 10, 100, or 1000 pounds. EPA is deleting the Category column from Table 302.4 in today's final rule.

2. Revisions to the Note Preceding Table 302.4

Because EPA is removing the Regulatory Synonyms, Statutory Code, and Final RQ Category columns from Table 302.4 in today's rulemaking, we are revising the note that precedes Table 302.4 to remove references to these columns. The revised note will also identify Appendix A to Section 302.4 as a source for identifying regulatory synonyms of substances that appear on the CERCLA list of hazardous substances.

3. Corrections to Errors in Table 302.4

EPA has identified other errors in Table 302.4. The majority of these errors are either typographical or the result of inadvertent omissions; the scope of what is regulated and how it is regulated will not change. Therefore, these corrections qualify for the "good cause" exemption as "minor or technical amendments."

a. What Corrections Are Being Made to Entries for Individual Substances?

The most commonly found errors in Table 302.4 are inadvertent discrepancies between an individual hazardous substance name that appears on the CERCLA list and the same name as it appears in other statutes (i.e., RCRA section 3001, CWA sections 307 and 311, and CAA section 112) and their implementing regulations. In today's rule, EPA is making corrections to the hazardous substance names of a number of CERCLA entries to make them consistent with names that appear in these other regulatory lists. Many of these corrections are simple and involve, for example, the deletion of an unnecessary hyphen or the addition of parentheses. In addition, to help make each entry more readable, we are changing all of the CASRNs listed in Table 302.4 to include hyphens in the appropriate places (e.g., changing ''50000'' to ''50–00–0'' for formaldehyde). Other types of corrections to Table 302.4 included in today's rule that require more explanation are described below.

#### TABLE 1.—CORRECTIONS TO ENTRIES FOR INDIVIDUAL SUBSTANCES IN TABLE 302.4

| Pentachlorophenol<br>Phenol, pentachloro-<br>Phenol, 2,3,4,6-tetrachloro-<br>Phenol, 2,4,5-trichloro-<br>Phenol, 2,4,6-trichloro-<br>Silvex (2,4,5-TP)<br>2,4,5-T<br>2,4,5-T acid<br>2,3,4,6-Tetrachlorophenol 2,4,5-TP acid<br>2,3,4,6-Tetrachlorophenol<br>2,4,6-Trichlorophenol<br>Propionic acid, 2-(2,4,5-trichlorophenoxy) | Change needed to correct error<br>RCRA "U" waste numbers are no longer associated with these substances in the<br>RCRA regulations at 40 CFR part 261; rather, each of the RCRA waste num-<br>bers for these substances has been replaced with the following note: "See<br>F027." Conforming changes are being made to these entries in Table 302.4.<br>Each of these substances is listed twice in Table 302.4. We are removing the du-<br>plicative entries from Table 302.4 in today's rule.<br>In addition, because these substances appear in CAA section 112, a "3" is being<br>added to the statutory code column for these entries in Table 302.4.<br>Also, "U" waste numbers are no longer associated with these substances and<br>have been replaced with: "See F027."<br>To be consistent with RCRA regulations, the spelling of this substance name is<br>being changed in Table 302.4 to "Propanoic acid, 2-(2,4,5-trichlorophenoxy)." |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phenol, 2,3,4,6-tetrachloro-<br>Phenol, 2,4,5-trichloro-<br>Phenol, 2,4,6-trichloro-<br>Silvex (2,4,5-TP)<br>2,4,5-T<br>2,4,5-T acid<br>2,3,4,6-Tetrachlorophenol 2,4,5-TP acid<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>Propionic acid, 2-(2,4,5-trichlorophenoxy)                                                  | <ul> <li>F027." Conforming changes are being made to these entries in Table 302.4.</li> <li>Each of these substances is listed twice in Table 302.4. We are removing the duplicative entries from Table 302.4 in today's rule.</li> <li>In addition, because these substances appear in CAA section 112, a "3" is being added to the statutory code column for these entries in Table 302.4.</li> <li>Also, "U" waste numbers are no longer associated with these substances and have been replaced with: "See F027."</li> <li>To be consistent with RCRA regulations, the spelling of this substance name is being changed in Table 302.4 to "Propanoic acid, 2-(2,4,5-trichlorophenoxy)."</li> </ul>                                                                                                                                                                                                                                              |
| 2,3,4,6-Tetrachlorophenol 2,4,5-TP acid<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>Propionic acid, 2-(2,4,5-trichlorophenoxy)<br>Arsenic acid H3AsO4                                                                                                                                                                   | <ul> <li>plicative entries from Table 302.4 in today's rule.</li> <li>In addition, because these substances appear in CAA section 112, a "3" is being added to the statutory code column for these entries in Table 302.4.</li> <li>Also, "U" waste numbers are no longer associated with these substances and have been replaced with: "See F027."</li> <li>To be consistent with RCRA regulations, the spelling of this substance name is being changed in Table 302.4 to "Propanoic acid, 2-(2,4,5-trichlorophenoxy)."</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4,6-Trichlorophenol<br>Propionic acid, 2-(2,4,5-trichlorophenoxy)<br>Arsenic acid H3AsO4                                                                                                                                                                                                                                       | <ul> <li>plicative entries from Table 302.4 in today's rule.</li> <li>In addition, because these substances appear in CAA section 112, a "3" is being added to the statutory code column for these entries in Table 302.4.</li> <li>Also, "U" waste numbers are no longer associated with these substances and have been replaced with: "See F027."</li> <li>To be consistent with RCRA regulations, the spelling of this substance name is being changed in Table 302.4 to "Propanoic acid, 2-(2,4,5-trichlorophenoxy)."</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arsenic acid H3AsO4                                                                                                                                                                                                                                                                                                              | To be consistent with RCRA regulations, the spelling of this substance name is being changed in Table 302.4 to "Propanoic acid, 2-(2,4,5-trichlorophenoxy)."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                  | In addition, RCRA waste number "U233" is no longer associated with this sub-<br>stance and has been replaced with: "See F027."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                  | "Arsenic acid" with CASRN 1327–52–2 is not listed in RCRA, the CAA, the CWA, or their implementing regulations. Thus, the entry for "Arsenic acid" is being deleted from Table 302.4. In addition, CASRN 1327–52–2 is being deleted from the "Arsenic acid H3AsO4" listing. Arsenic acid H3AsO4 with CASRN 7778–39–4 remains listed in Table 302.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cyanogen bromide                                                                                                                                                                                                                                                                                                                 | "Cyanogen bromide" is not listed in RCRA, the CAA, the CWA, or their imple-<br>menting regulations, although its synonym "Cyanogen bromide(CN)Br" is listed<br>in the RCRA regulations. Thus, the entry for "Cyanogen bromide" is being de-<br>leted from Table 302.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Aroclors<br>PCBs<br>POLYCHLORINATED BIPHENYLS                                                                                                                                                                                                                                                                                    | Aroclors 1016, 1221, 1232, 1242, 1248, 1254, and 1260 are listed as separate<br>entries in Table 302.4. These seven aroclors also appear indented beneath the<br>entries for "Aroclors," "PCBs," and "POLYCHLORINATED BIPHENYLS." The<br>duplicative indented entries for the seven aroclors are being deleted. In addi-<br>tion, conforming changes are being made to the Appendix A entries for these<br>seven aroclors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                  | This substance is listed in the CAA, but a "3" was never added to the statutory code column. A "3" is being added to the column in today's rule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Calcium cyanide<br>Copper cyanide<br>Cyanogen chloride<br>Hydrogen sulfide<br>Nickel carbonyl<br>Nickel cyanide                                                                                                                                                                                                                  | Each of these substances is listed twice (once with a chemical formula and once without the formula) in the RCRA or CWA regulations and in Table 302.4. In the interest of avoiding duplicative entries in Table 302.4, the non-formula entries for these substances are being removed in today's rule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Potassium cyanide<br>Selenium sulfide<br>Silver cyanide<br>Sodium cyanide<br>Thallium (I) chloride                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Zinc cyanide<br>Zinc phosphide                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Methyl chloroformate<br>Muscimol<br>Tetrachloroethene<br>Benzene, hydroxy-                                                                                                                                                                                                                                                       | These synonyms are not listed in RCRA, the CAA, the CWA, or their imple-<br>menting regulations and are being removed from Table 302.4 and Appendix A<br>in today's rule. Other names for these same substances remain listed in Table<br>302.4 and Appendix A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Benzo [j,k] fluorene<br>1,2-Benzphenanthrene<br>Camphene, octachloro-<br>4-Chloro-m-cresol<br>1,4-Diethylenedioxide<br>Hexachlorocyclohexane (gamma isomer)<br>Trichloroethene                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Carbaryl<br>Carbofuran<br>Mercaptodimethur<br>Mexacarbate<br>Propoxur (Baygon)                                                                                                                                                                                                                                                   | These six substances appear in Table 302.4 by virtue of their listing on the Clean Water Act or Clean Air Act. In a February 9, 1995 final rule (60 FR 7824), EPA added a number of synonyms to the RCRA regulations for these substances. To be consistent, the synonyms for these substances are being added to Table 302.4 and Appendix A in today's rule. In addition, a "4" is being added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### TABLE 1.—CORRECTIONS TO ENTRIES FOR INDIVIDUAL SUBSTANCES IN TABLE 302.4—Continued

| Current entry in Table 302.4 of 40 CFR 302.4                                                                                                     | Change needed to correct error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo-1-phenyl-butyl)-,<br>& salts, when present at concentrations greater than 0.3%.                        | The RCRA regulations include two listings for this substance: (1) One when present at concentrations greater than 0.3% (P001); and (2) another when present at concentrations of 0.3% or less (U248). Only the first currently appears on Table 302.4. This entry is being deleted from Table 302.4 and replaced with an entry that covers both RCRA listings, as follows: "2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo-1-phenylbutyl)-, & salts" In addition to "P001," "U248" is being added to this entry as an additional RCRA waste number. |
| Warfarin, & salts, when present at concentrations greater than 0.3%.                                                                             | The RCRA regulations include two listings for this substance: (1) One when present at concentrations greater than 0.3% (P001); and (2) another when present at concentrations of 0.3% or less (U248). Only the first currently appears on Table 302.4. This entry is being deleted from Table 302.4 and replaced with an entry that covers both RCRA listings, as follows: "Warfarin, & salts"<br>In addition to "P001," "U248" is being added to this entry as an additional RCRA waste number.                                               |
| Zinc phosphide Zn3P2, when present at concentrations greater than 10%.                                                                           | The RCRA regulations include two listings for this substance: (1) One when present at concentrations greater than 10% (P122); and (2) another when present at concentrations of 10% or less (U249). Only the first currently appears on Table 302.4. This entry is being deleted from Table 302.4 and replaced with an entry that covers both RCRA listings, as follows: "Zinc phosphide Zn3P2" In addition to "P122," "U249" is being added to this entry as an additional RCRA                                                               |
| Ponullium nouvdor                                                                                                                                | waste number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Beryllium powder                                                                                                                                 | Prior to 1994, the Table listed Beryllium (from the CAA), BERYLLIUM AND COMPOUNDS (from the CWA), and Beryllium dust (from the RCRA regulations). On June 20, 1994, EPA changed the term Beryllium dust to Beryllium powder in 40 CFR part 261 (RCRA). At the same time, this change was also made in Table 302.4 and Appendix A, but the listing for Beryllium was removed inadvertently. The listing for Beryllium is being restored in Table 302.4 in today's rule.                                                                         |
| Methane, bromo                                                                                                                                   | Although synonyms for bromomethane (e.g., methane, bromo-) appear in Table 302.4, "Bromomethane" does not appear as a separate listing in the haz-<br>ardous substance column in Table 302.4. However, bromomethane is listed in section 112 of the CAA. Thus, a new entry for the synonym "Bromomethane" is being added.                                                                                                                                                                                                                      |
| Dichloromethyl ether                                                                                                                             | Although a synonym (dichloromethyl ether) for bis(chloromethyl) ether appears in Table 302.4, "Bis(chloromethyl) ether" does not appear as a separate listing. However, this chemical name is included in section 112 of the CAA. Thus, a                                                                                                                                                                                                                                                                                                      |
| CHLORDANE (TECHNICAL MIXTURE AND METABOLITES)                                                                                                    | new entry for the synonym "Bis(chloromethyl) ether" is being added.<br>Two entries for "CHLORDANE (TECHNICAL MIXTURE AND METABOLITES)"<br>appear in Table 302.4: (1) one with no CASRN and no RQ; and (2) another<br>entry with CASRN 57749 and an RQ of one pound. In a June 12, 1995 final<br>rule, EPA intended to remove the first entry and replace it with the second<br>one; however, the first entry was never removed. The first entry with no<br>CASRN or RQ is being removed in today's rule.                                       |
| m-, o-, and p-isomers for Benzene, dimethyl and Cresylic acid.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Multi Source Leachate                                                                                                                            | In a June 1, 1990 final rule (55 FR 22720), EPA erroneously listed waste stream F039 on Table 302.4 as "Multi Source Leachate" alphabetically listed under the letter "M." In today's rule, EPA is deleting the entry for "Multi Source Leachate" and adding the correct entry for "F039" to Table 302.4, immediately following the entry for waste stream F038.                                                                                                                                                                               |
| Bromoform                                                                                                                                        | This substance is listed in the CAA, but a "3" was never added to the Statutory                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,4,5,8-Dimethanonaphthalene, 1,2,3,4,10,10-10-hexachloro-<br>1,4,4a,5,8,8a-hexahydro-, (1alpha,4alpha,4abeta,5alpha,<br>8alpha,.                | Code column. A "3" is being added to the column in today's rule.<br>A correction to this listing is needed because of a typesetting mistake; the entry<br>should end with "8abeta)" This final portion was inadvertantly moved to the<br>beginning of the next entry on Table 302.4. Other minor editorial corrections<br>are also being made.                                                                                                                                                                                                 |
| 8abeta)-1,4,5,8-Dimethanonaphthalene,1,2,3,4, 10,10-<br>hexachloro-1,4,4a,5,8,8a-<br>hexahydro,(1alpha,4alpha,4abeta,5abeta,8beta,.              | Again, corrections are needed because of a typesetting mistake; the entry should begin with "1,4,5" and should end with "8abeta)"                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8abeta)-2,7:3,6-Dimethanonaphth [2,3-b]oxirene,3,4,5,6,9,9-<br>hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-,(1aalpha,2beta,<br>2aalpha,3beta,6beta, | Again, corrections are needed because of a typesetting mistake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6aalpha,7beta,7aalpha)-2,7:3,6-Dimethanonaphth[2,3-b]<br>oxirene,3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7a-octa-                                | Again, corrections are needed because of a typesetting mistake. In addition, the words "& metabolites" are being added to the end of the entry to be consistent                                                                                                                                                                                                                                                                                                                                                                                |

#### TABLE 1.—CORRECTIONS TO ENTRIES FOR INDIVIDUAL SUBSTANCES IN TABLE 302.4—Continued

| Current entry in Table 302.4 of 40 CFR 302.4                         | Change needed to correct error                                                                                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1,2-Benzisothiazol-3(2H)-one, 1,1-dioxide                            | To be consistent with the listing for this substance in the RCRA regulations, the words "& salts" are being added to the end of this entry. |
| Creosote                                                             | Because the RCRA regulations do not list a CASRN for this listing, CASRN 8001589 is being removed from 302.4 and replaced with "N.A."       |
| Cyanides (soluble salts and complexes) not otherwise speci-<br>fied. | Because the RCRA regulations do not list a CASRN for this listing, CASRN 57125 is being removed from 302.4 and replaced with "N.A."         |
| Pyridine, 3-(1-methyl-2-pyrrolidinyl)-,(S)                           | To be consistent with the listing for this substance in the RCRA regulations, the words "& salts" are being added to the end of this entry. |
| Strychnidin-10-one                                                   | To be consistent with the listing for this substance in the RCRA regulations, the words "& salts" are being added to the end of this entry. |

b. What Corrections Are Being Made to Entries for the F- and K-Waste Streams?

The most commonly found errors in the entries for hazardous waste streams (i.e., F- and K-waste streams) in Table 302.4 are inadvertent discrepancies between the waste stream description that appears on the CERCLA list and the description for the same waste stream as it appears in the RCRA regulations at 40 CFR 261.31 and 261.32. In the years since Table 302.4 was first published in the CFR in 1985, EPA has amended the descriptions of several waste streams in the RCRA regulations, but did not make conforming changes to these entries in 40 CFR 302.4. EPA does not intend to retain two different descriptions of the same waste stream in the RCRA and CERCLA regulations; thus, we are removing obsolete descriptions of certain waste streams from Table 302.4 and replacing them with the current descriptions from 40 CFR part 261. Some of these corrections are simple; other types of corrections that require more explanation are described below.

TABLE 2.—CORRECTIONS TO ENTRIES FOR F- AND K-WASTE STREAMS IN TABLE 302.4

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current entry in Table 302.4 of 40 CFR 302.4                                                                                                                                                                                                                                                                                                                                                                                                                                       | Change needed to correct error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| F024 * * * Wastes, including but not limited to distillation residues,<br>heavy ends, tars, and reactor cleanout wastes, from the production<br>of chlorinated aliphatic hydrocarbons, having carbon content from<br>one to five, utilizing free radical catalyzed processes. (This listing<br>does not include light ends, spent filters and filter aids, spent<br>dessicants(sic), wastewater, wastewater treatment sludges, spent<br>catalysts, and wastes listed in § 261.32). | To be consistent with the listing for this waste stream in the RCRA reg-<br>ulations, the waste stream description in Table 302.4 should be<br>changed to read as follows:<br>"F024 * * Process wastes, including but not limited to, distillation<br>residues, heavy ends, tars, and reactor clean-out wastes, from the<br>production of certain chlorinated aliphatic hydrocarbons by free<br>redical catalyzed processes. These chlorinated aliphatic hydro-<br>carbons are those having carbon chain lengths ranging from one to<br>and including five, with varying amounts and positions of chlorine<br>substitution. (This listing does not include wastewaters, wastewater<br>treatment sludges, spent catalysts, and wastes listed in 40 CFR<br>261.31 or 261.32)." |
| K069 * * * Emission control dust/sludge from secondary lead smelting                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>40 CFR 261.32 contains a note about an administrative stay for K069. To be consistent, the following note will be added to the end of this entry in Table 302.4:</li> <li>"(NOTE: This listing is stayed administratively for sludge generated from secondary acid scrubber systems. The stay will remain in effect until further administrative action is taken. If EPA takes further action effecting this stay, EPA will publish a notice of the action in the Federal Register.)"</li> </ul>                                                                                                                                                                                                                                                                    |
| K083 * * * Distillation bottoms from aniline extraction                                                                                                                                                                                                                                                                                                                                                                                                                            | To be consistent with the listing for this waste stream in the RCRA reg-<br>ulations, the word "extraction" should be changed to read "produc-<br>tion."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| K117 * * * Wastewater from the reaction vent gas scrubber in the pro-<br>duction of ethylene bromide via bromination of ethene.                                                                                                                                                                                                                                                                                                                                                    | To be consistent with the listing for this waste stream in the RCRA reg-<br>ulations, the word "reaction" should be changed to "reactor" and the<br>word "bromide" should be changed to "dibromide."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| K118 * * * Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide.                                                                                                                                                                                                                                                                                                                                                                 | To be consistent with the listing for this waste stream in the RCRA reg-<br>ulation, the word "absorbent" should be changed to "adsorbent" and<br>"via bromination of ethene" should be added to the end of the entry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| K131 * * * Wastewater from the reactor and spent sulfuric acid from the acid dryer in the production of methyl bromide.                                                                                                                                                                                                                                                                                                                                                            | To be consistent with the listing for this waste stream in the RCRA reg-<br>ulations, "in the production" should be changed to read "from the<br>production."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| K132 * * * Spent absorbent and wastewater solids from the production of methyl bromide.                                                                                                                                                                                                                                                                                                                                                                                            | To be consistent with the listing for this waste stream in the RCRA reg-<br>ulations, the word "separator" should be added between "waste-<br>water" and "solids."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| K141 * * * Process related from the recovery of coal tar, including, but<br>not limited to, tar collecting sump residues from the production of<br>coke by-products produced from coal. This listing does not include<br>K087 (decanter tank tar sludge from coking operations.).                                                                                                                                                                                                  | To be consistent with the listing for this waste stream in the RCRA reg-<br>ulations, the waste stream description in Table 302.4 should be<br>changed to read as follows:<br>"K141 * * Process residues from the recovery of coal tar, including,<br>but not limited to, collecting sump residues from the production of<br>coke from coal or the recovery of coke by-products produced from<br>coal. This listing does not include K087 (decanter tank tar sludges<br>from coking operations)."                                                                                                                                                                                                                                                                            |

c. What Corrections Are Being Made to Footnotes in Table 302.4?

45320

Because EPA is removing three columns from Table 302.4, two footnotes to the table have to be changed. Footnote "1\*," which "indicates that the 1-pound RQ is a CERCLA statutory RQ," only appears in the Statutory RQ column. Because this column is being removed from Table 302.4, footnote "1\*" also should be removed. In addition, footnote "##" is being revised to clarify that statutory RQs are set at one pound.

In addition, information contained in footnotes "1," "2," "3," and "4" is repetitive of information included in the note that precedes Table 302.4. Thus, these four footnotes are being removed in today's rule. Footnote "†" is being revised to indicate that the statutory sources are defined by 1, 2, 3, and 4, as described in the note that precedes Table 302.4.

d. Why Are Other Errors in Table 302.4 Not Addressed in Today's Rule?

It is important to note that EPA is aware of additional errors in Table 302.4 that are not addressed in today's rulemaking. Because these errors appear to be more than just typographical in nature, we believe that correcting them in a final rule without notice and comment may be inappropriate. For

example, the hazardous waste descriptions for F003, F004, and F005 need to be changed to be consistent with the descriptions for these wastes as they appear in the RCRA regulations. However, these waste description changes may necessitate a change in the RQs for these waste streams. Changing the RQ for these wastes would be more appropriately addressed in a notice and comment rulemaking. Although more study of these and other errors is needed, EPA may propose to make additional error corrections in a future rulemaking. EPA is soliciting information from the public identifying any additional errors in Table 302.4 not covered in today's rulemaking and how such errors should be corrected. Comments received that identify such additional errors will not be considered adverse comments on today's rulemaking; rather, these comments may be considered by the Agency in any future error correction rule.

To submit such comments, send an original and two copies of comments referencing docket number 102 RQ– CORRECT to (1) if using regular U.S. Postal Service mail: Docket Coordinator, Superfund Docket Office, (Mail Code 5201G), U.S. Environmental Protection Agency Headquarters, Ariel Rios Building, 1200 Pennsylvania Avenue, NW., Washington, DC 20460; or (2) if using special delivery such as overnight express service: Superfund Docket Office, Crystal Gateway One, 1st Floor, 1235 Jefferson Davis Highway, Arlington, VA 22202.

# *H. Revisions to Appendix A of 40 CFR 302.4*

On June 12, 1995 (60 FR 30926), EPA published a final rule that, among other things, added 47 individual CAA hazardous air pollutants to Table 302.4 and adjusted their statutory one-pound RQs. In the same rule, EPA intended to add these 47 substances to, and revise several related entries in, Appendix A to Table 302.4. Unfortunately, the table containing these Appendix A additions and revisions was inadvertently left out of the version of the rule that was published in the **Federal Register**.

Although several correction notices were developed immediately after publication of the rule, the Appendix A corrections were not included among them. EPA is making the Appendix A corrections for the June 12, 1995 final rule in today's rulemaking.

In addition, several other corrections are being made to typographical errors in Appendix A, as indicated in the table below. Many of these corrections are necessary to be consistent with corresponding changes to Table 302.4 that were described previously in this preamble.

TABLE 3.—CORRECTIONS TO ENTRIES IN APPENDIX A TO 40 CFR 302.4

| Current entry in Appendix A to 40 CFR 302.4                                  | Change needed to correct error                                                                                                                                                                                                               |  |  |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Appendix A:                                                                  |                                                                                                                                                                                                                                              |  |  |  |
| 1,2,3-Trichloropropane (CASRN 96–18–4)                                       | These substances do not appear in Table 302.4 and are being re-<br>moved from Appendix A.                                                                                                                                                    |  |  |  |
| Diphenylamine (CASRN 122-39-4)                                               |                                                                                                                                                                                                                                              |  |  |  |
| n-2,3&-Dichloropropanol (CASRN 616–23–9)                                     |                                                                                                                                                                                                                                              |  |  |  |
| 1,10-(1,2-Phenylene)pyrene (CASRN 193-39-5)                                  | As noted previously, this synonym is no longer listed in the RCRA reg-<br>ulations and is being removed from Table 302.4 and Appendix A.<br>Another name for this same substance ("Indeno(1,2,3-cd)pyrene")<br>remains listed in Appendix A. |  |  |  |
| CAS #108101                                                                  | The synonym "Hexone," which already appears in Table 302.4, is being added to this entry in Appendix A.                                                                                                                                      |  |  |  |
| Arsenic Acid H <sub>3</sub> As0 <sub>4</sub> (CASRN 1327522)                 | As described in Table 1, these CASRNs are removed from Table 302.4                                                                                                                                                                           |  |  |  |
| Creosote (CASRN 8001589)                                                     | and, thus, also are being removed from Appendix A.                                                                                                                                                                                           |  |  |  |
| Cyanides (soluble salts and complexes) not otherwise specified (CASRN 57125) |                                                                                                                                                                                                                                              |  |  |  |
| CÀS #492808                                                                  | The second chemical name listed should be "Benzenamine, 4,4'-<br>carbonimidoylbis (N,N- dimethyl" The rest of the entry, "(N,N-<br>D,methyl-)-," is incorrect and is being removed in today's rule.                                          |  |  |  |

Amendatory instruction 7, which immediately precedes appendix A to 40 CFR 302.4 in today's direct final rule, accounts for the addition of the corrected entries for all of these listings, and amendatory instruction 6 accounts for the removal of the previously listed entries that contain errors.

#### **III. Administrative Requirements**

Under Executive Order 12866 (58 FR 51735, October 4, 1993), this action is not a "significant regulatory action" and is therefore not subject to review by the Office of Management and Budget. Because the agency has made a "good cause" finding that this action is not subject to notice-and-comment requirements under the Administrative Procedure Act or any other statute (see Section I.D of today's preamble), it is not subject to the regulatory flexibility provisions of the Regulatory Flexibility Act (5 U.S.C. 601 *et seq.*), or to sections 202 and 205 of the Unfunded Mandates Reform Act of 1995 (UMRA) (Pub. L. 104–4). In addition, this action does not significantly or uniquely affect small governments or impose a significant intergovernmental mandate, as described in sections 203 and 204 of UMRA. This rule also does not significantly or uniquely affect the communities of tribal governments, as specified by Executive Order 13084 (63 FR 27655, May 10, 1998). This rule will not have substantial direct effects on the States, on the relationship between the national government and the States, or on the distribution of power and responsibilities among the various levels of government, as specified in Executive Order 13132 (64 FR 43255, August 10, 1999). This rule also is not subject to Executive Order 13045 (62 FR 19885, April 23, 1997), because it is not economically significant.

This technical correction action does not involve technical standards; thus, the requirements of section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) do not apply. The rule also does not involve special consideration of environmental justice related issues as required by Executive Order 12898 (59 FR 7629, February 16, 1994). In issuing this rule, EPA has taken the necessary steps to eliminate drafting errors and ambiguity, minimize potential litigation, and provide a clear legal standard for affected conduct, as required by section 3 of Executive Order 12988 (61 FR 4729, February 7, 1996). EPA has complied with Executive Order 12630 (53 FR 8859, March 15, 1988) by examining the takings implications of the rule in accordance with the "Attorney General's Supplemental Guidelines for the Evaluation of Risk and Avoidance of Unanticipated Takings" issued under the executive order. This rule does not impose an information collection burden under the provisions of the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.).

The Congressional Review Act (5 U.S.C. 801 et seq.), as added by the Small Business Regulatory Enforcement Fairness Act of 1996, generally provides that before a rule may take effect, the agency promulgating the rule must submit a rule report, which includes a copy of the rule, to each House of the Congress and to the Comptroller General of the United States. Section 808 allows the issuing agency to make a rule effective sooner than otherwise provided by the CRA if the Agency makes a good cause finding that notice and public procedure is impracticable, unnecessary or contrary to the public interest. This determination must be

supported by a brief statement. 5 U.S.C. 808(2).

As stated previously (see Section I.D of today's preamble), EPA has made a good cause finding for this final rule and established an effective date of September 9, 2002. EPA will submit a report containing this rule and other required information to the U.S. Senate, the U.S. House of Representatives, and the Comptroller General of the United States prior to publication of the rule in the **Federal Register**. This action is not a major rule as defined by 5 U.S.C. 804(2).

#### List of Subjects in 40 CFR Part 302

Air pollution control, Chemicals, Emergency Planning and Community Right-to-Know Act, Extremely hazardous substances, Hazardous chemicals, Hazardous materials, Hazardous materials transportation, Hazardous substances, Hazardous wastes, Intergovernmental relations, Natural resources, Pesticides and pests, Reporting and recordkeeping requirements, Superfund, Waste treatment and disposal, Water pollution control, Water supply.

#### Dated: June 28, 2002. Christine Todd Whitman, Administrator.

For the reasons set out in the preamble, Chapter I of title 40 of the Code of Federal Regulations is amended as follows:

#### PART 302—DESIGNATION, REPORTABLE QUANTITIES, AND NOTIFICATION

1. The authority citation for part 302 continues to read as follows:

**Authority:** 42 U.S.C. 9602, 9603, and 9604; 33 U.S.C. 1321 and 1361.

2. Section 302.2 is removed and reserved.

#### § 302.2 [Removed and Reserved]

3. Section 302.3 is amended by revising the definitions for "Release" and "Reportable quantity" to read as follows:

#### § 302.3 Definitions.

*Release* means any spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, or disposing into the environment (including the abandonment or discarding of barrels, containers, and other closed receptacles containing any hazardous substance or pollutant or contaminant), but excludes: (1) Any release which results in exposure to persons solely within a workplace, with respect to a claim which such persons may assert against the employer of such persons;

(2) Emissions from the engine exhaust of a motor vehicle, rolling stock, aircraft, vessel, or pipeline pumping station engine;

(3) Release of source, byproduct, or special nuclear material from a nuclear incident, as those terms are defined in the Atomic Energy Act of 1954, if such release is subject to requirements with respect to financial protection established by the Nuclear Regulatory Commission under section 170 of such Act, or for the purposes of section 104 of the Comprehensive Environmental Response, Compensation, and Liability Act or any other response action, any release of source, byproduct, or special nuclear material from any processing site designated under section 102(a)(1)or 302(a) of the Uranium Mill Tailings Radiation Control Act of 1978; and

(4) The normal application of fertilizer;

Reportable quantity ("RQ") means that quantity, as set forth in this part, the release of which requires notification pursuant to this part;

4. Section 302.4 is amended by revising the note that precedes Table 302.4 and by revising table 302.4 to read as follows:

# § 302.4 Designation of hazardous substances.

\* \* \* \*

Note: The numbers under the column headed "CASRN" are the Chemical Abstracts Service Registry Numbers for each hazardous substance. The "Statutory Code" column indicates the statutory source for designating each substance as a CERCLA hazardous substance: "1" indicates that the statutory source is section 311(b)(2) of the Clean Water Act, "2" indicates that the source is section 307(a) of the Clean Water Act, "3" indicates that the source is section 112 of the Clean Air Act, and "4" indicates that the source is section 3001 of the Resource Conservation and Recovery Act (RCRA). The "RCRA Waste Number" column provides the waste identification numbers assigned to various substances by RCRA regulations. The "Pounds (kg)" column provides the reportable quantity adjustment for each hazardous substance in pounds and kilograms. Appendix A to § 302.4, which lists CERCLA hazardous substances in sequential order by CASRN, provides a per-substance grouping of regulatory synonyms (i.e., names by which each hazardous substance is identified in other statutes and their implementing regulations).

| Hazardous substance                                 | CASRN                   | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|-----------------------------------------------------|-------------------------|--------------------|----------------------|-------------------------|
| Acenaphthene                                        | 83–32–9                 | 2                  |                      | 100 (45.4)              |
| Acenaphthylene                                      | 208-96-8                | 2                  |                      | 5000 (2270)             |
| Acetaldehyde                                        | 75-07-0                 | 1,3,4              | U001                 | 1000 (454)              |
| Acetaldehyde chloro                                 |                         |                    |                      |                         |
| Acetaldehyde, chloro-                               | 107-20-                 | 4                  | P023                 | 1000 (454)              |
| Acetaldehyde, trichloro-                            | 75–87–6                 | 4                  | U034                 | 5000 (2270)             |
| Acetamide                                           | 60–35–5                 | 3                  |                      | 100 (45.4)              |
| Acetamide, N-(aminothioxomethyl)                    | 591–08–2                | 4                  | P002                 | 1000 (454)              |
| Acetamide, N-(4-ethoxyphenyl)-                      | 62-44-2                 | 4                  | U187                 | 100 (45.4)              |
| Acetamide, N-9H-fluoren-2-yl-                       | 53-96-3                 | 3,4                | U005                 | 1 (0.454)               |
| Acetamide, 2-fluoro-                                | 6417–640–19–            | 4                  | P057                 | 100 (45.4)              |
| Acetic acid                                         | 7<br>64–19–7            | 1                  |                      | 5000 (2270)             |
| Acetic acid, (2,4-dichlorophenoxy)-, salts & esters | 94-75-7                 | 1,3,4              | U240                 | 100 (45.4)              |
| Acetic acid, ethyl ester                            | 141-78-6                | 4                  | U112                 | 5000 (2270)             |
| Acetic acid, fluoro-, sodium salt                   | 62-74-8                 | 4                  | P058                 | 10 (4.54)               |
| Acetic acid, lead(2+) salt                          | 301-04-2                | 1,4                | U144                 | 10 (4.54)               |
|                                                     |                         | · · · ·            |                      |                         |
| Acetic acid, thallium(1+) salt                      | 563-68-8                | 4                  | U214                 | 100 (45.4)              |
| Acetic acid, (2,4,5-trichlorophenoxy)-              | 93-76-5                 | 1,4                | See F027             | 1000 (454)              |
| Acetic anhydride                                    | 108–24–7                | 1                  |                      | 5000 (2270)             |
| Acetone                                             | 67–64–1                 | 4                  | U002                 | 5000 (2270)             |
| Acetone cyanohydrin                                 | 75-86-5                 | 1,4                | P069                 | 10 (4.54)               |
| Acetonitrile                                        | 75–05–8                 | 3,4                | U003                 | 5000 (2270)             |
| Acetophenone                                        | 98-86-2                 | 3,4                | U004                 | 5000 (2270)             |
|                                                     | 53-96-3                 | ,                  | U005                 | 1 (0.454)               |
| 2-Acetylaminofluorene                               |                         | 3,4                | 0003                 |                         |
| Acetyl bromide                                      | 506-96-7                | 1                  |                      | 5000 (2270)             |
| Acetyl chloride                                     | 75–36–5                 | 1,4                | U006                 | 5000 (2270)             |
| 1-Acetyl-2-thiourea                                 | 591–08–2                | 4                  | P002                 | 1000 (454)              |
| Acrolein                                            | 107-02-8                | 1,2,3,4            | P003                 | 1 (0.454)               |
| Acrylamide                                          | 79–06–1                 | 3,4                | U007                 | 5000 (2270)             |
| Acrylic acid                                        | 79–10–7                 | 3,4                | U008                 | 5000 (2270)             |
| Acrylonitrile                                       | 107–13–1                | 1,2,3,4            | U009                 | 100 (45.4)              |
|                                                     |                         |                    | 0003                 |                         |
| Adipic acid                                         | 124-04-9                | 1                  | D070                 | 5000 (2270)             |
| Aldicarb                                            | 116-06-3                | 4                  | P070                 | 1 (0.454)               |
| Aldrin                                              | 309–00–2                | 1,2,4              | P004                 | 1 (0.454)               |
| Allyl alcohol                                       | 107–18–6                | 1,4                | P005                 | 100 (45.4)              |
| Allyl chloride                                      | 107-05-1                | 1,3                |                      | 1000 (454)              |
| Aluminum phosphide                                  | 20859-73-8              | 4                  | P006                 | 100 (45.4)              |
| Aluminum sulfate                                    | 10043-01-3              | 1                  |                      | 5000 (2270)             |
| 4-Aminobiphenyl                                     | 92–67–1                 | 3                  |                      | 1 (0.454)               |
| 5-(Aminomethyl)-3-isoxazolol                        | 2763-96-4               | 4                  | P007                 | 1000 (454)              |
|                                                     |                         |                    |                      |                         |
| 4-Aminopyridine                                     | 504-24-5                | 4                  | P008                 | 1000 (454)              |
| Amitrole                                            | 61–82–5                 | 4                  | U011                 | 10 (4.54)               |
| Ammonia                                             | 7664–41–7               | 1                  |                      | 100 (45.4)              |
| Ammonium acetate                                    | 631–61–8                | 1                  |                      | 5000 (2270)             |
| Ammonium benzoate                                   | 1863-63-4               | 1                  |                      | 5000 (2270)             |
| Ammonium bicarbonate                                | 1066-33-7               | 1                  |                      | 5000 (2270)             |
| Ammonium bichromate                                 | 7789–09–5               | 1                  |                      | 10 (4.54)               |
| Ammonium bifluoride                                 | 1341-49-7               | 1                  |                      | 100 (45.4)              |
|                                                     |                         | 1                  |                      |                         |
| Ammonium bisulfilte                                 | 10192-30-0              | -                  |                      | 5000 (2270)             |
| Ammonium carbamate                                  | 1111–78–0               | 1                  |                      | 5000 (2270)             |
| Ammonium carbonate                                  | 506-87-6                | 1                  |                      | 5000 (2270)             |
| Ammonium chloride                                   | 12125-02-9              | 1                  |                      | 5000 (2270)             |
| Ammonium chromate                                   | 7788–98–9               | 1                  |                      | 10 (4.54)               |
| Ammonium citrate, dibasic                           | 3012-65-5               | 1                  |                      | 5000 (2270)             |
| Ammonium fluoborate                                 | 13826-83-0              | 1                  |                      | 5000 (2270)             |
|                                                     |                         |                    |                      |                         |
| Ammonium fluoride                                   | 12125-01-8              | 1                  |                      | 100 (45.4)              |
| Ammonium hydroxide                                  | 1336-21-6               | 1                  |                      | 1000 (454)              |
| Ammonium oxalate                                    | 6009–70–7<br>5972–73–6  | 1                  |                      | 5000 (2270)             |
|                                                     | 14258–49–2              |                    |                      |                         |
| Ammonium picrate                                    | 131–74–8                | 4                  | P009                 | 10 (4.54)               |
| Ammonium silicofluoride                             | 16919–19–0              | 1                  |                      | 1000 (454)              |
| Ammonium sulfamate                                  | 7773-06-0               | 1                  |                      | 5000 (2270)             |
| Ammonium sulfide                                    | 12135-76-1              | 1                  |                      | 100 (45.4)              |
|                                                     |                         |                    |                      |                         |
| Ammonium sulfite                                    | 10196-04-0              | 1                  |                      | 5000 (2270)             |
| Ammonium tartrate                                   | 14307–43–8<br>3164–29–2 | 1                  |                      | 5000 (2270)             |
|                                                     |                         |                    |                      |                         |
| Ammonium thiocyanate                                | 1762-95-4               | 1                  |                      | 5000 (2270)             |

| Hazardous substance                                                                                                   | CASRN      | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|-----------------------------------------------------------------------------------------------------------------------|------------|--------------------|----------------------|-------------------------|
| Amyl acetate                                                                                                          | 628–63–7   | 1                  |                      | 5000 (2270)             |
| iso-Amyl acetate                                                                                                      | 123-92-2   | ·                  |                      |                         |
| sec-Amyl acetate                                                                                                      | 626-38-0   |                    |                      |                         |
| tert-Amyl acetate                                                                                                     | 625-16-1   |                    |                      |                         |
| Aniline                                                                                                               | 62-53-3    | 1,3,4              | U012                 | 5000 (2270)             |
| o-Anisidine                                                                                                           | 90-04-0    | 3                  |                      | 100 (45.4)              |
| Anthracene                                                                                                            | 120-12-7   | 2                  |                      | 5000 (2270)             |
| Antimony††                                                                                                            | 7440-36-0  | 2                  |                      | 5000 (2270)             |
| ANTIMONY AND COMPOUNDS                                                                                                | N.A.       | 2,3                |                      | **                      |
| Antimony Compounds                                                                                                    | N.A.       | 2,3                |                      | **                      |
| Antimony pentachloride                                                                                                | 7647–18–9  | 1                  |                      | 1000 (454)              |
| Antimony potassium tartrate                                                                                           | 28300-74-5 | 1                  |                      | 100 (À5.4)              |
| Antimony tribromide                                                                                                   | 7789–61–9  | 1                  |                      | 1000 (454)              |
| Antimony trichloride                                                                                                  | 10025-91-9 | 1                  |                      | 1000 (454)              |
| Antimony trifluoride                                                                                                  | 7783–56–4  | 1                  |                      | 1000 (454)              |
| Antimony trioxide                                                                                                     | 1309-64-4  | 1                  |                      | 1000 (454)              |
| Argentate(1-), bis(cyano-C)-, potassium                                                                               | 506-61-6   | 4                  | P099                 | 1 (0.454)               |
| Aroclor 1016                                                                                                          | 12674-11-2 | 1,2,3              |                      | 1 (0.454)               |
| Aroclor 1221                                                                                                          | 11104-28-2 | 1,2,3              |                      | 1 (0.454)               |
| Aroclor 1232                                                                                                          | 11141–16–5 | 1,2,3              |                      | 1 (0.454)               |
| Aroclor 1242                                                                                                          | 53469-21-9 | 1,2,3              |                      | 1 (0.454)               |
| Aroclor 1248                                                                                                          | 12672-29-6 | 1,2,3              |                      | 1 (0.454)               |
| Aroclor 1254                                                                                                          | 11097-69-1 | 1,2,3              |                      | 1 (0.454)               |
| †Aroclor 1260                                                                                                         | 11096-82-5 | 1,2,3              |                      | 1 (0.454)               |
| Aroclors                                                                                                              | 1336-36-3  | 1,2,3              |                      | 1 (0.454)               |
| Arsenic††                                                                                                             | 7440-38-2  | 2,3                |                      | 1 (0.454)               |
| Arsenic acid H3AsO4                                                                                                   | 7778–39–4  | 2,0                | P010                 | 1 (0.454)               |
| ARSENIC AND COMPOUNDS                                                                                                 | N.A.       | 2,3                | 1 010                | **                      |
| Arsenic Compounds (inorganic including arsine)                                                                        | N.A.       | 2,3                |                      | **                      |
| Arsenic disulfide                                                                                                     | 1303–32–8  | 2,0                |                      | 1 (0.454)               |
| Arsenic oxide As2O3                                                                                                   | 1327-53-3  | 1,4                | P012                 | 1 (0.454)               |
| Arsenic oxide As2O5                                                                                                   | 1303-28-2  | 1,4                | P011                 | 1 (0.454)               |
| Arsenic pentoxide                                                                                                     | 1303-28-2  | 1,4                | P011                 | 1 (0.454)               |
| Arsenic trichloride                                                                                                   | 7784–34–1  | 1,4                | 1011                 | 1 (0.454)               |
| Arsenic trioxide                                                                                                      | 1327–53–3  | 1,4                | P012                 | 1 (0.454)               |
| Arsenic trisulfide                                                                                                    | 1303-33-9  | 1,4                | 1012                 | 1 (0.454)               |
| Arsine, diethyl-                                                                                                      | 692-42-2   | 4                  | P038                 | 1 (0.454)               |
| Arsinic acid, dimethyl-                                                                                               | 75-60-5    | 4                  | U136                 | 1 (0.454)               |
| Arsonous dichloride, phenyl-                                                                                          | 696–28–6   | 4                  | P036                 | 1 (0.454)               |
| Asbestos+++                                                                                                           | 1332-21-4  | 2,3                |                      | 1 (0.454)               |
| Auramine                                                                                                              | 492-80-8   | _,0                | U014                 | 100 (45.4)              |
| Azaserine                                                                                                             | 115-02-6   | 4                  | U015                 | 1 (0.454)               |
| Aziridine                                                                                                             | 151-56-4   | 3,4                | P054                 | 1 (0.454)               |
| Aziridine, 2-methyl                                                                                                   | 75–55–8    | 3,4                | P067                 | 1 (0.454)               |
| Azirino[2',3':3,4]pyrrolo[1,2–a]indole-4,7-dione, 6-amino-8-[[(                                                       | 50-07-7    | 4                  | U010                 | 10 (4.54)               |
| aminocarbonyl)oxy]methyl]-1,1a,2,8,8a,8b- hexahydro-8a-methoxy-5- methyl-<br>,[1aS- (1aalpha,8beta,8aalpha, 8balpha)] |            |                    |                      |                         |
| Barium cyanide                                                                                                        | 542-62-1   | 1,4                | P013                 | 10 (4.54)               |
| Benz[j]aceanthrylene, 1,2-dihydro-3-methyl                                                                            | 56-49-5    | 4                  | U157                 | 10 (4.54)               |
| Benz[c]acridine                                                                                                       | 225–51–4   | 4                  | U016                 | 100 (45.4)              |
| Benzal chloride                                                                                                       | 98-87-3    | 4                  | U017                 | 5000 (2270)             |
| Benzamide, 3,5-dichloro-N-(1,1-dimethyl-2-58–5 propynyl)                                                              | 23950-58-5 | 4                  | U192                 | 5000 (2270)             |
| Benz[a]anthracene                                                                                                     | 56-55-3    | 2,4                | U018                 | 10 (4.54)               |
| 1,2-Benzanthracene                                                                                                    | 56-55-3    | 2,4                | U018                 | 10 (4.54)               |
| Benz[a]anthracene, 7,12-dimethyl-                                                                                     | 57-97-6    | 4                  | U094                 | 1 (0.454)               |
| Benzenamine                                                                                                           | 62-53-3    | 1,3,4              | U012                 | 5000 (2270)             |
| Benzenamine, 4,4'-carbonimidoylbis (N,N dimethyl                                                                      | 492-80-8   | 4                  | U014                 | 100 (45.4)              |
| Benzenamine, 4-chloro-                                                                                                | 106-47-8   | 4                  | P024                 | 1000 (454)              |
| Benzenamine, 4-chloro-2-methyl-, hydrochloride                                                                        | 3165–93–3  | 4                  | U049                 | 100 (45.4)              |
| Benzenamine, N,N-dimethyl-4-(phenylazo)-                                                                              | 60–11–7    | 3,4                | U093                 | 10 (4.54)               |
| Benzenamine, 2-methyl-                                                                                                | 95–53–4    | 3,4                | U328                 | 100 (45.4)              |
| Benzenamine, 4-methyl-                                                                                                | 106-49-0   | 4                  | U353                 | 100 (45.4)              |
| Benzenamine, 4,4'-methylenebis [2-chloro-                                                                             | 101-14-4   | 3,4                | U158                 | 10 (4.54)               |
| Benzenamine, 2-methyl-,hydrochloride                                                                                  | 636–21–5   | 4                  | U222                 | 100 (45.4)              |
| Benzenamine, 2-methyl-5-nitro-                                                                                        | 99–55–8    | 4                  | U181                 | 100 (45.4)              |
| Benzenamine, 2-nieury-3-nieury-                                                                                       | 100-01-6   | 4                  | P077                 | 5000 (2270)             |
|                                                                                                                       | 71–43–2    | 1,2,3,4            | U019                 | 10 (4.54)               |
| Kenzene a                                                                                                             |            |                    |                      |                         |
| Benzene <sup>a</sup><br>Benzeneacetic acid, 4-chloro-α-(4-chlorophenyl)- α-hydroxy-, ethyl ester                      | 510-15-6   | 3,4                | U038                 | 10 (4.54)               |

| Hazardous substance                                                                    | CASRN                    | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|----------------------------------------------------------------------------------------|--------------------------|--------------------|----------------------|-------------------------|
| Benzenebutanoic acid, 4-[bis(2- chloroethyl)amino]                                     | . 305–03–3               | 4                  | U035                 | 10 (4.54)               |
| Benzene, chloro-                                                                       |                          | 1,2,3,4            | U037                 | 100 (45.4)              |
| Benzene, (chloromethyl)-                                                               |                          | 1,3,4              | P028                 | 100 (45.4)              |
| Benzenediamine, ar-methyl-                                                             | . 95–80–7                | 3,4                | U221                 | 10 (4.54)               |
|                                                                                        | 496-72-0                 | -, -               |                      |                         |
|                                                                                        | 823–40- 5                |                    |                      |                         |
|                                                                                        | 25376-45-8               |                    |                      |                         |
| 1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester                                  | . 117–81–7               | 2,3,4              | U028                 | 100 (45.4)              |
| 1,2-Benzenedicarboxylic acid, dibutyl ester                                            | . 84–74–2                | 1,2,3,4            | U069                 | 10 (4.54)               |
| 1,2-Benzenedicarboxylic acid, diethyl ester                                            | . 84–66–2                | 2,4                | U088                 | 1000 (454)              |
| 1,2-Benzenedicarboxylic acid, dimethyl ester                                           | . 131–11–3               | 2,3,4              | U102                 | 5000 (2270)             |
| 1,2-Benzenedicarboxylic acid, dioctyl ester                                            | . 117–84–0               | 2,4                | U107                 | 5000 (2270)             |
| Benzene, 1,2-dichloro-                                                                 |                          | 1,2,4              | U070                 | 100 (45.4)              |
| Benzene, 1,3-dichloro-                                                                 |                          | 2,4                | U071                 | 100 (45.4)              |
| Benzene, 1,4-dichloro-                                                                 |                          | 1,2,3,4            | U072                 | 100 (45.4)              |
| Benzene, 1,1'-(2,2-dichloroethylidene) bis[4-chloro-                                   |                          | 1,2,4              | U060                 | 1 (0.454)               |
| Benzene, (dichloromethyl)-                                                             |                          | 4                  | U017                 | 5000 (2270)             |
| Benzene, 1,3-diisocyanatomethyl-                                                       |                          | 3,4                | U223                 | 100 (45.4)              |
|                                                                                        | 584-84-9                 |                    |                      |                         |
| Development of the d                                                                   | 26471-62-5               | 4.0.4              | 11000                | 100 (45 4)              |
| Benzene, dimethyl-                                                                     |                          | 1,3,4              | U239                 | 100 (45.4)              |
| 1,3-Benzenediol                                                                        |                          | 1,4                | U201                 | 5000 (2270)             |
| 1,2-Benzenediol,4-[1-hydroxy-2-(methyl amino)ethyl]-                                   |                          | 4                  | P042<br>P046         | 1000 (454)              |
| Benzeneethanamine, alpha,alpha-dimethyl-                                               | . 122–09–8<br>. 118–74–1 | 2,3,4              | U127                 | 5000 (2270)             |
| Benzene, hexachloro-<br>Benzene, hexahydro-                                            | . 110–74–1               |                    | U056                 | 10 (4.54)<br>1000 (454) |
| Benzene, methyl-                                                                       | . 108–88–3               | 1,4<br>1,2,3,4     | U220                 | 1000 (454)              |
| Benzene, 1-methyl-2,4-dinitro-                                                         | . 121–14–2               | 1,2,3,4            | U105                 | 10 (4.54)               |
| Benzene, 2-methyl-1,3-dinitro-                                                         |                          | 1,2,3,4            | U106                 | 100 (45.4)              |
| Benzene, (1-methylethyl)-                                                              | . 98–82–8                | 3,4                | U055                 | 5000 (2270)             |
| Benzene, nitro-                                                                        |                          | 1,2,3,4            | U169                 | 1000 (454)              |
| Benzene, pentachloro-                                                                  |                          | 4                  | U183                 | 10 (4.54)               |
| Benzene, pentachloronitro-                                                             |                          | 3,4                | U185                 | 100 (45.4)              |
| Benzenesulfonic acid chloride                                                          |                          | 4                  | U020                 | 100 (45.4)              |
| Benzenesulfonyl chloride                                                               |                          | 4                  | U020                 | 100 (45.4)              |
| Benzene,1,2,4,5-tetrachloro-                                                           |                          | 4                  | U207                 | 5000 (2270)             |
| Benzenethiol                                                                           | . 108–98–5               | 4                  | P014                 | 100 (45.4)              |
| Benzene,1,1'-(2,2,2-trichloroethylidene) bis[4-chloro                                  | . 50–29–3                | 1,2,4              | U061                 | 1 (0.454)               |
| Benzene,1,1'-(2,2,2-trichloroethylidene) bis[4-methoxy                                 |                          | 1,3,4              | U247                 | 1 (0.454)               |
| Benzene, (trichloromethyl)                                                             |                          | 3,4                | U023                 | 10 (4.54)               |
| Benzene, 1,3,5-trinitro-                                                               |                          | 4                  | U234                 | 10 (4.54)               |
| Benzidine                                                                              |                          | 2,3,4              | U021                 | 1 (0.454)               |
| 1,2-Benzisothiazol-3(2H)-one, 1,1-dioxide, & salts                                     |                          | 4                  | U202                 | 100 (45.4)              |
| Benzo[a]anthracene                                                                     |                          | 2,4                | U018                 | 10 (4.54)               |
| 1,3-Benzodioxole, 5-(1-propenyl)-1                                                     | . 120–58–1               | 4                  | U141                 | 100 (45.4)              |
| 1,3-Benzodioxole, 5-(2-propenyl)-                                                      | . 94–59–7                | 4                  | U203                 | 100 (45.4)              |
| 1,3-Benzodioxole, 5-propyl<br>1,3-Benzodioxol-4-ol, 2.2-dimethyl-, (Bendiocarb phenol) |                          | 4                  | U090                 | 10 (4.54)               |
|                                                                                        |                          | 4                  | U364                 | ##                      |
| 1,3-Benzodioxol-4-ol, 2,2-dimethyl-, methyl carbamate (Bendiocarb)                     |                          | 4                  | U278                 | 1 (0.454)               |
| Benzo[b]fluoranthene<br>Benzo(k)fluoranthene                                           |                          | 2                  |                      | 5000 (2270)             |
| 7-Benzofuranol, 2,3-dihydro-2,2-dimethyl- (Carbofuran phenol)                          |                          | 4                  | U367                 | ##                      |
| 7-Benzofuranol, 2,3-dihydro-2,2- dimethyl-, methylcarbamate                            |                          | 1,4                | P127                 | 10 (4.54)               |
| Benzoic acid                                                                           |                          | 1,4                | 1 121                | 5000 (2270)             |
| Benzoic acid, 2-hydroxy-, compd. with (3aS- cis)-1,2,3,3a,8,8a- hexahydro              |                          | 4                  | P188                 | ##                      |
| 1,3a,8- trimethylpyrrolo [2,3- b]indol-5-yl methylcarbamate ester (1:1) (Physo         |                          |                    |                      |                         |
| stigmine salicylate).                                                                  |                          |                    |                      |                         |
| Benzonitrile                                                                           | . 100–47–0               | 1                  | _                    | 5000 (2270)             |
| Benzo[rst]pentaphene                                                                   |                          | 4                  | U064                 | 10 (4.54)               |
| Benzo[ghi]perylene                                                                     |                          |                    |                      | 5000 (2270)             |
| 2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo- 1-phenylbutyl)-, & salts                    | . 81–81–2                | 4                  | P001                 | 100 (45.4)              |
|                                                                                        |                          |                    | U248                 |                         |
| Benzo[a]pyrene                                                                         | . 50–32–8                | 2,4                | U022                 | 1 (0.454)               |
| 3,4-Benzopyrene                                                                        |                          | 2,4                | U022                 | 1 (0.454)               |
| ρ-Benzoquinone                                                                         |                          | 3,4                | U197                 | 10 (4.54)               |
| Benzotrichloride                                                                       |                          | 3,4                | U023                 | 10 (4.54)               |
| Benzoyl chloride                                                                       |                          | 1                  | —                    | 1000 (454)              |
| Benzyl chloride                                                                        |                          | 1,3,4              | P028                 | 100 (45.4)              |
| Beryllium ††                                                                           | . 7440–41–7              | 2,3,4              | P015                 | 10 (4.54)               |

| Hazardous substance                                                           | CASRN                 | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|-------------------------------------------------------------------------------|-----------------------|--------------------|----------------------|-------------------------|
| BERYLLIUM AND COMPOUNDS                                                       | N.A.                  | 2,3                |                      | **                      |
| Beryllium chloride                                                            | 7787–47–5             | 1                  |                      | 1 (0.454)               |
| Beryllium compounds                                                           | N.A.                  | 2,3                |                      | **                      |
| Beryllium fluoride                                                            | 7787–49–7             | 1                  |                      | 1 (0.454)               |
| Beryllium nitrate                                                             | 13597–99–4            | 1                  |                      | 1 (0.454)               |
|                                                                               | 7787–55–5             |                    |                      |                         |
| Beryllium powder ††                                                           | 7440–41–7             | 2,3,4              | P015                 | 10 (4.54)               |
| alpha-BHC                                                                     | 319-84-6              | 2                  |                      | 10 (4.54)               |
| beta-BHC                                                                      | 319-85-7              | 2                  |                      | 1 (0.454)               |
| delta-BHC                                                                     | 319-86-8              | 2                  |                      | 1 (0.454)               |
| gamma-BHC                                                                     | 58-89-9               | 1,2,3,4            | U129                 | 1 (0.454)               |
| 2,2'-Bioxirane                                                                | 1464–53–5             | 4                  | U085                 | 10 (4.54)               |
| Biphenyl                                                                      | 92-52-4               | 3                  | 11004                | 100 (45.4)              |
| [1,1'-Biphenyl]-4,4'-diamine                                                  | 92-87-5               | 2,3,4              | U021                 | 1 (0.454)               |
| [1,1'-Biphenyl]-4,4'-diamine,3,3'-dichloro-                                   | 91–94–1               | 2,3,4              | U073                 | 1 (0.454)               |
| [1,1'-Biphenyl]-4,4'-diamine,3,3'-dimethoxy-                                  | 119-90-4              | 3,4                | U091                 | 100 (45.4)              |
| [1,1'-Biphenyl]-4,4'-diamine,3,3'-dimethyl-                                   | 119-93-7              | 3,4                | U095                 | 10 (4.54)               |
| Bis(2-chloroethoxy) methane                                                   | 111-91-1              | 2,4                | U024                 | 1000 (454)              |
| Bis(2-chloroethyl) ether<br>Bis(chloromethyl) ether                           | 111–44–4<br>542–88–1  | 2,3,4<br>2,3,4     | U025<br>P016         | 10 (4.54)<br>10 (4.54)  |
| Bis(2-ethylhexyl) phthalate                                                   | 117-81-7              | 2,3,4              | U028                 | 100 (45.4)              |
| Bromoacetone                                                                  | 598-31-2              | 3,4                | P017                 | 100 (454)               |
| Bromoform                                                                     | 75-25-2               | 2,3,4              | U225                 | 1000 (45.4)             |
| Bromomethane                                                                  | 74-83-9               | 2,3,4 2,3,4        | U029                 | 100 (454)               |
| 4-Bromophenyl phenyl ether                                                    | 101-55-3              | 2,3,4              | U030                 | 1000 (45.4)             |
| Brucine                                                                       | 357-57-3              | 2,4                | P018                 | 100 (45.4)              |
| 1,3-Butadiene                                                                 | 106-99-0              | 3                  | 1 010                | 10 (4.54)               |
| 1,3-Butadiene, 1,1,2,3,4,4-hexachloro-                                        | 87–68–3               | 2,3,4              | U128                 | 1 (0.454)               |
| 1-Butanamine, N-butyl-N-nitroso-                                              | 924–16–3              | _,0,1              | U172                 | 10 (4.54)               |
| 1-Butanol                                                                     | 71–36–3               | 4                  | U031                 | 5000 (2270)             |
| 2-Butanone                                                                    | 78–93–3               | 3,4                | U159                 | 5000 (2270)             |
| 2-Butanone, 3,3-dimethyl-1(methylthio)-, O-[(methylamino)carbonyl] oxime      | 39196-18-4            | 4                  | P045                 | 100 (45.4)              |
| 2-Butanone peroxide                                                           | 1338–23–4             | 4                  | U160                 | 10 (4.54)               |
| 2-Butenal                                                                     | 123-73-9              | 1,4                | U053                 | 100 (45.4)              |
|                                                                               | 4170-30-3             | ,                  |                      |                         |
| 2-Butene, 1,4-dichloro                                                        | 764-41-0              | 4                  | U074                 | 1 (0.454)               |
| 2-Butenoic acid, 2-methyl-, 7-[[2,3-dihydroxy-2-(1-methoxyethyl)-3- methyl-1- | 303-34-4              | 4                  | U143                 | 10 (4.54)               |
| oxobutoxy] methyl]-2,3, 5,7a-tetrahydro- 1H-pyrrolizin-1-yl ester, [1S-       |                       |                    |                      |                         |
| [1alpha(Z), 7(2S*,3R*),7aalpha]]                                              |                       |                    |                      |                         |
| Butyl acetate                                                                 | 123–86–4              | 1                  |                      | 5000 (2270)             |
| iso-Butyl acetate                                                             | 110–19–0              |                    |                      |                         |
| sec-Butyl acetate                                                             | 105-46-4              |                    |                      |                         |
| tert-Butyl acetate                                                            | 540-88-5              |                    |                      |                         |
| n-Butyl alcohol                                                               | 71–36–3               | 4                  | U031                 | 5000 (2270)             |
| Butylamine                                                                    | 109-73-9              | 1                  |                      | 1000 (454)              |
| iso-Butylamine                                                                | 78-81-9               |                    |                      |                         |
| sec-Butylamine                                                                | 513-49-5              |                    |                      |                         |
| to at Destade as in a                                                         | 13952-84-6            |                    |                      |                         |
| tert-Butylamine                                                               | 75-64-9               | 0                  |                      | 400 (45 4)              |
| Butyl benzyl phthalate                                                        | 85-68-7               | 2                  | 11000                | 100 (45.4)              |
| n-Butyl phthalate                                                             | 84-74-2               | 1,2,3,4            | U069                 | 10 (4.54)               |
| Butyric acid                                                                  | 107-92-6              | 1                  |                      | 5000 (2270)             |
| iso-Butyric acid                                                              | 79–31–2               | 4                  | 11126                | 1 (0 454)               |
| Cacodylic acid                                                                | 75–60–5<br>7440–43–9  | 4                  | U136                 | 1 (0.454)<br>10 (4.54)  |
| Cadmium ††                                                                    |                       | 2                  |                      |                         |
| Cadmium acetate CADMIUM AND COMPOUNDS                                         | 543–90–8<br>N.A.      | 2,3                |                      | 10 (4.54)               |
| Cadmium bromide                                                               | 7789–42–6             | 2,3                |                      | 10 (4.54)               |
| Cadmium chloride                                                              | 10108-64-2            | 1                  |                      | 10 (4.54)               |
| Cadmium compounds                                                             | N.A.                  | 2,3                |                      | 10 (4.04)               |
| Calcium arsenate                                                              | 7778–44–1             | 2,3                |                      | 1 (0.454)               |
| Calcium arsenite                                                              | 52740-16-6            | 1                  |                      | 1 (0.454)               |
| Calcium arsente                                                               | 52740-16-6<br>75-20-7 | 1                  |                      | 10 (4.54)               |
| Calcium carbide                                                               | 13765–19–0            | 1,4                | U032                 | 10 (4.54)               |
| Calcium cyanamide                                                             | 156-62-7              | 1,4                | 5002                 | 1000 (454)              |
| Calcium cyaniamide                                                            | 592-01-8              | 3<br>1,4           | P021                 | 10 (4.54)               |
| Calcium dodecylbenzenesulfonate                                               | 26264-06-2            | 1,4                | 1 02 1               | 100 (454)               |
|                                                                               | 20204-00-2            | I                  | 1                    | 1000 (404)              |
| Calcium hypochlorite                                                          | 7778–54–3             | 1                  |                      | 10 (4.54)               |

| Hazardous substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CASRN                                                                                                                                                                                                                                                                                                      | Statutory<br>code†                                                                                                                                                                                | RCRA<br>waste<br>No.                                                                                                                         | Final RQ<br>pounds (Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carbamic acid, 1H-benzimidazol-2-yl, methyl ester (Carbendazim)<br>Carbamic acid, [1-[(butylamino)carbonyl]-1H-benzimidazol-2-yl]-, methyl ester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10605–21–7<br>17804–35–2                                                                                                                                                                                                                                                                                   | 4<br>4                                                                                                                                                                                            | U372<br>U271                                                                                                                                 | ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>(Benomyl).</li> <li>Carbamic acid, (3-chlorophenyl)-, 4-chloro-2-butynyl ester (Barban)</li> <li>Carbamic acid, [(dibutylamino)thio]methyl-, 2,3-dihydro-2,2-dimethyl-7-benzofuranyl ester (Carbosulfan).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101–27–9<br>55285–14–8                                                                                                                                                                                                                                                                                     | 4<br>4                                                                                                                                                                                            | U280<br>P189                                                                                                                                 | ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Carbamic acid, dimethyl-,1-[(dimethylamino)carbonyl]-5-methyl-1H-pyrazol-3-yl ester (Dimetilan).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 644–64–4                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                 | P191                                                                                                                                         | ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Carbamic acid, dimethyl-, 3-methyl-1-(1-methylethyl)-1H-pyrazol-5-yl ester (Isolan).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119–38–0                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                 | P192                                                                                                                                         | ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Carbamic acid, ethyl ester<br>Carbamic acid, methyl-, 3-methylphenyl ester (Metolcarb)<br>Carbamic acid, methylnitroso-, ethyl ester<br>Carbamic acid, [1,2-phenylenebis(iminocarbonothioyl)] bis-, dimethyl ester<br>(Thiophanate-methyl).                                                                                                                                                                                                                                                                                                                                                                                                                        | 51–79–6<br>1129–41–5<br>615–53–2<br>23564–05–8                                                                                                                                                                                                                                                             | 3,4<br>4<br>4                                                                                                                                                                                     | U238<br>P190<br>U178<br>U409                                                                                                                 | 100 (45.4)<br>##<br>1 (0.454)<br>##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Carbamic acid, phenyl-, 1-methylethyl ester (Propham)<br>Carbamic chloride, dimethyl<br>Carbamodithioic acid, 1,2-ethanediylbis-, salts & esters<br>Carbamothioic acid, bis(1-methylethyl)-, S-(2,3-dichloro-2- propenyl) ester<br>Carbamothioic acid, bis(1-methylethyl)-, S-(2,3-dichloro-2- propenyl) ester (Triallate).                                                                                                                                                                                                                                                                                                                                        | 122–42–9<br>79–44–7<br>111–54–6<br>2303–16–4<br>2303–17–5                                                                                                                                                                                                                                                  | 4<br>3,4<br>4<br>4                                                                                                                                                                                | U373<br>U097<br>U114<br>U062<br>U389                                                                                                         | ##<br>1 (0.454)<br>5000 (2270)<br>100 (45.4)<br>##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Carbamothioic acid, dipropyl-, S - (phenylmethyl) ester (Prosulfocarb)<br>Carbaryl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52888-80-9<br>63-25-2<br>1563-66-2<br>75-15-0<br>6533-73-9<br>75-44-5<br>353-50-4<br>79-22-1<br>353-50-4<br>56-23-5<br>463-58-1<br>120-80-9<br>75-87-6<br>133-90-4<br>305-03-3<br>57-74-9<br>57-74-9<br>57-74-9<br>57-74-9<br>57-74-9<br>N.A.<br>8001-35-2<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A. | $\begin{array}{c} 4\\ 1,3,4\\ 1,4\\ 1,3,4\\ 4\\ 1,3,4\\ 4\\ 1,2,3,4\\ 1,2,3,4\\ 1,2,3,4\\ 1,2,3,4\\ 1,2,3,4\\ 1,2,3,4\\ 1,2,3,4\\ 1,2,3,4\\ 2\\ 2\\ 2\\ 1,3,4\\ 4\\ 4\\ 3\\ 3\\ 2\\ 2\end{array}$ | U387<br>U279<br>P127<br>P022<br>U215<br>P095<br>U033<br>U156<br>U033<br>U211<br>U034<br>U034<br>U035<br>U036<br>U036<br>P123                 | $\begin{array}{c} & \mbox{"""}\\ 100 (45.4) \\ 10 (45.4) \\ 100 (45.4) \\ 100 (45.4) \\ 100 (45.4) \\ 100 (45.4) \\ 1000 (45.4) \\ 1000 (45.4) \\ 100 (45.4) \\ 100 (45.4) \\ 100 (45.4) \\ 100 (45.4) \\ 100 (45.4) \\ 10 (4.54) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.454) \\ 1 (0.45$ |
| D-Chloroaniline         Chlorobenzene         Chlorobenzilate         p-Chloro-m-cresol         Chlorodibromomethane         1-Chloro-2,3-epoxypropane         Chloroethane         2-Chloroethyl vinyl ether         Chloromethane         2-Chloroethyl vinyl ether         Chloromethane         2-Chloromethane         2-Chloromethane         Chloromethane         2-Chloromethane         Chloromethane         Chloromethane         2-Chloromethalene         2-Chloronaphthalene         2-Chlorophenol         0-Chlorophenol         4-Chlorophenyl phenyl ether         1-(o-Chlorophenyl)thiourea         Chloroprene         3-Chloropropionitrile | $\begin{array}{c} 10.4\\ 108-47-8\\ 108-90-7\\ 510-15-6\\ 59-50-7\\ 124-48-1\\ 106-89-8\\ 75-00-3\\ 110-75-8\\ 67-66-3\\ 74-87-3\\ 107-30-2\\ 91-58-7\\ 91-58-7\\ 91-58-7\\ 95-57-8\\ 95-57-8\\ 95-57-8\\ 7005-72-3\\ 5344-82-1\\ 126-99-8\\ 542-76-7\\ \end{array}$                                       | 4<br>1,2,3,4<br>2,4<br>2,4<br>1,3,4<br>1,2,3,4<br>1,2,3,4<br>2,3,4<br>2,4<br>2,4<br>2,4<br>2,4<br>2,4<br>2,4<br>2,4<br>2,4<br>2,4<br>2                                                            | P024<br>U037<br>U038<br>U039<br>U041<br>U042<br>U044<br>U045<br>U044<br>U045<br>U046<br>U047<br>U047<br>U047<br>U047<br>U048<br>P026<br>P027 | 1000 (454)<br>100 (454)<br>10 (454)<br>5000 (2270)<br>100 (454)<br>100 (454)<br>100 (454)<br>100 (454)<br>100 (454)<br>100 (454)<br>5000 (2270)<br>5000 (2270)<br>100 (454)<br>100 (454)<br>100 (454)<br>100 (454)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Hazardous substance                                            | CASRN      | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|----------------------------------------------------------------|------------|--------------------|----------------------|-------------------------|
| Chlorosulfonic acid                                            |            | 1                  |                      | 1000 (454)              |
| 4-Chloro-o-toluidine, hydrochloride                            |            | 4                  | U049                 | 100 (45.4)              |
| Chlorpyrifos                                                   |            | 1                  |                      | 1 (0.454)               |
| Chromic acetate                                                |            | 1                  |                      | 1000 (454)              |
| Chromic acid                                                   |            | 1                  |                      | 10 (4.54)               |
|                                                                | 7738–94–5  |                    |                      |                         |
| Chromic acid H2CrO4, calcium salt                              |            | 1,4                | U032                 | 10 (4.54)               |
| Chromic sulfate                                                |            | 1                  |                      | 1000 (454)              |
| Chromium ††                                                    |            | 2                  |                      | 5000 (2270)             |
| CHROMIUM AND COMPOUNDS                                         |            | 2,3                |                      | **                      |
| Chromium Compounds                                             |            | 2,3                |                      | **                      |
| Chromous chloride                                              |            | 1                  |                      | 1000 (454)              |
| Chrysene                                                       | 218–01–9   | 2,4                | U050                 | 100 (45.4)              |
| Cobalt Compounds                                               |            | 3                  |                      | **                      |
| Cobaltous bromide                                              | 7789–43–7  | 1                  |                      | 1000 (454)              |
| Cobaltous formate                                              | 544–18–3   | 1                  |                      | 1000 (454)              |
| Cobaltous sulfamate                                            | 14017–41–5 | 1                  |                      | 1000 (454)              |
| Coke Oven Emissions                                            | N.A.       | 3                  |                      | 1 (0.454)               |
| Copper ++                                                      | 7440–50–8  | 2                  |                      | 5000 (2270)             |
| COPPER AND COMPOUNDS                                           | N.A.       | 2                  |                      | **                      |
| Copper cyanide Cu(CN)                                          | 544–92–3   | 4                  | P029                 | 10 (4.54)               |
| Coumaphos                                                      |            | 1                  |                      | 10 (4.54)               |
| Creosote                                                       | N.A.       | 4                  | U051                 | 1 (0.454)               |
| Cresol (cresylic acid)                                         | 1319–77–3  | 1,3,4              | U052                 | 100 (45.4)              |
| m-Cresol                                                       | 108–39–4   | 3                  |                      | 100 (45.4)              |
| o-Cresol                                                       |            | 3                  |                      | 100 (45.4)              |
| p-Cresol                                                       | 106–44–5   | 3                  |                      | 100 (45.4)              |
| Cresols (isomers and mixture)                                  |            | 1,3,4              | U052                 | 100 (45.4)              |
| Cresylic acid (isomers and mixture)                            |            | 1,3,4              | U052                 | 100 (45.4)              |
| Crotonaldehyde                                                 |            | 1,4                | U053                 | 100 (45.4)              |
| - <b>)</b>                                                     | 4170-30-3  | ,                  |                      |                         |
| Cumene                                                         |            | 3,4                | U055                 | 5000 (2270)             |
| Cupric acetate                                                 |            | 1                  |                      | 100 (45.4)              |
| Cupric acetoarsenite                                           |            | 1                  |                      | 1 (0.454)               |
| Cupric chloride                                                |            | 1                  |                      | 10 (4.54)               |
| Cupric nitrate                                                 |            | 1                  |                      | 100 (45.4)              |
| Cupric oxalate                                                 |            | 1                  |                      | 100 (45.4)              |
| Cupric sulfate                                                 |            | 1                  |                      | 10 (4.54)               |
| Cupric sulfate, ammoniated                                     |            | 1                  |                      | 100 (45.4)              |
| Cupric tartrate                                                |            | 1                  |                      | 100 (45.4)              |
| Cyanide Compounds                                              |            | 2,3                |                      | **                      |
| CYANIDES                                                       |            | 2,3                |                      | **                      |
| Cyanides (soluble salts and complexes) not otherwise specified |            | 4                  | P030                 | 10 (4.54)               |
| Cyanogen                                                       |            | 4                  | P031                 | 100 (45.4)              |
| Cyanogen bromide (CN)Br                                        |            | 4                  | U246                 | 1000 (454)              |
| Cyanogen chloride (CN)Cl                                       | 506–77–4   | 1,4                | P033                 | 10 (4.54)               |
| 2,5-Cyclohexadiene-1,4-dione                                   |            | 3,4                | U197                 | 10 (4.54)               |
| Cyclohexane                                                    |            | 1,4                | U056                 | 1000 (454)              |
| Cyclohexane, 1,2,3,4,5,6-hexachloro-, (1α, 2α, 3β, 4α, 5α, 6β) |            | 1,2,3,4            | U129                 | 1 (0.454)               |
| Cyclohexanone                                                  |            | 4                  | U057                 | 5000 (2270)             |
| 2-Cyclohexyl-4,6-dinitrophenol                                 | 131–89–5   | 4                  | P034                 | 100 (45.4)              |
| 1,3-Cyclopentadiene, 1,2,3,4,5,5-hexachloro-                   |            | 1,2,3,4            | U130                 | 10 (4.54)               |
| Cyclophosphamide                                               |            | 4                  | U058                 | 10 (4.54)               |
| 2,4-D Acid                                                     |            | 1,3,4              | U240                 | 100 (45.4)              |
| 2,4-D Ester                                                    |            | 1,0,4              | 0240                 | 100 (45.4)              |
| 2,4 D 2001                                                     | 94–79–1    | 1                  |                      | 100 (40.4)              |
|                                                                | 94-80-4    |                    |                      |                         |
|                                                                | 1320–18–9  |                    |                      |                         |
|                                                                | 1928–38–7  |                    |                      |                         |
|                                                                | 1928-61-6  |                    |                      |                         |
|                                                                |            |                    |                      |                         |
|                                                                | 1929-73-3  |                    |                      |                         |
|                                                                | 2971-38-2  |                    |                      |                         |
|                                                                | 25168-26-7 |                    |                      |                         |
|                                                                | 53467-11-1 |                    |                      |                         |
| 2,4-D, salts and esters                                        |            | 1,3,4              |                      | 100 (45.4)              |
| Daunomycin                                                     |            | 4                  | U059                 | 10 (4.54)               |
| DDD                                                            |            | 1,2,4              | U060                 | 1 (0.454)               |
| 4,4'-DDD                                                       |            | 1,2,4              | U060                 | 1 (0.454)               |
| DDE <sup>b</sup>                                               | 72–55–9    | 2                  | 1                    | 1 (0.454)               |

| Hazardous substance                       | CASRN       | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|-------------------------------------------|-------------|--------------------|----------------------|-------------------------|
| DDE <sup>b</sup>                          | 3547–04–4   | 3                  |                      | 5000 (2270)             |
| 4,4'-DDE                                  | 72–55–9     | 2                  |                      | 1 (0.454)               |
| DDT                                       | 50–29–3     | 1,2,4              | U061                 | 1 (0.454)               |
| 4,4'-DDT                                  | 50–29–3     | 1,2,4              | U061                 | 1 (0.454)               |
| DDT AND METABOLITES                       | N.A.        | 2                  |                      | **                      |
| DEHP                                      | 117–81–7    | 2,3,4              | U028                 | 100 (45.4)              |
| Diallate                                  | 2303–16–4   | 4                  | U062                 | 100 (45.4)              |
| Diazinon                                  | 333–41–5    | 1                  |                      | 1 (0.454)               |
| Diazomethane                              | 334–88–3    | 3                  |                      | 100 (45.4)              |
| Dibenz[a,h]anthracene                     | 53–70–3     | 2,4                | U063                 | 1 (0.454)               |
| 1,2:5,6-Dibenzanthracene                  |             | 2,4                | U063                 | 1 (0.454)               |
| Dibenzo[a,h]anthracene                    | 53–70–3     | 2,4                | U063                 | 1 (0.454)               |
| Dibenzofuran                              | 132–64–9    | 3                  |                      | 100 (45.4)              |
| Dibenzo[a,i]pyrene                        | 189–55–9    | 4                  | U064                 | 10 (4.54)               |
| 1,2-Dibromo-3-chloropropane               | 96–12–8     | 3,4                | U066                 | 1 (0.454)               |
| Dibromoethane                             | 106–93–4    | 1,3,4              | U067                 | 1 (0.454)               |
| Dibutyl phthalate                         | 84–74–2     | 1,2,3,4            | U069                 | 10 (4.54)               |
| Di-n-butyl phthalate                      | 84–74–2     | 1,2,3,4            | U069                 | 10 (4.54)               |
| Dicamba                                   | 1918–00–9   | 1                  |                      | 1000 (454)              |
| Dichlobenil                               | 1194–1–65–6 | 1                  |                      | 100 (45.4)              |
| Dichlone                                  | 117–80–6    | 1                  |                      | 1 (0.454)               |
| Dichlorobenzene                           | 25321–22–6  | 1                  |                      | 100 (45.4)              |
| 1,2-Dichlorobenzene                       | 95–50–1     | 1,2,4              | U070                 | 100 (45.4)              |
| 1,3-Dichlorobenzene                       | 541–73–1    | 2,4                | U071                 | 100 (45.4)              |
| 1,4-Dichlorobenzene                       | 106–46–7    | 1,2,3,4            | U072                 | 100 (45.4)              |
| m-Dichlorobenzene                         | 541–73–1    | 2,4                | U071                 | 100 (45.4)              |
| o-Dichlorobenzene                         | 95–50–1     | 1,2,4              | U070                 | 100 (45.4)              |
| p-Dichlorobenzene                         | 106–46–7    | 1,2,3,4            | U072                 | 100 (45.4)              |
| DICHLOROBENZIDINE                         | N.A.        | 2                  |                      | **                      |
| 3,3'-Dichlorobenzidine                    | 91–94–1     | 2,3,4              | U073                 | 1 (0.454)               |
| Dichlorobromomethane                      | 75–27–4     | 2                  |                      | 5000 (2270)             |
| 1,4-Dichloro-2-butene                     | 764–41–0    | 4                  | U074                 | 1 (0.454)               |
| Dichlorodifluoromethane                   | 75–71–8     | 4                  | U075                 | 5000 (2270)             |
| 1,1-Dichloroethane                        | 75–34–3     | 2,3,4              | U076                 | 1000 (454)              |
| 1,2-Dichloroethane                        |             | 1,2,3,4            | U077                 | 100 (45.4)              |
| 1,1-Dichloroethylene                      | 75–35–4     | 1,2,3,4            | U078                 | 100 (45.4)              |
| 1,2-Dichloroethylene                      | 156–60–5    | 2,4                | U079                 | 1000 (454)              |
| Dichloroethyl ether                       | 111–44–4    | 2,3,4              | U025                 | 10 (4.54)               |
| Dichloroisopropyl ether                   | 108–60–1    | 2,4                | U027                 | 1000 (454)              |
| Dichloromethane                           |             | 2,3,4              | U080                 | 1000 (454)              |
| Dichloromethoxyethane                     |             | 2,4                | U024                 | 1000 (454)              |
| Dichloromethyl ether                      |             | 2,3,4              | P016                 | 10 (4.54)               |
| 2,4-Dichlorophenol                        |             | 2,4                | U081                 | 100 (45.4)              |
| 2,6-Dichlorophenol                        |             | 4                  | U082                 | 100 (45.4)              |
| Dichlorophenylarsine                      | 696–28–6    | 4                  | P036                 | 1 (0.454)               |
| Dichloropropane                           | 26638–19–7  | 1                  |                      | 1000 (454)              |
| 1,1-Dichloropropane                       |             |                    |                      |                         |
| 1,3-Dichloropropane                       |             |                    |                      |                         |
| 1,2-Dichloropropane                       |             | 1,2,3,4            | U083                 | 1000 (454)              |
| Dichloropropane—Dichloropropene (mixture) |             | 1                  |                      | 100 (45.4)              |
| Dichloropropene                           |             | 1                  |                      | 100 (45.4)              |
| 2,3-Dichloropropene                       | 78–88–6     |                    |                      |                         |
| 1,3-Dichloropropene                       |             | 1,2,3,4            | U084                 | 100 (45.4)              |
| 2,2-Dichloropropionic acid                |             | 1                  |                      | 5000 (2270)             |
| Dichlorvos                                |             | 1,3                |                      | 10 (4.54)               |
| Dicofol                                   |             | 1                  |                      | 10 (4.54)               |
| Dieldrin                                  |             | 1,2,4              | P037                 | 1 (0.454)               |
| 1,2:3,4-Diepoxybutane                     |             | 4                  | U085                 | 10 (4.54)               |
| Diethanolamine                            |             | 3                  |                      | 100 (45.4)              |
| Diethylamine                              |             | 1                  |                      | 100 (45.4)              |
| N,N-Diethylaniline                        |             | 3                  |                      | 1000 (454)              |
| Diethylarsine                             |             | 4                  | P038                 | 1 (0.454)               |
| 1,4-Diethyleneoxide                       | 123–91–1    | 3,4                | U108                 | 100 (45.4)              |
| Diethylhexyl phthalate                    | 117–81–7    | 2,3,4              | U028                 | 100 (45.4)              |
| N,N'-Diethylhydrazine                     |             | 4                  | U086                 | 10 (4.54)               |
| O,O-Diethyl S-methyl dithiophosphate      |             | 4                  | U087                 | 5000 (2270)             |
| Diethyl-p-nitrophenyl phosphate           |             | 4                  | P041                 | 100 (45.4)              |
| Diethyl phthalate                         | 84–66–2     | 2,4                | U088                 | 1000 (454)              |

| -                                                                                                                                                                                  |                   | -                  | 1                    |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|----------------------|-------------------------|
| Hazardous substance                                                                                                                                                                | CASRN             | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
| O,O-Diethyl O-pyrazinyl phosphorothioate                                                                                                                                           | 297–97–2          | 4                  | P040                 | 100 (45.4)              |
| Diethylstilbestrol                                                                                                                                                                 | 56-53-1           | 4                  | U089                 | 1 (0.454)               |
|                                                                                                                                                                                    |                   |                    | 0003                 |                         |
| Diethyl sulfate                                                                                                                                                                    | 64-67-5           | 3                  | 11000                | 10 (4.54)               |
| Dihydrosafrole                                                                                                                                                                     | 94–58–6           | 4                  | U090                 | 10 (4.54)               |
| Diisopropylfluorophosphate (DFP)                                                                                                                                                   | 55–91–4           | 4                  | P043                 | 100 (45.4)              |
| 1,4:5,8-Dimethanonaphthalene, 1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-<br>hexahydro-, (1alpha,4alpha,4abeta,5alpha, 8alpha,8abeta)                                                  | 309–00–2          | 1,2,4              | P004                 | 1 (0.454)               |
| 1,4:5,8-Dimethanonaphthalene, 1,2,3,4,10,10-hexachloro- 1,4,4a,5,8,8a-<br>hexahydro-, (1alpha,4alpha,4abeta, 5beta,8beta,8abeta)                                                   | 465–73–6          | 4                  | P060                 | 1 (0.454)               |
| 2,7:3,6-Dimethanonaphth[2,3-b]oxirene,3,4,5,6,9,9-hexachloro-<br>1a,2,2a,3,6,6a,7,7a-octahydro-,(1aalpha,2beta,<br>2aalpha,3beta,6beta,6aalpha, 7beta,7aalpha)                     | 60–57–1           | 1,2,4              | P037                 | 1 (0.454)               |
| 2,7:3,6-Dimethanonaphth[2, 3-b]oxirene,3,4,5,6,9,9- hexachloro-<br>1a,2,2a,3,6,6a,7,7a- octahydro-,(1aalpha,2beta, 2abeta,3alpha,6alpha,<br>6abeta,7beta,7aalpha)-, & metabolites. | 72–20–8           | 1,2,4              | P051                 | 1 (0.454)               |
| Dimethoate                                                                                                                                                                         | 60–51–5           | 4                  | P044                 | 10 (4.54)               |
|                                                                                                                                                                                    |                   |                    | -                    |                         |
| 3,3'-Dimethoxybenzidine                                                                                                                                                            | 119-90-4          | 3,4                | U091                 | 100 (45.4)              |
| Dimethylamine                                                                                                                                                                      | 124–40–3          | 1,4                | U092                 | 1000 (454)              |
| Dimethyl aminoazobenzene                                                                                                                                                           | 60–11–7           | 3,4                | U093                 | 10 (4.54)               |
| p-Dimethylaminoazobenzene                                                                                                                                                          | 60–11–7           | 3,4                | U093                 | 10 (4.54)               |
| N,N-Dimethylaniline                                                                                                                                                                | 121-69-7          | 3                  |                      | 100 (45.4)              |
| 7,12-Dimethylbenz[a]anthracene                                                                                                                                                     | 57–97–6           | 4                  | U094                 | 1 (0.454)               |
| 3,3'-Dimethylbenzidine                                                                                                                                                             | 119–93–7          | 3,4                | U095                 | 10 (4.54)               |
| alpha,alpha-Dimethylbenzylhydroperoxide                                                                                                                                            | 80–15–9           | 4                  | U096                 | 10 (4.54)               |
| Dimethylcarbamoyl chloride                                                                                                                                                         | 79–44–7           | 3,4                | U097                 | 1 (0.454)               |
|                                                                                                                                                                                    |                   | 3,4                | 0037                 |                         |
| Dimethylformamide                                                                                                                                                                  | 68–12–2           |                    | 11000                | 100 (45.4)              |
| 1,1-Dimethylhydrazine                                                                                                                                                              | 57-14-7           | 3,4                |                      | 10 (4.54)               |
| 1,2-Dimethylhydrazine                                                                                                                                                              | 540-73-8          | 4                  | U099                 | 1 (0.454)               |
| alpha,alpha-Dimethylphenethylamine                                                                                                                                                 | 122–09–8          | 4                  | P046                 | 5000 (2270)             |
| 2,4-Dimethylphenol                                                                                                                                                                 | 105–67–9          | 2,4                | U101                 | 100 (45.4)              |
| Dimethyl phthalate                                                                                                                                                                 | 131–11–3          | 2,3,4              | U102                 | 5000 (2270)             |
| Dimethyl sulfate                                                                                                                                                                   | 77–78–1           | 3,4                | U103                 | 100 (45.4)              |
| Dinitrobenzene (mixed)                                                                                                                                                             | 25154–54–5        | 1                  |                      | 100 (45.4)              |
| m-Dinitrobenzene                                                                                                                                                                   | 99–65–0           |                    |                      |                         |
| o-Dinitrobenzene                                                                                                                                                                   | 528-29-0          |                    |                      |                         |
| p-Dinitrobenzene                                                                                                                                                                   | 100-25-4          |                    |                      |                         |
| 4,6-Dinitro-o-cresol, and salts                                                                                                                                                    | 534-52-1          | 2,3,4              | P047                 | 10 (4.54)               |
| Dinitrophenol                                                                                                                                                                      | 25550-58-7        | 2,0,4              | 1 047                | 10 (4.54)               |
|                                                                                                                                                                                    |                   | 1                  |                      | 10 (4.34)               |
| 2,5-Dinitrophenol                                                                                                                                                                  | 329-71-5          |                    |                      |                         |
| 2,6-Dinitrophenol                                                                                                                                                                  | 573-56-8          | 4 0 0 4            | 5040                 | 40 (4 5 4)              |
| 2,4-Dinitrophenol                                                                                                                                                                  | 51–28–5           | 1,2,3,4            | P048                 | 10 (4.54)               |
| Dinitrotoluene                                                                                                                                                                     | 25321–14–6        | 1,2                |                      | 10 (4.54)               |
| 3,4-Dinitrotoluene                                                                                                                                                                 | 610–39–9          |                    |                      |                         |
| 2,4-Dinitrotoluene                                                                                                                                                                 | 121–14–2          | 1,2,3,4            | U105                 | 10 (4.54)               |
| 2,6-Dinitrotoluene                                                                                                                                                                 | 606–20–2          | 1,2,4              | U106                 | 100 (45.4)              |
| Dinoseb                                                                                                                                                                            | 88-85-7           | 4                  | P020                 | 1000 (454)              |
| Di-n-octyl phthalate                                                                                                                                                               | 117-84-0          | 2,4                | U107                 | 5000 (2270)             |
| 1,4-Dioxane                                                                                                                                                                        | 123–91–1          | 3,4                | U108                 | 100 (45.4)              |
| DIPHENYLHYDRAZINE                                                                                                                                                                  | N.A.              | 2                  |                      | **                      |
| 1,2-Diphenylhydrazine                                                                                                                                                              | 122-66-7          | 2,3,4              | U109                 | 10 (4.54)               |
| Diphosphoramide, octamethyl-                                                                                                                                                       | 152-16-9          | 2,0,4              | P085                 | 100 (45.4)              |
| Diphosphoria acid, totraothyl ostar                                                                                                                                                |                   |                    |                      | 10 (4.54)               |
| Diphosphoric acid, tetraethyl ester                                                                                                                                                | 107-49-3          | 1,4                |                      |                         |
| Dipropylamine                                                                                                                                                                      | 142-84-7          | 4                  | U110                 | 5000 (2270)             |
| Di-n-propyInitrosamine                                                                                                                                                             | 621-64-7          | 2,4                | U111                 | 10 (4.54)               |
| Diquat                                                                                                                                                                             | 85–00–7           | 1                  |                      | 1000 (454)              |
|                                                                                                                                                                                    | 2764–72–9         |                    |                      |                         |
| Disulfoton                                                                                                                                                                         | 298–04–4          | 1,4                | P039                 | 1 (0.454)               |
| Dithiobiuret                                                                                                                                                                       | 541–53–7          | 4                  | P049                 | 100 (45.4)              |
| 1,3-Dithiolane-2- carboxaldehyde, 2,4- dimethyl-O- [(methylamino)carbonyl] oxime (Tirpate).                                                                                        | 26419-73-8        | 4                  | P185                 | ##                      |
| Diuron                                                                                                                                                                             | 330-54-1          | 1                  |                      | 100 (45.4)              |
| Dodecylbenzenesulfonic acid                                                                                                                                                        | 27176-87-0        | 1                  |                      | 1000 (454)              |
| Endosulfan                                                                                                                                                                         | 115–29–7          | 1,2,4              | P050                 | 1 (0.454)               |
| alpha-Endosulfan                                                                                                                                                                   | 959–98–8          | 2                  |                      | 1 (0.454)               |
| h she Fu de sulfeu                                                                                                                                                                 |                   | 0                  | 1                    | 1 (0.454)               |
| beta-Endosulfan                                                                                                                                                                    | 33213-65-9        | 2                  |                      | 1 (0.4047               |
|                                                                                                                                                                                    |                   |                    |                      | **                      |
| ENDOSULFAN AND METABOLITES                                                                                                                                                         | N.A.              | 2                  |                      | **                      |
| ENDOSULFAN AND METABOLITES<br>Endosulfan sulfate                                                                                                                                   | N.A.<br>1031–07–8 | 2                  | P088                 | 1 (0.454)               |
| ENDOSULFAN AND METABOLITES                                                                                                                                                         | N.A.              | 2                  | P088<br>P051         | **                      |

| Hazardous substance                                                                                | CASRN                                                        | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg)                |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|----------------------|----------------------------------------|
| Endrin aldehyde                                                                                    | 7421–93–4                                                    | 2                  |                      | 1 (0.454)                              |
| ENDRIN AND METABOLITES                                                                             | N.A.                                                         | 2                  |                      | **                                     |
| Endrin, & metabolites                                                                              | 72–20–8                                                      | 1,2,4              | P051                 | 1 (0.454)                              |
| Epichlorohydrin                                                                                    | 106–89–8                                                     | 1,3,4              | U041                 | 100 (45.4)                             |
| Epinephrine                                                                                        | 51–43–4                                                      | 4                  | P042                 | 1000 (454)                             |
| 1,2-Epoxybutane                                                                                    | 106-88-7                                                     | 3                  |                      | 100 (45.4)                             |
| Ethanal                                                                                            | 75-07-0                                                      | 1,3,4              | U001                 | 1000 (454)                             |
| Ethanamine, N,N-diethyl-                                                                           | 121-44-8                                                     | 1,3,4              | U404                 | 5000 (2270)                            |
| Ethanamine, N-ethyl-N-nitroso-                                                                     | 55-18-5                                                      | 4                  | U174                 | 1 (0.454)                              |
| 1,2-Ethanediamine, N,N-dimethyl-N'-2- pyridinyl-N'-(2- thienylmethyl)<br>Ethane, 1,2-dibromo-      | 91–80–5<br>106–93–4                                          | -                  | U155<br>U067         | 5000 (2270)<br>1 (0.454)               |
| Ethane, 1,1-dichloro-                                                                              | 75-34-3                                                      | 1,3,4<br>2,3,4     | U076                 | 1000 (454)                             |
| Ethane, 1,2-dichloro-                                                                              | 107-06-2                                                     | 1,2,3,4            | U077                 | 100 (45.4)                             |
| Ethanedinitrile                                                                                    | 460–19–5                                                     | 4                  | P031                 | 100 (45.4)                             |
| Ethane, hexachloro-                                                                                | 67-72-1                                                      | 2,3,4              | U131                 | 100 (45.4)                             |
| Ethane, 1,1'-[methylenebis(oxy)]bis[2- chloro                                                      | 111–91–1                                                     | 2,4                | U024                 | 1000 (454)                             |
| Ethane, 1,1'-oxybis                                                                                | 60-29-7                                                      | 4                  | U117                 | 100 (45.4)                             |
| Ethane, 1,1'-oxybis[2-chloro                                                                       | 111–44–4                                                     | 2,3,4              | U025                 | 10 (4.54)                              |
| Ethane, pentachloro                                                                                | 76–01–7                                                      | 4                  | U184                 | 10 (4.54)                              |
| Ethane, 1,1,1,2-tetrachloro                                                                        | 630–20–6                                                     | 4                  | U208                 | 100 (45.4)                             |
| Ethane, 1,1,2,2-tetrachloro                                                                        | 79–34–5                                                      | 2,3,4              | U209                 | 100 (45.4)                             |
| Ethanethioamide                                                                                    | 62-55-5                                                      | 4                  | U218                 | 10 (4.54)                              |
| Ethane, 1,1,1-trichloro-                                                                           | 71–55–6                                                      | 2,3,4              | U226                 | 1000 (454)                             |
| Ethane, 1,1,2-trichloro<br>Ethanimidothioic acid, 2-(dimethylamino)-N-hydroxy-2-oxo-, methyl ester | 79–00–5<br>30558–43–1                                        | 2,3,4<br>4         | U227<br>U394         | 100 (45.4)                             |
| (A2213).<br>Ethanimidothioic acid, 2-(dimethylamino)-N-[[(methylamino)carbonyl]oxy]-2-oxo-         | 23135–22–0                                                   | 4                  | P194                 | ##                                     |
| , methyl ester (Oxamyl).<br>Ethanimidothioic acid, N-[[(methylamino) carbonyl]oxy]-, methyl ester  | 16752–77–5                                                   | 4                  | P066                 | 100 (45.4)                             |
| Ethanimidothioic acid, N,N'[thiobis[(methylimino) carbonyloxy]]bis-, dimethyl ester (Thiodicarb).  | 59669–26–0                                                   | 4                  | U410                 | ##                                     |
| Ethanol, 2-ethoxy-                                                                                 | 110-80-5                                                     | 4                  | U359                 | 1000 (454)                             |
| Ethanol, 2,2'-(nitrosoimino)bis                                                                    | 1116-54-7                                                    | 4                  | U173                 | 1 (0.454)                              |
| Ethanol, 2,2'-oxybis-, dicarbamate (Diethylene glycol, dicarbamate)                                | 5952-26-1                                                    | 4                  | U395                 | ) <i>##</i>                            |
| Ethanone, 1-phenyl                                                                                 | 98-86-2                                                      | 3,4                | U004                 | 5000 (2270)                            |
| Ethene, chloro                                                                                     | 75–01–4                                                      | 2,3,4              | U043                 | 1 (0.454)                              |
| Ethene, (2-chloroethoxy)                                                                           | 110-75-8                                                     | 2,4                | U042                 | 1000 (454)                             |
| Ethene, 1,1-dichloro-                                                                              | 75-35-4                                                      | 1,2,3,4            | U078                 | 100 (45.4)                             |
| Ethene, 1,2-dichloro-(E)<br>Ethene, tetrachloro-                                                   | 156–60–5<br>127–18–4                                         | 2,4                | U079<br>U210         | 1000 (454)                             |
| Ethene, trichloro-                                                                                 | 79–01–6                                                      | 2,3,4<br>1,2,3,4   | U228                 | 100 (45.4) 100 (45.4)                  |
| Ethion                                                                                             | 563-12-2                                                     | 1,2,3,4            | 0220                 | 10 (4.54)                              |
| Ethyl acetate                                                                                      | 141-78-6                                                     | 4                  | U112                 | 5000 (2270)                            |
| Ethyl acrylate                                                                                     | 140-88-5                                                     | 3,4                | U113                 | 1000 (454)                             |
| Ethylbenzene                                                                                       | 100-41-4                                                     | 1,2,3              |                      | 1000 (454)                             |
| Ethyl carbamate                                                                                    | 51-79-6                                                      | 3,4                | U238                 | 100 (45.4)                             |
| Ethyl chloride                                                                                     | 75–00–3                                                      | 2,3                |                      | 100 (45.4)                             |
| Ethyl cyanide                                                                                      | 107–12–0                                                     | 4                  | P101                 | 10 (4.54)                              |
| Ethylenebisdithiocarbamic acid, salts & esters                                                     | 111-54-6                                                     | 4                  | U114                 | 5000 (2270)                            |
| Ethylenediamine                                                                                    | 107–15–3                                                     | 1                  |                      | 5000 (2270)                            |
| Ethylenediamine-tetraacetic acid (EDTA)                                                            | 60-00-4                                                      | 1                  | 11007                | 5000 (2270)                            |
| Ethylene dibromide                                                                                 | 106-93-4                                                     | 1,3,4              | U067                 | 1 (0.454)                              |
| Ethylene dichloride                                                                                | 107-06-2                                                     | 1,2,3,4            | U077                 | 100 (45.4)                             |
| Ethylene glycol                                                                                    | 107–21–1<br>110–80–5                                         | 3                  | U359                 | 5000 (2270)<br>1000 (454)              |
| Ethylene glycol monoethyl ether<br>Ethylene oxide                                                  | 75–21–8                                                      | 4<br>3,4           | U115                 | 10 (4.54)                              |
| Ethylenethiourea                                                                                   | 96-45-7                                                      | 3,4                | U116                 | 10 (4.54)                              |
| Ethylenimine                                                                                       | 151–56–4                                                     | 3,4                | P054                 | 1 (0.454)                              |
| Ethyl ether                                                                                        | 60–29–7                                                      | 4                  | U117                 | 100 (45.4)                             |
| Ethylidene dichloride                                                                              | 75–34–3                                                      | 2,3,4              | U076                 | 1000 (454)                             |
| Ethyl methacrylate                                                                                 | 97–63–2                                                      | 4                  | U118                 | 1000 (454)                             |
| Ethyl methanesulfonate                                                                             | 00 50 0                                                      | 4                  | U119                 | 1 (0.454)                              |
| Famphur                                                                                            | 62–50–0                                                      |                    | D007                 | 1000 (454)                             |
|                                                                                                    | 52-85-7                                                      | 4                  | P097                 |                                        |
| Ferric ammonium citrate                                                                            | 52–85–7<br>1185–57–5                                         | 1                  | P097                 | 1000 (454)                             |
| Ferric ammonium citrate<br>Ferric ammonium oxalate                                                 | 52–85–7<br>1185–57–5<br>2944–67–4                            |                    | P097                 |                                        |
| Ferric ammonium oxalate                                                                            | 52–85–7<br>1185–57–5<br>2944–67–4<br>55488–87–4<br>7705–08–0 | 1<br>1<br>1        | P097                 | 1000 (454)<br>1000 (454)<br>1000 (454) |
| Ferric ammonium oxalate                                                                            | 52–85–7<br>1185–57–5<br>2944–67–4<br>55488–87–4              | 1                  | P097                 | 1000 (454)<br>1000 (454)               |

| Hazardous substance                                          | CASRN        | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg)  |
|--------------------------------------------------------------|--------------|--------------------|----------------------|--------------------------|
| Ferric sulfate                                               | . 10028–22–5 | 1                  |                      | 1000 (454)               |
| Ferrous ammonium sulfate                                     | . 10045–89–3 | 1                  |                      | 1000 (454)               |
| Ferrous chloride                                             |              | 1                  |                      | 100 (45.4)               |
| Ferrous sulfate                                              |              | 1                  |                      | 1000 (454)               |
| Eine mineral fibera c                                        | 7782-63-0    | 3                  |                      | **                       |
| Fine mineral fibers °<br>Fluoranthene                        |              | 3<br>2,4           | U120                 | 100 (45.4)               |
| Fluorene                                                     |              | 2,4                | 0120                 | 5000 (2270)              |
| Fluorine                                                     |              | 4                  | P056                 | 10 (4.54)                |
| Fluoroacetamide                                              |              | 4                  | P057                 | 100 (45.4)               |
| Fluoroacetic acid, sodium salt                               |              | 4                  | P058                 | 10 (4.54)                |
| Formaldehyde                                                 |              | 1,3,4              | U122                 | 100 (45.4)               |
| Formic acid                                                  | . 64–18–6    | 1,4                | U123                 | 5000 (2270)              |
| Fulminic acid, mercury(2+)salt                               |              | 4                  | P065                 | 10 (4.54)                |
| Fumaric acid                                                 |              | 1                  |                      | 5000 (2270)              |
| Furan                                                        |              | 4                  | U124                 | 100 (45.4)               |
| 2-Furancarboxaldehyde                                        |              | 1,4                | U125                 | 5000 (2270)              |
| 2,5-Furandione<br>Furan, tetrahydro                          |              | 1,3,4              | U147<br>U213         | 5000 (2270) 1000 (454)   |
| Furfural                                                     |              | 4<br>1,4           | U125                 | 5000 (2270)              |
| Furfuran                                                     |              | 4                  | U124                 | 100 (45.4)               |
| Glucopyranose, 2-deoxy-2-(3-methyl-3-nitrosoureido)-,D-      |              | 4                  | U206                 | 1 (0.454)                |
| D-Glucose, 2-deoxy-2-[[(methylnitrosoamino)-carbonyl]amino]- |              | 4                  | U206                 | 1 (0.454)                |
| Glycidylaldehyde                                             | . 765–34–4   | 4                  | U126                 | 10 (4.54)                |
| Glycol ethers d                                              | . N.A.       | 3                  |                      | **                       |
| Guanidine, N-methyl-N'-nitro-N-nitroso-                      | . 70–25–7    | 4                  | U163                 | 10 (4.54)                |
| Guthion                                                      |              | 1                  |                      | 1 (0.454)                |
| HALOETHERS                                                   |              | 2                  |                      | **                       |
| HALOMETHANES                                                 |              | 2                  | DOCO                 |                          |
|                                                              |              | 1,2,3,4            | P059                 | 1 (0.454)                |
| HEPTACHLOR AND METABOLITES                                   |              | 2                  |                      | 1 (0.454)                |
| Hexachlorobenzene                                            |              | 2,3,4              | U127                 | 10 (4.54)                |
| Hexachlorobutadiene                                          |              | 2,3,4              | U128                 | 1 (0.454)                |
| HEXACHLOROCYCLOHEXANE (all isomers)                          |              | 2                  |                      | **                       |
| Hexachlorocyclopentadiene                                    | . 77–47–4    | 1,2,3,4            | U130                 | 10 (4.54)                |
| Hexachloroethane                                             |              | 2,3,4              | U131                 | 100 (45.4)               |
| Hexachlorophene                                              |              | 4                  | U132                 | 100 (45.4)               |
| Hexachloropropene                                            |              | 4                  | U243                 | 1000 (454)               |
| Hexaethyl tetraphosphate<br>Hexamethylene-1,6-diisocyanate   |              | 4<br>3             | P062                 | 100 (45.4)<br>100 (45.4) |
| Hexamethylphosphoramide                                      |              | 3                  |                      | 1 (0.454)                |
| Hexane                                                       |              | 3                  |                      | 5000 (2270)              |
| Hexone                                                       |              | 3,4                | U161                 | 5000 (2270)              |
| Hydrazine                                                    | . 302–01–2   | 3,4                | U133                 | 1 (0.454)                |
| Hydrazinecarbothioamide                                      | . 79–19–6    | 4                  | P116                 | 100 (45.4)               |
| Hydrazine, 1,2-diethyl-                                      |              | 4                  | U086                 | 10 (4.54)                |
| Hydrazine, 1,1-dimethyl-                                     |              | 3,4                | U098                 | 10 (4.54)                |
| Hydrazine, 1,2-dimethyl-                                     |              | 4                  | U099                 | 1 (0.454)                |
| Hydrazine, 1,2-diphenyl-                                     |              | 2,3,4              | U109<br>P068         | 10 (4.54) 10 (4.54)      |
| Hydrazine, methyl-<br>Hydrochloric acid                      |              | 3,4<br>1,3         | F 000                | 5000 (2270)              |
| Hydrocyanic acid                                             |              | 1,3                | P063                 | 10 (4.54)                |
| Hydrofluoric acid                                            |              | 1,3,4              | U134                 | 100 (45.4)               |
| Hydrogen chloride                                            |              | 1,3                |                      | 5000 (2270)              |
| Hydrogen cyanide                                             |              | 1,4                | P063                 | 10 (4.54)                |
| Hydrogen fluoride                                            |              | 1,3,4              | U134                 | 100 (45.4)               |
| Hydrogen phosphide                                           |              | 3,4                | P096                 | 100 (45.4)               |
| Hydrogen sulfide H2S                                         |              | 1,4                | U135                 | 100 (45.4)               |
| Hydroperoxide, 1-methyl-1-phenylethyl-                       |              | 4                  | U096                 | 10 (4.54)                |
| Hydroquinone                                                 |              | 3                  | 11116                | 100 (45.4)               |
| 2-Imidazolidinethione                                        | . 96-45-7    | 3,4                | U116                 | 10 (4.54)                |
| Indeno(1,2,3-cd)pyrene                                       |              | 2,4                | U137<br>U138         | 100 (45.4)               |
| lodomethane<br>1,3-Isobenzofurandione                        |              | 3,4<br>3,4         | U138<br>U190         | 100 (45.4) 5000 (2270)   |
| Isobutyl alcohol                                             |              | 3,4                | U140                 | 5000 (2270)              |
|                                                              |              | 4                  | P060                 |                          |
| Isodrin                                                      | . 400-/0-0   |                    |                      | 1 (0.404)                |
| Isodrin Isophorone                                           |              | 2,3                | 1 000                | 1 (0.454) 5000 (2270)    |

| Hazardous substance                                                                                                                                      | CASRN                                                  | Statutory<br>code†       | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg)              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------|----------------------|--------------------------------------|
| Isopropanolamine dodecylbenzenesulfonate                                                                                                                 | 42504-46-1                                             | 1                        |                      | 1000 (454)                           |
| Isosafrole                                                                                                                                               | 120–58–1                                               | 4                        | U141                 | 100 (45.4)                           |
| 3(2H)-Isoxazolone, 5–(aminomethyl)-                                                                                                                      | 2763-96-4                                              | 4                        | P007                 | 1000 (454)                           |
| Kepone                                                                                                                                                   | 143-50-0                                               | 1,4                      | U142                 | 1 (0.454)                            |
| Lasiocarpine                                                                                                                                             | 303-34-4                                               | 4                        | U143                 | 10 (4.54)                            |
| Lead‡‡                                                                                                                                                   | 7439–92–1                                              | 2                        |                      | 10 (4.54)                            |
| Lead acetate                                                                                                                                             | 301-04-2                                               | 1,4                      | U144                 | 10 (4.54)                            |
| LEAD AND COMPOUNDS                                                                                                                                       | N.A.                                                   | 2,3                      |                      | **                                   |
| Lead arsenate                                                                                                                                            | 7784-40-9                                              | 1                        |                      | 1 (0.454)                            |
|                                                                                                                                                          | 7645-25-2                                              |                          |                      |                                      |
|                                                                                                                                                          | 10102-48-4                                             |                          |                      |                                      |
| Lead, bis(acetato-O)tetrahydroxytri                                                                                                                      | 1335–32–6                                              | 4                        | U146                 | 10 (4.54)                            |
| Lead chloride                                                                                                                                            | 7758–95–4                                              | 1                        | 0110                 | 10 (4.54)                            |
| Lead compounds                                                                                                                                           | N.A.                                                   | 2,3                      |                      | **                                   |
| Lead fluoborate                                                                                                                                          | 13814–96–5                                             | 2,0                      |                      | 10 (4.54)                            |
| Lead fluoride                                                                                                                                            | 7783-46-2                                              | 1                        |                      | 10 (4.54)                            |
|                                                                                                                                                          | 10101-63-0                                             | 1                        |                      | 10 (4.54)                            |
| Lead ritrate                                                                                                                                             |                                                        | 1                        |                      |                                      |
| Lead nitrate                                                                                                                                             | 10099-74-8                                             |                          | 114.45               | 10 (4.54)                            |
| Lead phosphate                                                                                                                                           | 7446-27-7                                              | 4                        | U145                 | 10 (4.54)                            |
| Lead stearate                                                                                                                                            | 1072-35-1                                              | 1                        |                      | 10 (4.54)                            |
|                                                                                                                                                          | 7428–48–0                                              |                          |                      |                                      |
|                                                                                                                                                          | 52652–59–2                                             |                          |                      |                                      |
|                                                                                                                                                          | 56189–09–4                                             |                          |                      |                                      |
| Lead subacetate                                                                                                                                          | 1335–32–6                                              | 4                        | U146                 | 10 (4.54)                            |
| Lead sulfate                                                                                                                                             | 7446–14–2                                              | 1                        |                      | 10 (4.54)                            |
|                                                                                                                                                          | 15739-80-7                                             |                          |                      |                                      |
| Lead sulfide                                                                                                                                             | 1314-87-0                                              | 1                        |                      | 10 (4.54)                            |
| Lead thiocyanate                                                                                                                                         | 592-87-0                                               | 1                        |                      | 10 (4.54)                            |
| Lindane                                                                                                                                                  | 58-89-9                                                | 1,2,3,4                  | U129                 | 1 (0.454)                            |
| Lindane (all isomers)                                                                                                                                    | 58-89-9                                                | 1,2,3,4                  | U129                 | 1 (0.454)                            |
| Lithium chromate                                                                                                                                         | 14307-35-8                                             | 1                        |                      | 10 (4.54)                            |
| Malathion                                                                                                                                                | 121-75-5                                               | 1                        |                      | 100 (45.4)                           |
| Maleic acid                                                                                                                                              | 110-16-7                                               | 1                        |                      | 5000 (2270)                          |
| Maleic anhydride                                                                                                                                         | 108–31–6                                               | 1,3,4                    | U147                 | 5000 (2270)                          |
| Maleic hydrazide                                                                                                                                         | 123-33-1                                               | 4                        | U148                 | 5000 (2270)                          |
| Malerc Hydrazide                                                                                                                                         | 109-77-3                                               | 4                        | U149                 | 1000 (454)                           |
| Malononiune Manganese, bis(dimethylcarbamodithioato-S,S')-Manganese dimethyldithio-                                                                      | 15339–36–3                                             | 4                        | P196                 | 1000 (434)                           |
| carbamate).                                                                                                                                              | 10000 00 0                                             |                          | 1 100                |                                      |
| Manganese Compounds                                                                                                                                      | N.A.                                                   | 3                        |                      | **                                   |
| MDI                                                                                                                                                      | 101–68–8                                               | 3                        |                      | 5000 (2270)                          |
| MEK                                                                                                                                                      | 78–93–3                                                | 3,4                      | U159                 | 5000 (2270)                          |
| Melphalan                                                                                                                                                | 148-82-3                                               | 4                        | U150                 | 1 (0.454)                            |
| Mercaptodimethur                                                                                                                                         | 2032-65-7                                              | 1,4                      | P199                 | 10 (4.54)                            |
| Mercuric cyanide                                                                                                                                         | 592-04-1                                               | .,.                      | 1 100                | 1(0.454)                             |
| Mercuric nitrate                                                                                                                                         | 10045-94-0                                             | 1                        |                      | 10 (4.54)                            |
| Mercuric sulfate                                                                                                                                         | 7783–35–9                                              | 1                        |                      | 10 (4.54)                            |
|                                                                                                                                                          | 592-85-8                                               | 1                        |                      | 10 (4.54)                            |
| Mercuric thiocyanate                                                                                                                                     |                                                        |                          |                      |                                      |
| Mercurous nitrate                                                                                                                                        | 10415-75-5                                             | 1                        | 11454                | 10 (4.54)                            |
| Mercury                                                                                                                                                  | 7782-86-7                                              | 2,3,4                    | U151                 | 1 (0.454)                            |
|                                                                                                                                                          | 7439–97–6                                              | 0.0                      |                      | **                                   |
| MERCURY AND COMPOUNDS                                                                                                                                    | N.A.                                                   | 2,3                      | Dooo                 | 100 (15 1)                           |
| Mercury, (acetato-O)phenyl-                                                                                                                              | 62-38-4                                                | 4                        | P092                 | 100 (45.4)                           |
| Mercury Compounds                                                                                                                                        | N.A.                                                   | 2,3                      | <b>D</b> 005         | **                                   |
| Mercury fulminate                                                                                                                                        | 628-86-4                                               | 4                        | P065                 | 10 (4.54)                            |
| Methacrylonitrile                                                                                                                                        | 126–98–7                                               | 4                        | U152                 | 1000 (454)                           |
| Methanamine, N-methyl                                                                                                                                    | 124–40–3                                               | 1,4                      | U092                 | 1000 (454)                           |
| Methanamine, N-methyl-N-nitroso-                                                                                                                         | 62–75–9                                                | 2,3,4                    | P082                 | 10 (4.54)                            |
| Methane, bromo                                                                                                                                           | 74–83–9                                                | 2,3,4                    | U029                 | 1000 (454)                           |
| Methane, chloro-                                                                                                                                         | 74–87–3                                                | 2,3,4                    | U045                 | 100 (45.4)                           |
| Methane, chloromethoxy                                                                                                                                   | 107-30-2                                               | 3,4                      | U046                 | 10 (4.54)                            |
|                                                                                                                                                          | 74–95–3                                                | 4                        | U068                 | 1000 (454)                           |
| Methane, dibromo-                                                                                                                                        | 75-09-2                                                | 2,3,4                    | U080                 | 1000 (454)                           |
|                                                                                                                                                          |                                                        | 4                        | U075                 | 5000 (2270)                          |
| Methane, dichloro                                                                                                                                        | 75-71-8                                                |                          |                      |                                      |
| Methane, dichloro<br>Methane, dichlorodifluoro                                                                                                           | 75–71–8                                                |                          | U138                 | 100 (45.4)                           |
| Methane, dibromo-<br>Methane, dichloro-<br>Methane, dichlorodifluoro-<br>Methane, iodo-<br>Methane, isocyanato-                                          | 75–71–8<br>74–88–4                                     | 3,4                      | U138<br>P064         | 100 (45.4)                           |
| Methane, dichloro<br>Methane, dichlorodifluoro<br>Methane, iodo<br>Methane, isocyanato                                                                   | 75–71–8<br>74–88–4<br>624–83–9                         | 3,4<br>3,4               | P064                 | 10 (4.54)                            |
| Methane, dichloro<br>Methane, dichlorodifluoro<br>Methane, iodo<br>Methane, isocyanato<br>Methane, oxybis(chloro                                         | 75–71–8<br>74–88–4<br>624–83–9<br>542–88–1             | 3,4<br>3,4<br>2,3,4      | P064<br>P016         | 10 (4.54)<br>10 (4.54)               |
| Methane, dichloro<br>Methane, dichlorodifluoro<br>Methane, iodo<br>Methane, isocyanato<br>Methane, oxybis(chloro<br>Methanesulfenyl chloride, trichloro- | 75–71–8<br>74–88–4<br>624–83–9<br>542–88–1<br>594–42–3 | 3,4<br>3,4<br>2,3,4<br>4 | P064<br>P016<br>P118 | 10 (4.54)<br>10 (4.54)<br>100 (45.4) |
| Methane, dichloro<br>Methane, dichlorodifluoro<br>Methane, iodo<br>Methane, isocyanato<br>Methane, oxybis(chloro                                         | 75–71–8<br>74–88–4<br>624–83–9<br>542–88–1             | 3,4<br>3,4<br>2,3,4      | P064<br>P016         | 10 (4.54)<br>10 (4.54)               |

|                                                                                                                                                                         |                        | _                  |                      |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|----------------------|-------------------------|
| Hazardous substance                                                                                                                                                     | CASRN                  | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
| Methane, tetranitro-                                                                                                                                                    | 509–14–8               | 4                  | P112                 | 10 (4.54)               |
| Methanethiol                                                                                                                                                            | 74–93–1                | 1,4                | U153                 | 100 (45.4)              |
| Methane. tribromo-                                                                                                                                                      | 75–25–2                | 2,3,4              | U225                 | 100 (45.4)              |
| Methane, trichloro-                                                                                                                                                     | 67-66-3                | 1,2,3,4            | U044                 | 10 (4.54)               |
| Methane, trichlorofluoro-                                                                                                                                               | 75–69–4                | 4                  | U121                 | 5000 (2270)             |
| Methanimidamide, N,N-dimethyl-N'-[3-[[(methylamino)carbonyl]oxy]phenyl]-,                                                                                               | 23422-53-9             | 4                  | P198                 | ##                      |
| monohydrochloride (Formetanate hydrochloride).<br>Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-                                                                         | 17702-57-7             | 4                  | P197                 | ##                      |
| [[(methylamino)carbonyl]oxy]phenyl]-(Formparanate).<br>6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10-hexachloro- 1,5,5a,6,9,9a-                                    | 115-29-7               | 1,2,4              | P050                 | 1 (0.454)               |
| hexahydro-, 3-oxide.                                                                                                                                                    |                        |                    |                      |                         |
| 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro                                                                                                   | 76-44-8                | 1,2,3,4            | P059                 | 1 (0.454)               |
| 4,7-Methano-1H-indene, 1,2,4,5,6,7,8,8-octachloro- 2,3,3a,4,7,7a-hexahydro                                                                                              | 57-74-9                | 1,2,3,4            | U036                 | 1 (0.454)               |
| Methanol                                                                                                                                                                | 67–56–1                | 3,4                | U154                 | 5000 (2270)             |
| Methapyrilene                                                                                                                                                           | 91-80-5                | 4                  | U155                 | 5000 (2270)             |
| 1,3,4-Metheno-2H-cyclobuta[cd]pentalen-2-0one, 1,1a,3,3a,4,5,5,5a,5b,6-<br>decachlorooctahydro                                                                          | 143–50–0               | 1,4                | U142                 | 1 (0.454)               |
| Methiocarb                                                                                                                                                              | 2032–65–7              | 1,4                | P199                 | 10 (4.54)               |
| Methomyl                                                                                                                                                                | 16752-77-5             | 4                  | P066                 | 100 (45.4)              |
| Methoxychlor                                                                                                                                                            | 72-43-5                | 1,3,4              | U247                 | 1 (0.454)               |
| Methyl alcohol                                                                                                                                                          | 67–56–1                | 3,4                | U154                 | 5000 (2270)             |
| 2-Methyl aziridine                                                                                                                                                      | 75–55–8                | 3,4                | P067                 | 1 (0.454)               |
| Methyl bromide                                                                                                                                                          | 74–83–9                | 2,3,4              | U029                 | 1000 (454)              |
| 1-Methylbutadiene                                                                                                                                                       | 504-60-9               | 4                  | U186                 | 100 (45.4)              |
| Methyl chloride                                                                                                                                                         | 74–87–3                | 2,3,4              | U045                 | 100 (45.4)              |
| Methyl chlorocarbonate                                                                                                                                                  | 79–22–1                | 4                  | U156                 | 1000 (454)              |
| Methyl chloroform                                                                                                                                                       | 71–55–6                | 2,3,4              | U226                 | 1000 (454)              |
| 3-Methylcholanthrene                                                                                                                                                    | 56-49-5                | 4                  | U157                 | 10 (4.54)               |
| 4,4'-Methylenebis(2-chloroaniline)                                                                                                                                      | 101–14–4               | 3,4                | U158                 | 10 (4.54)               |
| Methylene bromide                                                                                                                                                       | 74–95–3                | 4                  | U068                 | 1000 (454)              |
| Methylene chloride                                                                                                                                                      | 75–09–2                | 2,3,4              | U080                 | 1000 (454)              |
| 4,4'-Methylenedianiline                                                                                                                                                 | 101–77–9               | 3                  |                      | 10 (4.54)               |
| Methylene diphenyl diisocyanate                                                                                                                                         | 101–68–8               | 3                  |                      | 5000 (2270)             |
| Methyl ethyl ketone                                                                                                                                                     | 78–93–3                | 3,4                | U159                 | 5000 (2270)             |
| Methyl ethyl ketone peroxide                                                                                                                                            | 1338–23–4              | 4                  | U160                 | 10 (4.54)               |
| Methyl hydrazine                                                                                                                                                        | 60-34-4                | 3,4                | P068                 | 10 (4.54)               |
| Methyl iodide                                                                                                                                                           | 74–88–4                | 3,4                | U138                 | 100 (45.4)              |
| Methyl isobutyl ketone                                                                                                                                                  | 108–10–1               | 3,4                | U161                 | 5000 (2270)             |
| Methyl isocyanate                                                                                                                                                       | 624-83-9               | 3,4                | P064                 | 10 (4.54)               |
| 2-Methyllactonitrile                                                                                                                                                    | 75–86–5                | 1,4                | P069                 | 10 (4.54)               |
| Methyl mercaptan                                                                                                                                                        | 74–93–1                | 1,4                | U153                 | 100 (45.4)              |
| Methyl methacrylate                                                                                                                                                     | 80-62-6                | 1,3,4              | U162                 | 1000 (454)              |
| Methyl parathion                                                                                                                                                        | 298-00-0               | 1,4                | P071                 | 100 (45.4)              |
| 4-Methyl-2-pentanone                                                                                                                                                    | 108-10-1               | 3,4                | U161                 | 5000 (2270)             |
| Methyl tert-butyl ether                                                                                                                                                 | 1634-04-4              | 3                  | 11404                | 1000 (454)              |
| Methylthiouracil                                                                                                                                                        | 56-04-2                | 4                  | U164                 | 10 (4.54)               |
| Mevinphos                                                                                                                                                               | 7786–34–7              | 1                  | D400                 | 10 (4.54)               |
| Mexacarbate                                                                                                                                                             | 315-18-4               | 1,4                | P128                 | 1000 (454)              |
| Mitomycin C                                                                                                                                                             | 50-07-7                | 4                  | U010                 | 10 (4.54)               |
| MNNG                                                                                                                                                                    | 70-25-7                | 4                  | U163                 | 10 (4.54)               |
| Monoethylamine                                                                                                                                                          | 75–04–7                | 1                  |                      | 100 (45.4)              |
| Monomethylamine                                                                                                                                                         | 74-89-5                | 1                  |                      | 100 (45.4)              |
| Naled<br>5,12-Naphthacenedione, 8-acetyl-10-[(3-amino-2,3,6-trideoxy-alpha-L-lyxo-<br>hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-, (8S-<br>cis) | 300–76–5<br>20830–81–3 | 1<br>4             | U059                 | 10 (4.54)<br>10 (4.54)  |
| 1-Naphthalenamine                                                                                                                                                       | 134–32–7               | 4                  | U167                 | 100 (45.4)              |
| 2-Naphthalenamine                                                                                                                                                       | 91–59–8                | 4                  | U168                 | 10 (4.54)               |
| Naphthalenamine, N,N'-bis(2-chloroethyl)-                                                                                                                               | 494-03-1               | 4                  | U026                 | 10 (4.54)               |
| Naphthalene                                                                                                                                                             | 91–20–3                | 1,2,3,4            | U165                 | 100 (45.4)              |
| Naphthalene, 2-chloro-                                                                                                                                                  | 91–20–3<br>91–58–7     | 2,4                | U047                 | 5000 (2270)             |
| 1,4-Naphthalenedione                                                                                                                                                    | 130–15–4               | 2,4                | U166                 | 5000 (2270)             |
| 2,7-Naphthalenedisulfonic acid, 3,3‡-[(3,3‡-dimethyl-(1,1‡-biphenyl)-4,4‡-diyl)-                                                                                        | 72–57–1                | 4                  | U236                 | 10 (4.54)               |
| bis(azo)]bis(5-amino-4-hydroxy)-tetrasodium salt.<br>1-Naphthalenol, methylcarbamate                                                                                    | 63–25–2                | 4 0 4              | 11270                | 100 (AE A)              |
|                                                                                                                                                                         |                        | 1,3,4              | U279                 | 100 (45.4)              |
|                                                                                                                                                                         |                        |                    |                      | 100 /10 1               |
| Naphthenic acid                                                                                                                                                         | 1338–24–5              | 1                  | 11166                | 100 (45.4)              |
| Naphthenic acid<br>1,4-Naphthoquinone                                                                                                                                   | 1338–24–5<br>130–15–4  | 1<br>4             | U166                 | 5000 (2270)             |
| Naphthenic acid                                                                                                                                                         | 1338–24–5              | 1                  | U167                 |                         |

| Hazardous substance                                                                                           | CASRN                | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg)  |
|---------------------------------------------------------------------------------------------------------------|----------------------|--------------------|----------------------|--------------------------|
| alpha-Naphthylthiourea                                                                                        | 86–88–4              | 4                  | P072                 | 100 (45.4)               |
| Nickel‡‡                                                                                                      | 7440-02-0            | 2                  |                      | 100 (45.4)               |
| Nickel ammonium sulfate                                                                                       | 15699–18–0           | 1                  |                      | 100 (45.4)               |
| NICKEL AND COMPOUNDS                                                                                          | N.A.                 | 2,3                |                      | **                       |
| Nickel carbonyl Ni(CO)4, (T-4)-                                                                               | 13463-39-3           | 4                  | P073                 | 10 (4.54)                |
| Nickel chloride                                                                                               | 7718–54–9            | 1                  |                      | 100 (45.4)               |
|                                                                                                               | 37211-05-5           |                    |                      | **                       |
| Nickel compounds                                                                                              | N.A.                 | 2,3                | D074                 |                          |
| Nickel cyanide Ni(CN)2                                                                                        | 557-19-7             | 4                  | P074                 | 10 (4.54)                |
| Nickel hydroxide                                                                                              | 12054-48-7           | 1                  |                      | 10 (4.54)                |
| Nickel nitrate                                                                                                | 14216-75-2           | 1                  |                      | 100 (45.4)               |
| Nickel sulfate                                                                                                | 7786–81–4<br>54–11–5 | 1                  | P075                 | 100 (45.4)               |
| Nicotine, & salts                                                                                             | 7697–37–2            | 4                  | F075                 | 100 (45.4)               |
| Nitric acid<br>Nitric acid, thallium (1+) salt                                                                | 10102-45-1           | 4                  | U217                 | 1000 (454)<br>100 (45.4) |
| Nitric oxide                                                                                                  | 10102-43-9           | 4                  | P076                 | 10 (4.54)                |
| p-Nitroaniline                                                                                                | 100-01-6             | 4                  | P077                 | 5000 (2270)              |
| Nitrobenzene                                                                                                  | 98-95-3              | 1,2,3,4            | U169                 | 1000 (454)               |
| 4-Nitrobiphenyl                                                                                               | 92-93-3              | 3                  | 0103                 | 10 (4.54)                |
| Nitrogen dioxide                                                                                              | 92-93-3              | 1,4                | P078                 | 10 (4.54)                |
|                                                                                                               | 10544-72-6           | 1,4                | 10/0                 | 10 (4.34)                |
| Nitrogen oxide NO                                                                                             | 10102-43-9           | 4                  | P076                 | 10 (4.54)                |
| Nitrogen oxide NO2                                                                                            | 10102-43-0           | 1,4                | P078                 | 10 (4.54)                |
|                                                                                                               | 10544-72-6           | 1,7                | 1070                 | 10 (4.04)                |
| Nitroglycerine                                                                                                | 55-63-0              | 4                  | P081                 | 10 (4.54)                |
| Nitrophenol (mixed)                                                                                           | 25154-55-6           | 1                  | 1 001                | 100 (45.4)               |
| m-Nitrophenol                                                                                                 | 554-84-7             |                    |                      |                          |
| o-Nitrophenol                                                                                                 | 88-75-5              | 1,2                |                      | 100 (45.4)               |
| p-Nitrophenol                                                                                                 | 100-02-7             | 1,2,3,4            | U170                 | 100 (45.4)               |
| 2-Nitrophenol                                                                                                 | 88-75-5              | 1,2                | 0110                 | 100 (45.4)               |
| 4-Nitrophenol                                                                                                 | 100-02-7             | 1,2,3,4            | U170                 | 100 (45.4)               |
| NITROPHENOLS                                                                                                  | N.A.                 | 2                  |                      | **                       |
| 2-Nitropropane                                                                                                | 79–46–9              | 3,4                | U171                 | 10 (4.54)                |
| NITROSAMINES                                                                                                  | N.A.                 | 2                  | _                    | **                       |
| N-Nitrosodi-n-butylamine                                                                                      | 924-16-3             | 4                  | U172                 | 10 (4.54)                |
| N-Nitrosodiethanolamine                                                                                       | 1116–54–7            | 4                  | U173                 | 1 (0.454)                |
| N-Nitrosodiethylamine                                                                                         | 55–18–5              | 4                  | U174                 | 1 (0.454)                |
| N-Nitrosodimethylamine                                                                                        | 62–75–9              | 2,3,4              | P082                 | 10 (4.54)                |
| N-Nitrosodiphenylamine                                                                                        | 86–30–6              | 2                  |                      | 100 (45.4)               |
| N-Nitroso-N-ethylurea                                                                                         | 759–73–9             | 4                  | U176                 | 1 (0.454)                |
| N-Nitroso-N-methylurea                                                                                        | 684–93–5             | 3,4                | U177                 | 1 (0.454)                |
| N-Nitroso-N-methylurethane                                                                                    | 615–53–2             | 4                  | U178                 | 1 (0.454)                |
| N-Nitrosomethylvinylamine                                                                                     | 4549-40-0            | 4                  | P084                 | 10 (4.54)                |
| N-Nitrosomorpholine                                                                                           | 59-89-2              | 3                  |                      | 1 (0.454)                |
| N-Nitrosopiperidine                                                                                           | 100–75–4             | 4                  | U179                 | 10 (4.54)                |
| N-Nitrosopyrrolidine                                                                                          | 930-55-2             | 4                  | U180                 | 1 (0.454)                |
| Nitrotoluene                                                                                                  | 1321–12–6            | 1                  |                      | 1000 (454)               |
| m-Nitrotoluene                                                                                                | 99-08-1              |                    |                      |                          |
| o-Nitrotoluene                                                                                                | 88-72-2              |                    |                      |                          |
| p-Nitrotoluene                                                                                                | 99-99-0              |                    |                      |                          |
| 5-Nitro-o-toluidine                                                                                           | 99-55-8              | 4                  | U181                 | 100 (45.4)               |
| Octamethylpyrophosphoramide                                                                                   | 152-16-9             | 4                  | P085                 | 100 (45.4)               |
| Osmium oxide OsO4, (T-4)                                                                                      | 20816-12-0           | 4                  | P087                 | 1000 (454)               |
| Osmium tetroxide                                                                                              | 20816-12-0           | 4                  | P087                 | 1000 (454)               |
| 7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid                                                              | 145-73-3             | 4                  | P088                 | 1000 (454)               |
| 1,2-Oxathiolane, 2,2-dioxide<br>2H-1,3,2-Oxazaphosphorin-2–amine, N,N- bis(2-chloroethyl)tetrahydro-, 2-oxide | 1120-71-4            | 3,4                | U193                 | 10 (4.54)                |
| Oxirane                                                                                                       | 50–18–0<br>75–21–8   | 3,4                | U058<br>U115         | 10 (4.54)                |
|                                                                                                               |                      | · · ·              |                      | 10 (4.54)                |
| Oxiranecarboxyaldehyde                                                                                        | 765–34–4<br>106–89–8 | 134                | U126<br>U041         | 10 (4.54)                |
| Oxirane, (chloromethyl)<br>Paraformaldebyde                                                                   | 30525-89-4           | 1,3,4              | 0041                 | 100 (45.4)               |
| Paraformaldehyde                                                                                              | 123-63-7             | 4                  | U182                 | 1000 (454)<br>1000 (454) |
| Paraldehyde<br>Parathion                                                                                      | 56-38-2              | 1,3,4              | P089                 | 10 (4.54)                |
| PCBs                                                                                                          | 1336-36-3            | 1,3,4              | 1 003                | 1 (0.454)                |
| PCDS                                                                                                          | 82-68-8              | 3,4                | U185                 | 100 (45.4)               |
| POND Pentachlorobenzene                                                                                       | 608–93–5             | 3,4                | U183                 | 10 (45.4)                |
| Pentachiorobenzene                                                                                            | 76-01-7              | 4                  | U183                 | 10 (4.54)                |
|                                                                                                               | 82-68-8              | 3.4                | U185                 | 10 (4.54)                |
| Pentachloronitrobenzene                                                                                       |                      |                    |                      |                          |

|                                                                                 | 1                    |                    | 1                    | 1                       |
|---------------------------------------------------------------------------------|----------------------|--------------------|----------------------|-------------------------|
| Hazardous substance                                                             | CASRN                | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
| 1,3-Pentadiene                                                                  | 504-60-9             | 4                  | U186                 | 100 (45.4)              |
| Perchloroethylene                                                               |                      | 2,3,4              | U210                 | 100 (45.4)              |
| Phenacetin                                                                      |                      | 4                  | U187                 | 100 (45.4)              |
| Phenanthrene                                                                    |                      | 2                  |                      | 5000 (2270)             |
| Phenol                                                                          | 108–95–2             | 1,2,3,4            | U188                 | 1000 (454)              |
| Phenol, 2-chloro-                                                               | 95–57–8              | 2,4                | U048                 | 100 (45.4)              |
| Phenol, 4-chloro-3-methyl-                                                      |                      | 2,4                | U039                 | 5000 (2270)             |
| Phenol, 2-cyclohexyl-4,6-dinitro-                                               |                      | 4                  | P034                 | 100 (45.4)              |
| Phenol, 2,4-dichloro-                                                           |                      | 2,4                | U081                 | 100 (45.4)              |
| Phenol, 2,6-dichloro-                                                           |                      | 4                  | U082                 | 100 (45.4)              |
| Phenol, 4,4'-(1,2-diethyl-1,2-ethenediyl)bis-, (E)                              |                      | 4                  | U089                 | 1 (0.454)               |
| Phenol, 2,4-dimethyl-                                                           |                      | 2,4                | U101                 | 100 (45.4)              |
| Phenol, 4-(dimethylamino)-3,5-dimethyl-, 4 methylcarbamate (ester)              |                      | 1,4                | P128                 | 1000 (454)              |
| Phenol, (3,5-dimethyl-4-(methylthio)-, methylcarbamate                          |                      | 1,4<br>1,2,3,4     | P199<br>P048         | 10 (4.54)               |
| Phenol, 2,4-dinitro-                                                            | 51–28–5<br>1319–77–3 | 1,2,3,4            | U052                 | 10 (4.54)<br>100 (45.4) |
| Phenol, 2-methyl-4,6-dinitro-, & salts                                          | 534-52-1             | 2,3,4              | P047                 | 10 (4.54)               |
| Phenol, 2,2'-methylenebis[3,4,6- trichloro-                                     | 70-30-4              | 2,3,4              | U132                 | 100 (45.4)              |
| Phenol, 2-(1-methylethoxy)-, methylcarbamate                                    |                      | 3,4                | U411                 | 100 (45.4)              |
| Phenol, 3-(1-methylethyl)-, methyl carbamate (m-Cumenyl methylcarbamate)        |                      | 4                  | P202                 | ##                      |
| Phenol, 3-methyl-5-(1-methylethyl)-, methyl carbamate (Promecarb)               |                      | 4                  | P201                 | ##                      |
| Phenol, 2-(1-methylpropyl)-4,6-dinitro-                                         |                      | 4                  | P020                 | 1000 (454)              |
| Phenol, 4-nitro-                                                                |                      | 1,2,3,4            | U170                 | 100 (45.4)              |
| Phenol, pentachloro-                                                            | 87-86-5              | 1,2,3,4            | See F027             | 10 (4.54)               |
| Phenol, 2,3,4,6-tetrachloro-                                                    | 58–90–2              | 4                  | See F027             | 10 (4.54)               |
| Phenol, 2,4,5-trichloro-                                                        |                      | 1,3,4              | See F027             | 10 (4.54)               |
| Phenol, 2,4,6-trichloro                                                         |                      | 1,2,3,4            | See F027             | 10 (4.54)               |
| Phenol, 2,4,6-trinitro-, ammonium salt                                          |                      | 4                  | P009                 | 10 (4.54)               |
| L-Phenylalanine, 4-[bis(2-chloroethyl)amino]-                                   | 148-82-3             | 4                  | U150                 | 1 (0.454)               |
| p-Phenylenediamine                                                              |                      | 3                  | <b>D</b> 000         | 5000 (2270)             |
| Phenylmercury acetate                                                           |                      | 4                  | P092                 | 100 (45.4)              |
| Phenylthiourea                                                                  |                      | 4                  | P093                 | 100 (45.4)              |
| Phorate                                                                         |                      | 4                  | P094<br>P095         | 10 (4.54)               |
| Phosgene                                                                        |                      | 1,3,4              | P095<br>P096         | 10 (4.54)<br>100 (45.4) |
| Phosphine<br>Phosphoric acid                                                    |                      | 3,4<br>1           | F090                 | 5000 (2270)             |
| Phosphoric acid, diethyl 4-nitrophenyl ester                                    |                      | 4                  | P041                 | 100 (45.4)              |
| Phosphoric acid, lead(2+) salt (2:3)                                            |                      | 4                  | U145                 | 10 (4.54)               |
| Phosphorodithioic acid, O,O-diethyl S-[2-(ethylthio)ethyl] ester                |                      | 1,4                | P039                 | 1 (0.454)               |
| Phosphorodithioic acid, O,O-diethyl S-[(ethylthio)methyl] ester                 |                      | 4                  | P094                 | 10 (4.54)               |
| Phosphorodithioic acid, O,O-diethyl S-methyl ester                              |                      | 4                  | U087                 | 5000 (2270)             |
| Phosphorodithioic acid, O,O-dimethyl S-[2(methylamino)-2-oxoethyl] ester        |                      | 4                  | P044                 | 10 (4.54)               |
| Phosphorofluoridic acid, bis(1-methylethyl) ester                               | 55–91–4              | 4                  | P043                 | 100 (45.4)              |
| Phosphorothioic acid, O,O-diethyl O-(4-nitrophenyl) ester                       |                      | 1,3,4              | P089                 | 10 (4.54)               |
| Phosphorothioic acid, O,O-diethyl O-pyrazinyl ester                             |                      | 4                  | P040                 | 100 (45.4)              |
| Phosphorothioic acid, O-[4-[(dimethylamino) sulfonyl]phenyl] O,O-dimethyl ester |                      | 4                  | P097                 | 1000 (454)              |
| Phosphorothioic acid, O,O-dimethyl O-(4-nitrophenyl) ester                      |                      | 1,4                | P071                 | 100 (45.4)              |
| Phosphorus                                                                      |                      | 1,3                |                      | 1 (0.454)               |
| Phosphorus oxychloride                                                          | 10025-87-3           | 1                  | 114.00               | 1000 (454)              |
| Phosphorus pentasulfide                                                         |                      | 1,4                | U189                 | 100 (45.4)              |
| Phosphorus sulfide                                                              | 1314-80-3            | 1,4                | U189                 | 100 (45.4)              |
| Phosphorus trichloride<br>PHTHALATE ESTERS                                      |                      | 1                  |                      | 1000 (454)              |
|                                                                                 |                      | 3,4                | U190                 | 5000 (2270)             |
| Phthalic anhydride<br>2-Picoline                                                |                      | 3,4                | U191                 | 5000 (2270)             |
| Piperidine, 1-nitroso-                                                          |                      | 4                  | U179                 | 10 (4.54)               |
| Plumbane, tetraethyl-                                                           |                      | 1,4                | P110                 | 10 (4.54)               |
| POLYCHLORINATED BIPHENYLS                                                       | 1336–36–3            | 1,2,3              | 1 110                | 1 (0.454)               |
| Polycyclic Organic Matter <sup>c</sup>                                          |                      | 3                  |                      | **                      |
| POLYNUCLEAR AROMATIC HYDROCARBONS                                               |                      | 2                  |                      | **                      |
| Potassium arsenate                                                              | 7784-41-0            | 1                  |                      | 1 (0.454)               |
| Potassium arsenite                                                              |                      | 1                  |                      | 1 (0.454)               |
| Potassium bichromate                                                            | 7778–50–9            | 1                  |                      | 10 (4.54)               |
| Potassium chromate                                                              |                      | 1                  |                      | 10 (4.54)               |
| Potassium cyanide K(CN)                                                         |                      | 1,4                | P098                 | 10 (4.54)               |
|                                                                                 |                      | 1                  |                      | 1000 (454)              |
| Potassium hydroxide                                                             |                      |                    | 1                    |                         |
| Potassium nyuroxide                                                             | 7722–64–7            | 1                  |                      | 100 (45.4)              |
|                                                                                 |                      | 1<br>4             | P099                 | 100 (45.4)<br>1 (0.454) |

| Hazardous substance                                                                                                          | CASRN                                | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg)              |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|----------------------|--------------------------------------|
| Propanal, 2-methyl-2-(methylsulfonyl)-, O-[(methylamino)carbonyl] oxime (Aldicarb sulfone).                                  | 1646–88–4                            | 4                  | P203                 | ##                                   |
| Propanal, 2-methyl-2-(methylthio)-, O-[(methylamino)carbonyl]oxime                                                           | 116–06–3                             | 4                  | P070                 | 1 (0.454)                            |
| 1-Propanamine                                                                                                                | 107-10-8                             | 4                  | U194                 | 5000 (2270)                          |
| 1-Propanamine, N-propyl-                                                                                                     | 142-84-7                             | 4                  | U110                 | 5000 (2270)                          |
| 1-Propanamine, N-nitroso-N-propyl-                                                                                           | 621-64-7                             | 2,4                | U111                 | 10 (4.54)                            |
| Propane, 1,2-dibromo-3-chloro-                                                                                               | 96–12–8                              | 3,4                | U066                 | 1 (0.454)                            |
| Propane, 1,2-dichloro-                                                                                                       | 78-87-5                              | 1,2,3,4            | U083                 | 1000 (454)                           |
| Propanedinitrile                                                                                                             | 109-77-3                             | 4                  | U149                 | 1000 (454)                           |
| Propanenitrile                                                                                                               | 107-12-0                             | 4                  | P101                 | 10 (4.54)                            |
| Propanenitrile, 3-chloro-                                                                                                    | 542-76-7                             | 4                  | P027                 | 1000 (454)                           |
| Propanenitrile, 2-hydroxy-2-methyl-                                                                                          | 75-86-5                              | 1,4                | P069                 | 10 (4.54)                            |
| Propane, 2-nitro-                                                                                                            | 79–46–9                              | 3,4                | U171                 | 10 (4.54)                            |
| Propane, 2,2'-oxybis[2-chloro-                                                                                               | 108-60-1                             | 2,4                | U027                 | 1000 (454)                           |
| 1,3-Propane sultone                                                                                                          | 1120-71-4                            | 3,4                | U193                 | 10 (4.54)                            |
| 1,2,3-Propanetriol, trinitrate                                                                                               | 55-63-0                              | 4                  | P081                 | 10 (4.54)                            |
| Propanoic acid, 2-(2,4,5-trichlorophenoxy)-                                                                                  | 93-72-1                              | 1,4                | See F027             | 100 (45.4)                           |
| 1-Propanol, 2,3-dibromo-, phosphate (3:1)                                                                                    | 126-72-7                             | 4                  | U235                 | 10 (4.54)                            |
| 1-Propanol, 2-methyl-                                                                                                        | 78-83-1                              | 4                  | U140                 | 5000 (2270)                          |
| 2-Propanone                                                                                                                  | 67–64–1                              | 4                  | U002                 | 5000 (2270)                          |
| 2-Propanone, 1-bromo-                                                                                                        | 598-31-2                             | 4                  | P017                 | 1000 (454)                           |
| Propargite                                                                                                                   | 2312-35-8                            | 1                  | 1017                 | 10 (4.54)                            |
| Propargyl alcohol                                                                                                            | 107-19-7                             | 4                  | P102                 | 1000 (454)                           |
| 2-Propenal                                                                                                                   | 107-02-8                             | 1,2,3,4            | P003                 | 1 (0.454)                            |
| 2-Propenanide                                                                                                                | 79–06–1                              | 3,4                | U007                 | 5000 (2270)                          |
| 1-Propene, 1,3-dichloro-                                                                                                     | 542-75-6                             | 1,2,3,4            | U084                 | 100 (45.4)                           |
| 1-Propene, 1,1,2,3,3,3-hexachloro-                                                                                           |                                      | 1,2,3,4            |                      | , , ,                                |
| 2-Propenenitrile                                                                                                             | 1888–71–7<br>107–13–1                | 1,2,3,4            | U243<br>U009         | 1000 (454)<br>100 (45.4)             |
| 2-Propenenitrile, 2-methyl-                                                                                                  | 126–98–7                             | 1,2,3,4            | U152                 | 1000 (454)                           |
|                                                                                                                              | 79–10–7                              | 3,4                | U008                 |                                      |
| 2-Propenoic acid                                                                                                             |                                      | ,                  | U113                 | 5000 (2270)                          |
| 2-Propenoic acid, ethyl ester                                                                                                | 140–88–5<br>97–63–2                  | 3,4                | U118                 | 1000 (454)                           |
| 2-Propenoic acid, 2-methyl-, ethyl ester                                                                                     | 97–03–2<br>80–62–6                   | -                  | U162                 | 1000 (454)                           |
| 2-Propenoic acid, 2-methyl-, methyl ester                                                                                    | 107-18-6                             | 1,3,4              | P005                 | 1000 (454)                           |
| 2-Propen-1-ol<br>beta-Propiolactone                                                                                          | 57-57-8                              | 1,4<br>3           | F005                 | 100 (45.4)<br>10 (4.54)              |
|                                                                                                                              | 123–38–6                             | 3                  | 1000 (454)           | 10 (4.34)                            |
| Propionaldehyde                                                                                                              | 79–09–4                              | 3<br>1             | 1000 (454)           | 5000 (2270)                          |
| Propionic acid                                                                                                               |                                      | 1                  |                      | 5000 (2270)                          |
| Propionic anhydride                                                                                                          | 123–62–6<br>114–26–1                 | 3,4                | U411                 | 5000 (2270)                          |
| Propoxur (Baygon)                                                                                                            | 107-10-8                             | 3,4                | U194                 | 100 (45.4)                           |
| n-Propylamine                                                                                                                | 78-87-5                              | 1,2,3,4            | U083                 | 5000 (2270)<br>1000 (454)            |
| Propylene dichloride                                                                                                         | 75–56–9                              | 1,2,3,4            | 0003                 | 100 (454)                            |
| Propylene oxide                                                                                                              | 75-55-8                              | 3,4                | P067                 | 1 (0.454)                            |
| 1,2-Propylenimine                                                                                                            | 107-19-7                             | 3,4                | P102                 | 1000 (454)                           |
|                                                                                                                              | 129-00-0                             | 2                  | FIUZ                 | 5000 (2270)                          |
| Pyrene<br>Pyrethrins                                                                                                         | 129-00-0                             | 2                  |                      | 1 (0.454)                            |
|                                                                                                                              | 121-29-9                             | I                  |                      | 1 (0.434)                            |
|                                                                                                                              | 8003-34-7                            |                    |                      |                                      |
| 3,6-Pyridazinedione, 1,2-dihydro-                                                                                            | 123-33-1                             | 4                  | U148                 | 5000 (2270)                          |
| 4-Pyridinamine                                                                                                               | 504-24-5                             | 4                  | P008                 | 1000 (454)                           |
| Pyridine                                                                                                                     | 110-86-1                             | 4                  | U196                 | 1000 (454)                           |
| Pyridine<br>Pyridine, 2-methyl-                                                                                              | 109-06-8                             | 4                  | U190                 | 5000 (2270)                          |
| Pyridine, 2-(1-methyl-2-pyrrolidinyl)-, (S)-, & salts                                                                        | 54–11–5                              | 4                  | P075                 | 100 (45.4)                           |
| 2,4-(1H,3H)-Pyrimidinedione, 5-[bis(2- chloroethyl)amino]-                                                                   |                                      | 4                  |                      | ( /                                  |
|                                                                                                                              | 66-75-1                              |                    | U237<br>U164         | 10 (4.54)                            |
| 4(1H)-Pyrimidinone, 2,3-dihydro-6-methyl-2-thioxo-                                                                           | 56–04–2<br>930–55–2                  | 4                  |                      | 10 (4.54)                            |
| Pyrrolidine, 1-nitroso-                                                                                                      | 930–55–2<br>57–47–6                  | 4                  | U180                 | 1 (0.454)                            |
| Pyrrolo[2,3-b] indol-5-ol, 1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-,<br>methylcarbamate (ester), (3aS-cis)-(Physostigmine). |                                      | -                  | P204                 | ##                                   |
| Quinoline                                                                                                                    | 91-22-5                              | 1,3                | 1407                 | 5000 (2270)                          |
| Quinone                                                                                                                      | 106-51-4                             | 3,4                | U197                 | 10 (4.54)                            |
| Quintobenzene                                                                                                                | 82–68–8                              | 3,4                | U185                 | 100 (45.4)                           |
| Radionuclides (including radon)                                                                                              | N.A.                                 | 3                  |                      | §                                    |
| Reserpine                                                                                                                    | 50-55-5                              | 4                  | U200                 | 5000 (2270)                          |
| Resorcinol                                                                                                                   | 108–46–3                             | 1,4                | U201                 | 5000 (2270)                          |
| Saccharin, & salts                                                                                                           | 81–07–2                              | 4                  | U202                 | 100 (45.4)                           |
| Safrole                                                                                                                      | 94–59–7                              | 4                  | U203                 | 100 (45.4)                           |
|                                                                                                                              | 7700 00 0                            | 4                  | U204                 |                                      |
| Selenious acid                                                                                                               | 7783–00–8                            | 4                  | 0204                 | 10 (4.54)                            |
| Selenious acid<br>Selenious acid, dithallium (1+) salt                                                                       | 7783–00–8<br>12039–52–0<br>7782–49–2 | 4<br>4<br>2        | P114                 | 100 (454)<br>100 (454)<br>100 (45.4) |

| Hazardous substance                 | CASRN      | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|-------------------------------------|------------|--------------------|----------------------|-------------------------|
| SELENIUM AND COMPOUNDS              | N.A.       | 2,3                |                      | **                      |
| Selenium Compounds                  | N.A.       | 2,3                |                      | **                      |
| Selenium dioxide                    | 7446-08-4  | 1,4                | U204                 | 10 (4.54)               |
| Selenium oxide                      | 7446-08-4  | 1,4                | U204                 | 10 (4.54)               |
| Selenium sulfide SeS2               | 7488–56–4  | 4                  | U205                 | 10 (4.54)               |
|                                     |            | -                  |                      |                         |
| Selenourea                          | 630-10-4   | 4                  | P103                 | 1000 (454)              |
| L-Serine, diazoacetate (ester)      | 115-02-6   | 4                  | U015                 | 1 (0.454)               |
| Silver ††                           | 7440–22–4  | 2                  |                      | 1000 (454)              |
| SILVER AND COMPOUNDS                | N.A.       | 2                  |                      | **                      |
| Silver cyanide Ag(CN)               | 506-64-9   | 4                  | P104                 | 1 (0.454)               |
| Silver nitrate                      | 7761-88-8  | 1                  |                      | 1 (0.454)               |
| Silvex (2,4,5-TP)                   | 93–72–1    | 1,4                | See F027             | 100 (45.4)              |
| Sodium                              | 7440-23-5  | 1                  |                      | 10 (4.54)               |
| Sodium arsenate                     | 7631-89-2  | 1                  |                      | 1 (0.454)               |
|                                     | 7784-46-5  | 1                  |                      | 1 (0.454)               |
| Sodium arsenite                     |            |                    | DIOC                 |                         |
| Sodium azide                        | 26628-22-8 | 4                  | P105                 | 1000 (454)              |
| Sodium bichromate                   | 10588–01–9 | 1                  |                      | 10 (4.54)               |
| Sodium bifluoride                   | 1333–83–1  | 1                  |                      | 100 (45.4)              |
| Sodium bisulfite                    | 7631–90–5  | 1                  |                      | 5000 (2270)             |
| Sodium chromate                     | 7775–11–3  | 1                  |                      | 10 (4.54)               |
| Sodium cyanide Na(CN)               | 143-33-9   | 1,4                | P106                 | 10 (4.54)               |
| Sodium dodecylbenzenesulfonate      | 25155-30-0 | 1                  |                      | 1000 (454)              |
| Sodium fluoride                     | 7681-49-4  | 1                  |                      | 1000 (454)              |
|                                     |            |                    |                      | ( )                     |
| Sodium hydrosulfide                 | 16721-80-5 | 1                  |                      | 5000 (2270)             |
| Sodium hydroxide                    | 1310–73–2  | 1                  |                      | 1000 (454)              |
| Sodium hypochlorite                 | 7681–52–9  | 1                  |                      | 100 (45.4)              |
|                                     | 10022–70–5 |                    |                      |                         |
| Sodium methylate                    | 124-41-4   | 1                  |                      | 1000 (454)              |
| Sodium nitrite                      | 7632–00–0  | 1                  |                      | 100 (45.4)              |
| Sodium phosphate, dibasic           | 7558–79–4  | 1                  |                      | 5000 (2270)             |
|                                     | 10039–32–4 |                    |                      | 0000 (2210)             |
|                                     | 10140-65-5 |                    |                      |                         |
| Cadium phase hata telesia           |            | 4                  |                      | F000 (0070)             |
| Sodium phosphate, tribasic          | 7601–54–9  | 1                  |                      | 5000 (2270)             |
|                                     | 7758–29–4  |                    |                      |                         |
|                                     | 7785–84–4  |                    |                      |                         |
|                                     | 10101–89–0 |                    |                      |                         |
|                                     | 10124-56-8 |                    |                      |                         |
|                                     | 10361-89-4 |                    |                      |                         |
| Sodium selenite                     | 7782-82-3  | 1                  |                      | 100 (45.4)              |
|                                     | 10102-18-8 |                    |                      | 100 (40.4)              |
| Strantozotopin                      | 18883-66-4 | 4                  | U206                 | 1 (0 454)               |
| Streptozotocin                      |            |                    | 0200                 | 1 (0.454)               |
| Strontium chromate                  | 7789–06–2  | 1                  | 5400                 | 10 (4.54)               |
| Strychnidin-10-one, & salts         | 57–24–9    | 1,4                | P108                 | 10 (4.54)               |
| Strychnidin-10-one, 2,3-dimethoxy-  | 357–57–3   | 4                  | P018                 | 100 (45.4)              |
| Strychnine, & salts                 | 57–24–9    | 1,4                | P108                 | 10 (4.54)               |
| Styrene                             | 100-42-5   | 1,3                |                      | 1000 (454)              |
| Styrene oxide                       | 96–09–3    | 3                  |                      | 100 (45.4)              |
| Sulfuric acid                       | 7664–93–9  | 1                  |                      | 1000 (454)              |
|                                     | 8014-95-7  |                    |                      | 1000 (404)              |
| Sulfuria acid, dimethyd actor       |            | 2.4                | 11102                | 100 (45 4)              |
| Sulfuric acid, dimethyl ester       | 77–78–1    | 3,4                | U103                 | 100 (45.4)              |
| Sulfuric acid, dithallium (1+) salt | 7446–18–6  | 1,4                | P115                 | 100 (45.4)              |
|                                     | 10031–59–1 |                    |                      |                         |
| Sulfur monochloride                 | 12771-08-3 | 1                  |                      | 1000 (454)              |
| Sulfur phosphide                    | 1314–80–3  | 1,4                | U189                 | 100 (45.4)              |
| 2,4,5-T                             | 93-76-5    | 1,4                | See F027             | 1000 (454)              |
| 2,4,5-T acid                        | 93–76–5    | 1,4                | See F027             | 1000 (454)              |
|                                     |            | · .                | See 1 027            | ( )                     |
| 2,4,5-T amines                      | 2008-46-0  | 1                  |                      | 5000 (2270)             |
|                                     | 1319–72–8  |                    |                      |                         |
|                                     | 3813–14–7  |                    |                      |                         |
|                                     | 6369–96–6  |                    |                      |                         |
|                                     | 6369-97-7  |                    |                      |                         |
| 2,4,5-T esters                      | 93–79–8    | 1                  |                      | 1000 (454)              |
| _, .,- ·•                           | 1928–47–8  |                    |                      |                         |
|                                     | 2545-59-7  |                    |                      |                         |
|                                     |            |                    |                      |                         |
|                                     |            |                    | 1                    |                         |
|                                     | 25168-15-4 |                    |                      |                         |
|                                     | 61792–07–2 |                    |                      |                         |
| 2,4,5-T salts                       |            | 1                  |                      | 1000 (454)              |
| 2,4,5-T salts<br>TCDD               | 61792–07–2 | 1<br>2,3           |                      | 1000 (454)<br>1 (0.454) |

| -                                                         |            | -                  |                      |                          |
|-----------------------------------------------------------|------------|--------------------|----------------------|--------------------------|
| Hazardous substance                                       | CASRN      | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg)  |
| 1,2,4,5-Tetrachlorobenzene                                | 95–94–3    | 4                  | U207                 | 5000 (2270)              |
| 2,3,7,8-Tetrachlorodibenzo-p-dioxin                       |            | 2,3                | 0201                 | 1 (0.454)                |
| 1,1,1,2-Tetrachloroethane                                 |            | ,0                 | U208                 | 100 (45.4)               |
| 1,1,2,2-Tetrachloroethane                                 |            | 2,3,4              |                      | 100 (45.4)               |
| Tetrachloroethylene                                       |            | 2,3,4              | U210                 | 100 (45.4)               |
| 2,3,4,6-Tetrachlorophenol                                 |            | 4                  | See F027             | 10 (4.54)                |
| Tetraethyl pyrophosphate                                  |            | 1,4                | P111                 | 10 (4.54)                |
| Tetraethyl lead                                           |            | 1,4                | P110                 | 10 (4.54)                |
| Tetraethyldithiopyrophosphate                             |            | 4                  | P109                 | 100 (45.4)               |
| Tetrahydrofuran                                           |            | 4                  | U213                 | 1000 (454)               |
| Tetranitromethane                                         |            | 4                  | P112                 | 10 (4.54)                |
| Tetraphosphoric acid, hexaethyl ester                     |            | 4                  | P062                 | 100 (45.4)               |
| Thallic oxide                                             |            | 4                  | P113                 | 100 (45.4)               |
| Thallium ††                                               |            | 2                  | _                    | 1000 (454)               |
| THALLIUM AND COMPOUNDS                                    |            | 2                  |                      | **                       |
| Thallium (I) acetate                                      |            | 4                  | U214                 | 100 (45.4)               |
| Thallium (I) carbonate                                    |            | 4                  | U215                 | 100 (45.4)               |
| Thallium chloride TICI                                    |            | 4                  | U216                 | 100 (45.4)               |
| Thallium (I) nitrate                                      |            | 4                  | U217                 | 100 (45.4)               |
| Thallium oxide TI2O3                                      |            | 4                  | P113                 | 100 (45.4)               |
| Thallium (I) selenite                                     |            | 4                  | P114                 | 1000 (454)               |
| Thallium (I) sulfate                                      |            | 1,4                | P115                 | 100 (45.4)               |
|                                                           | 10031–59–1 | .,.                |                      |                          |
| Thioacetamide                                             |            | 4                  | U218                 | 10 (4.54)                |
| Thiodiphosphoric acid, tetraethyl ester                   |            | 4                  | P109                 | 100 (45.4)               |
| Thiofanox                                                 |            | 4                  | P045                 | 100 (45.4)               |
| Thioimidodicarbonic diamide [(H2N)C(S)] 2NH               |            | 4                  | P049                 | 100 (45.4)               |
| Thiomethanol                                              |            | 1,4                | U153                 | 100 (45.4)               |
| Thioperoxydicarbonic diamide [(H2N)C(S)] 2S2, tetramethyl |            | 4                  | U244                 | 10 (4.54)                |
| Thiophenol                                                |            | 4                  | P014                 | 100 (45.4)               |
| Thiosemicarbazide                                         |            | 4                  | P116                 | 100 (45.4)               |
| Thiourea                                                  |            | 4                  | U219                 | 10 (4.54)                |
| Thiourea, (2-chlorophenyl)-                               |            | 4                  | P026                 | 100 (45.4)               |
| Thiourea, 1-naphthalenyl-                                 |            | 4                  | P072                 | 100 (45.4)               |
| Thiourea, phenyl-                                         |            | 4                  | P093                 | 100 (45.4)               |
| Thiram                                                    |            | 4                  | U244                 | 10 (4.54)                |
| Titanium tetrachloride                                    |            | 3                  | 0211                 | 1,2,41000                |
|                                                           |            | -                  |                      | (454)                    |
| Toluene                                                   | 108–88–3   | 1,2,3,4            | U220                 | 1000 (454)               |
| Toluenediamine                                            |            | 3,4                | U221                 | 10 (4.54)                |
|                                                           | 496-72-0   | - )                | _                    |                          |
|                                                           | 823-40-5   |                    |                      |                          |
|                                                           | 25376-45-8 |                    |                      |                          |
| 2,4-Toluene diamine                                       |            | 3,4                | U221                 | 10 (4.54)                |
| _, · ·                                                    | 496-72-0   | -, -               |                      |                          |
|                                                           | 823-40-5   |                    |                      |                          |
|                                                           | 25376-45-8 |                    |                      |                          |
| Toluene diisocyanate                                      |            | 3,4                | U223                 | 100 (45.4)               |
|                                                           | 584-84-9   | 0,1                | 0220                 | 100 (10.1)               |
|                                                           | 26471-62-5 |                    |                      |                          |
| 2,4-Toluene diisocyanate                                  |            | 3,4                | U223                 | 100 (45.4)               |
|                                                           | 584-84-9   | 0,4                | 0220                 | 100 (+0.+)               |
|                                                           | 26471-62-5 |                    |                      |                          |
| o-Toluidine                                               |            | 3,4                | U328                 | 100 (45.4)               |
| p-Toluidine                                               |            | 4                  | U353                 |                          |
| o-Toluidine hydrochloride                                 |            | 4                  | U222                 | 100 (45.4)<br>100 (45.4) |
| Toxaphene                                                 |            | 1,2,3,4            |                      | 1 (0.454)                |
| 2,4,5-TP acid                                             |            | 1,2,3,4            | See F027             | 100 (45.4)               |
| 2,4,5-TP acid                                             |            | 1,4                | 5001021              | 100 (45.4)               |
| 1H-1,2,4-Triazol-3-amine                                  |            | 1                  | U011                 |                          |
|                                                           |            | 4                  | 0011                 | 10 (4.54)<br>100 (45.4)  |
| Trichlorfon                                               |            | 2,3                |                      |                          |
| 1,2,4-Trichlorobenzene                                    |            |                    | 11226                | 100 (45.4)               |
| 1,1,1-Trichloroethane                                     |            | 2,3,4              | U226                 | 1000 (454)               |
| 1,1,2-Trichloroethane                                     |            | 2,3,4              |                      | 100 (45.4)               |
| Trichloroethylene                                         |            | 1,2,3,4            |                      | 100 (45.4)               |
| Trichloromethanesulfenyl chloride                         |            | 4                  | P118                 | 100 (45.4)               |
| Trichloromonofluoromethane                                |            | 4                  | U121                 | 5000 (2270)<br>10 (4.54) |
|                                                           |            | 1                  | 1                    |                          |
| Trichlorophenol                                           |            | 1                  |                      | 10 (4.54)                |

| Hazardous substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CASRN                                                                                                                           | Statutory<br>code†                                                                                                                                                                                                                                                                 | RCRA<br>waste<br>No.                                                                                                                                                                                                                 | Final RQ<br>pounds (Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2,3,5-Trichlorophenol<br>2,3,6-Trichlorophenol<br>3,4,5-Trichlorophenol<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>Triethanolamine dodecylbenzenesulfonate<br>Triethylamine<br>Trifluralin<br>Trimethylamine<br>2,2,4-Trimethylpentane<br>1,3,5-Trinitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 933-78-8<br>933-75-5<br>609-19-8<br>95-95-4<br>88-06-2<br>27323-41-7<br>121-44-8<br>1582-09-8<br>75-50-3<br>540-84-1<br>99-35-4 | 1,3,4<br>1,2,3,4<br>1,3,4<br>3<br>1<br>3<br>4                                                                                                                                                                                                                                      | See F027<br>See F027<br>U404<br>U234                                                                                                                                                                                                 | 10 (4.54)<br>10 (4.54)<br>1000 (454)<br>5000 (2270)<br>10 (4.54)<br>100 (454)<br>1000 (454)<br>100 (454)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,3,5-Trioxane, 2,4,6-trimethyl-<br>Tris(2,3-dibromopropyl) phosphate<br>Trypan blue<br>Unlisted Hazardous Wastes Characteristic of Corrosivity<br>Unlisted Hazardous Wastes Characteristic of Ignitability<br>Unlisted Hazardous Wastes Characteristic of Reactivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123–63–7<br>126–72–7<br>72–57–1<br>N.A.<br>N.A.<br>N.A.                                                                         | 4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                              | U182<br>U235<br>U236<br>D002<br>D001<br>D003                                                                                                                                                                                         | 1000 (454)<br>10 (4.54)<br>10 (4.54)<br>100 (454)<br>100 (454)<br>100 (454)<br>100 (454)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unlisted Hazardous Wastes Characteristic of Toxicity:           Arsenic (D004)           Barium (D005)           Benzene (D018)           Cadmium (D006)           Carbon tetrachloride (D019)           Chlorobenzene (D021)           Chlorobenzene (D022)           Chromium (D007)           o-Cresol (D023)           m-Cresol (D024)           p-Cresol (D025)           Cresol (D026)           2,4-D (D016)           1,4-Dichlorobenzene (D027)           1,2-Dichlorobenzene (D027)           1,2-Dichlorobenzene (D028)           1,1-Dichlorobenzene (D029)           2,4-D (D016)           1,1-Dichlorobenzene (D028)           1,1-Dichlorobenzene (D028)           1,1-Dichloroethylene (D029)           2,4-Dinitrotoluene (D030)           Endrin (D012)           Heptachlor (and epoxide) (D031)           Hexachlorobenzene (D032)           Hexachlorobenzene (D032)           Hexachlorobenzene (D033)           Hexachlorobenzene (D034)           Lead (D008)           Lindane (D013)           Mercury (D009)           Methoxychlor (D014)           Methyl ethyl ketone (D035)           Nitrobenzene (D036)           Penta | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.                                                                    | $\begin{array}{c} 4\\ 4\\ 1,2,3,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 2,4\\ 2,4\\ 2,4\\ 2,4\\ 2,4\\ 4\\ 1,4\\ 1,2,4\\ 1,2,4\\ 1,2,4\\ 4\\ 1,2,4\\ 4\\ 1,2,4\\ 4\\ 1,2,4\\ 4\\ 4\\ 2,4\\ 2,4\\ 2,4\\ 2,4\\ 2,4\\ 2,4$ | D006<br>D019<br>D020<br>D021<br>D022<br>D007<br>D023<br>D024<br>D025<br>D026<br>D016<br>D027<br>D028<br>D029<br>D030<br>D012<br>D031<br>D032<br>D031<br>D032<br>D033<br>D034<br>D034<br>D008<br>D013<br>D009<br>D014<br>D035<br>D036 | $\begin{array}{c} 1 \ (0.454) \\ 1000 \ (454) \\ 10 \ (4.54) \\ 10 \ (4.54) \\ 10 \ (4.54) \\ 10 \ (4.54) \\ 10 \ (4.54) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 100 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 1000 \ (45.4) \\ 10$ |
| Toxaphene (D015)<br>Trichloroethylene (D040)<br>2,4,5-Trichlorophenol (D041)<br>2,4,6-Trichlorophenol (D042)<br>2,4,5-TP (D017)<br>Vinyl chloride (D043)<br>Uracil mustard<br>Uranyl acetate<br>Uranyl nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>66-75-1<br>541-09-3<br>10102-06-4                                                       | 1,4<br>1,2,4<br>1,4<br>1,2,4<br>1,4<br>2,3,4<br>1<br>1                                                                                                                                                                                                                             | D015<br>D040<br>D041                                                                                                                                                                                                                 | 1 (0.454<br>100 (45.4<br>10 (4.54<br>10 (4.54<br>100 (45.4<br>1 (0.454<br>10 (4.54<br>10 (4.54<br>100 (45.4<br>100 (45.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Urea, N-ethyl-N-nitroso-<br>Urea, N-methyl-N-nitroso-<br>Urethane<br>Vanadic acid, ammonium salt<br>Vanadium oxide V2O5<br>Vanadium pentoxide<br>Vanadyl sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36478-76-9<br>759-73-9<br>684-93-5<br>51-79-6<br>7803-55-6<br>1314-62-1<br>1314-62-1<br>27774-13-6                              | 4<br>3,4<br>3,4<br>1,4<br>1,4<br>1,4                                                                                                                                                                                                                                               | U176<br>U177<br>U238<br>P119<br>P120<br>P120                                                                                                                                                                                         | 1 (0.454)<br>1 (0.454)<br>100 (454)<br>1000 (454)<br>1000 (454)<br>1000 (454)<br>1000 (454)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Hazardous substance                                                                                                                                                                                                                                                                                                                                                                         | CASRN                    | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg)   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|----------------------|---------------------------|
| Vinyl acetate                                                                                                                                                                                                                                                                                                                                                                               | 108–05–4                 | 1,3                |                      | 5000 (2270)               |
| Vinyl acetate monomer                                                                                                                                                                                                                                                                                                                                                                       | 108–05–4                 | 1,3                |                      | 5000 (2270)               |
| Vinylamine, N-methyl-N-nitroso-                                                                                                                                                                                                                                                                                                                                                             | 4549-40-0                | 4                  | P084                 | 10 (4.54)                 |
| Vinyl bromide                                                                                                                                                                                                                                                                                                                                                                               | 593-60-2                 | 3                  |                      | 100 (45.4)                |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                              | 75–01–4                  | 2,3,4              | U043                 | 1 (0.454)                 |
| Vinylidene chloride                                                                                                                                                                                                                                                                                                                                                                         | 75–35–4                  | 1,2,3,4            | U078                 | 100 (45.4)                |
| Warfarin, & salts                                                                                                                                                                                                                                                                                                                                                                           | 81–81–2                  | 4                  | P001, U248           | 100 (45.4)                |
| Xylene                                                                                                                                                                                                                                                                                                                                                                                      | 1330–20–7                | 1,3,4              | U239                 | 100 (45.4)                |
| m-Xylene                                                                                                                                                                                                                                                                                                                                                                                    | 108-38-3                 | 3                  |                      | 1000 (454)                |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                    | 95-47-6                  | 3                  |                      | 1000 (454)                |
| p-Xylene                                                                                                                                                                                                                                                                                                                                                                                    | 106-42-3                 | 3                  | 11000                | 100 (45.4)                |
| Xylene (mixed)                                                                                                                                                                                                                                                                                                                                                                              | 1330-20-7                | 1,3,4              | U239                 | 100 (45.4)                |
| Xylenes (isomers and mixture)                                                                                                                                                                                                                                                                                                                                                               | 1330–20–7<br>1300–71–6   | 1,3,4<br>1         | U239                 | 100 (45.4)                |
| Xylenol<br>Yohimban-16-carboxylic acid,11,17-dimethoxy-18-[(3,4,5-<br>trimethoxybenzoyl)oxy]-, methyl ester (3beta,16beta,17alpha,<br>18beta,20alpha).                                                                                                                                                                                                                                      | 50–55–54                 | 4                  | U200                 | 1000 (454)<br>5000 (2270) |
| Zinc ++                                                                                                                                                                                                                                                                                                                                                                                     | 7440-66-6                | 2                  |                      | 1000 (454)                |
| ZINC AND COMPOUNDS                                                                                                                                                                                                                                                                                                                                                                          | N.A.                     | 2                  |                      | **                        |
| Zinc acetate                                                                                                                                                                                                                                                                                                                                                                                | 557-34-6                 | 1                  |                      | 1000 (454)                |
| Zinc ammonium chloride                                                                                                                                                                                                                                                                                                                                                                      | 52628-25-8               | 1                  |                      | 1000 (454)                |
|                                                                                                                                                                                                                                                                                                                                                                                             | 14639–97–5<br>14639–98–6 |                    |                      |                           |
| Zinc, bis(dimethylcarbamodithioato-S,S')-, (Ziram)                                                                                                                                                                                                                                                                                                                                          | 137-30-4                 | 4                  | P205                 | ##                        |
| Zinc borate                                                                                                                                                                                                                                                                                                                                                                                 | 1332-07-6                | 1                  | 1200                 | 1000 (454)                |
| Zinc bromide                                                                                                                                                                                                                                                                                                                                                                                | 7699–45–8                | 1                  |                      | 1000 (454)                |
| Zinc carbonate                                                                                                                                                                                                                                                                                                                                                                              | 3486-35-9                | 1                  |                      | 1000 (454)                |
| Zinc chloride                                                                                                                                                                                                                                                                                                                                                                               | 7646-85-7                | 1                  |                      | 1000 (454)                |
| Zinc cyanide Zn(CN)2                                                                                                                                                                                                                                                                                                                                                                        | 557-21-1                 | 1,4                | P121                 | 10 (4.54)                 |
| Zinc fluoride                                                                                                                                                                                                                                                                                                                                                                               | 7783–49–5                | 1                  |                      | 1000 (454)                |
| Zinc formate                                                                                                                                                                                                                                                                                                                                                                                | 557-41-5                 | 1                  |                      | 1000 (454)                |
| Zinc hydrosulfite                                                                                                                                                                                                                                                                                                                                                                           | 7779-86-4                | 1                  |                      | 1000 (454)                |
| Zinc nitrate                                                                                                                                                                                                                                                                                                                                                                                | 7779-88-6                | 1                  |                      | 1000 (454)                |
| Zinc phenolsulfonate                                                                                                                                                                                                                                                                                                                                                                        | 127-82-2                 | 1                  | P122, U249           | 5000 (2270)               |
| Zinc phosphide Zn3P2                                                                                                                                                                                                                                                                                                                                                                        | 1314–84–7<br>16871–71–9  | 1,4<br>1           | F 122, U249          | 100 (45.4)<br>5000 (2270) |
| Zinc sulfate                                                                                                                                                                                                                                                                                                                                                                                | 7733–02–0                | 1                  |                      | 1000 (454)                |
| Zirconium nitrate                                                                                                                                                                                                                                                                                                                                                                           | 13746-89-9               | 1                  |                      | 5000 (2270)               |
| Zirconium potassium fluoride                                                                                                                                                                                                                                                                                                                                                                | 16923–95–8               | 1                  |                      | 1000 (454)                |
| Zirconium sulfate                                                                                                                                                                                                                                                                                                                                                                           | 14644-61-2               | 1                  |                      | 5000 (2270)               |
| Zirconium tetrachloride                                                                                                                                                                                                                                                                                                                                                                     | 10026-11-6               | 1                  |                      | 5000 (2270)               |
| F001                                                                                                                                                                                                                                                                                                                                                                                        |                          | 4                  | F001                 | 10 (4.54)                 |
| The following spent halogenated solvents used in degreasing; all spent solvent mixtures/blends used in degreasing containing, before use, a total of ten per-<br>cent or more (by volume) of one or more of the halogenated solvents listed below or those solvents listed in F002, F004, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures. |                          |                    |                      |                           |
| (a) Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                     | 127–18–4                 | 2,3,4              | U210                 | 100 (45.4)                |
| (b) Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                       | 79–01–6                  | 1,2,3,4            | U228                 | 100 (45.4)                |
| (c) Methylene chloride                                                                                                                                                                                                                                                                                                                                                                      | 75–09–2                  | 2,3,4              | U080                 | 1000 (454)                |
| (d) 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                   | 71–55–6                  | 2,3,4              | U226                 | 1000 (454)                |
| (e) Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                    | 56-23-5                  | 1,2,3,4            | U211                 | 10 (4.54)                 |
| (f) Chlorinated fluorocarbons<br>F002                                                                                                                                                                                                                                                                                                                                                       | N.A.                     | 4                  | F002                 | 5000 (2270)<br>10 (4.54)  |
| The following spent halogenated solvents; all spent solvent mixtures/blends containing, before use, a total of ten percent or more (by volume) of one or more of the halogenated solvents listed below or those solvents listed in F001, F004, or F005; and still bottoms from the recovery of these spent sol-                                                                             |                          |                    |                      |                           |
| vents and spent solvent mixtures.                                                                                                                                                                                                                                                                                                                                                           |                          |                    |                      |                           |
| (a) Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                     | 127-18-4                 | 2,3,4              | U210                 | 100 (45.4)                |
| (b) Methylene chloride                                                                                                                                                                                                                                                                                                                                                                      | 75-09-2                  | 2,3,4              | U080                 | 1000 (454)                |
| (c) Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                       | 79–01–6                  | 1,2,3,4            | U228                 | 100 (45.4)                |
| (d) 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                   | 71-55-6                  | 2,3,4              | U226                 | 1000 (454)                |
| (e) Chlorobenzene<br>(f) 1,1,2-Trichloro-1,2,2-trifluoroethane                                                                                                                                                                                                                                                                                                                              | 108–90–7<br>76–13–1      | 1,2,3,4            | U037                 | 100 (45.4)<br>5000 (2270) |
| (j) 1,1,2-11chloro-1,2,2-thluoroethane                                                                                                                                                                                                                                                                                                                                                      | 95–50–1                  | 1,2,4              | U070                 | 100 (45.4)                |
| (b) Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                  | 75–69–4                  | 4                  | U121                 | 5000 (2270)               |
| (i) 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                   | 79-00-5                  | 2,3,4              | U227                 | 100 (45.4)                |
|                                                                                                                                                                                                                                                                                                                                                                                             |                          |                    |                      |                           |

## TABLE 302.4.—LIST OF HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES—Continued

[Note: All Comments/Notes Are Located at the End of This Table]

| Hazardous substance                                                              | CASRN     | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|----------------------------------------------------------------------------------|-----------|--------------------|----------------------|-------------------------|
| The following spent non-halogenated solvents and the still bottoms from the re-  |           |                    |                      |                         |
| covery of these solvents.                                                        |           |                    |                      |                         |
| (a) Xylene                                                                       | 1330-20–7 |                    |                      | 1000 (454)              |
| (b) Acetone                                                                      | 67–64–1   |                    |                      | 5000 (2270)             |
| (c) Ethyl acetate                                                                | 141–78–6  |                    |                      | 5000 (2270)             |
| (d) Ethylbenzene                                                                 | 100–41–4  |                    |                      | 1000 (454)              |
| (e) Ethyl ether                                                                  | 60–29–7   |                    |                      | 100 (45.4)              |
| (f) Methyl isobutyl ketone                                                       | 108–10–1  |                    |                      | 5000 (2270)             |
| (g) n-Butyl alcohol                                                              | 71–36–3   |                    |                      | 5000 (2270)             |
| (h) Cyclohexanone                                                                | 108-94-1  |                    |                      | 5000 (2270)             |
| (i) Methanol                                                                     | 67-56-1   |                    |                      | 5000 (2270)             |
| F004                                                                             |           | 4                  | F004                 | 100 (45.4)              |
| The following spent non-halogenated solvents and the still bottoms from the re-  |           |                    |                      |                         |
| covery of these solvents:                                                        |           |                    |                      |                         |
| (a) Cresols/Cresylic acid                                                        | 1319–77–3 | 1,3,4              | U052                 | 100 (45.4)              |
| (b) Nitrobenzene                                                                 | 98-95-3   | 1,2,3,4            | U169                 | 1000 (454)              |
| F005                                                                             |           | 1,2,3,4            | F005                 | 1000 (454)              |
|                                                                                  |           | 4                  | F005                 | 100 (45.4)              |
| The following spent non-halogenated solvents and the still bottoms from the re-  |           |                    |                      |                         |
| covery of these solvents:                                                        | 400.00.0  | 1001               | 11000                | 1000 (154)              |
| (a) Toluene                                                                      | 108-88-3  | 1,2,3,4            | U220                 | 1000 (454)              |
| (b) Methyl ethyl ketone                                                          | 78–93–3   | 3,4                | U159                 | 5000 (2270)             |
| (c) Carbon disulfide                                                             | 75–15–0   |                    | P022                 | 100 (45.4)              |
| (d) Isobutanol                                                                   | 78–83–1   | 4                  | U140                 | 5000 (2270)             |
| (e) Pyridine                                                                     | 110-86-1  | 4                  | U196                 | 1000 (454)              |
| F006                                                                             |           | 4                  | F006                 | 10 (4.54)               |
| Wastewater treatment sludges from electroplating operations except from the      |           |                    |                      |                         |
| following processes: (1) sulfuric acid anodizing of aluminum, (2) tin plating on |           |                    |                      |                         |
| carbon steel, (3) zinc plating (segregated basis) on carbon steel, (4) alu-      |           |                    |                      |                         |
| minum or zinc-aluminum plating on carbon steel, (5) cleaning/stripping asso-     |           |                    |                      |                         |
| ciated with tin, zinc and aluminum plating on carbon steel, and (6) chemical     |           |                    |                      |                         |
| etching and milling of aluminum.                                                 |           |                    |                      |                         |
| F007                                                                             |           | 4                  | F007                 | 10 (4.54)               |
| Spent cyanide plating bath solutions from electroplating operations.             |           |                    |                      |                         |
| F008                                                                             |           | 4                  | F008                 | 10 (4.54)               |
| Plating bath residues from the bottom of plating baths from electroplating oper- |           |                    |                      |                         |
| ations where cyanides are used in the process.                                   |           |                    |                      |                         |
| F009                                                                             |           | 4                  | F009                 | 10 (4.54)               |
| Spent stripping and cleaning bath solutions from electroplating operations       |           |                    |                      |                         |
| where cyanides are used in the process.                                          |           |                    |                      |                         |
| F010                                                                             |           | 4                  | F010                 | 10 (4.54)               |
| Quenching bath residues from oil baths from metal heat treating operations       |           | -                  |                      |                         |
| where cyanides are used in the process.                                          |           |                    |                      |                         |
|                                                                                  |           | 4                  | F011                 | 10 (4.54)               |
| Spent cyanide solutions from salt bath pot cleaning from metal heat treating     |           | 7                  | 1011                 | 10 (4.54)               |
| operations.                                                                      |           |                    |                      |                         |
|                                                                                  |           | 4                  | F012                 | 10 (4 54)               |
| F012                                                                             |           | 4                  | FUIZ                 | 10 (4.54)               |
| Quenching wastewater treatment sludges from metal heat treating operations       |           |                    |                      |                         |
| where cyanides are used in the process.                                          |           |                    | 5040                 |                         |
| F019                                                                             |           | 4                  | F019                 | 10 (4.54)               |
| Wastewater treatment sludges from the chemical conversion coating of alu-        |           |                    |                      |                         |
| minum except from zirconium phosphating in aluminum can washing when             |           |                    |                      |                         |
| such phosphating is an exclusive conversion coating process.                     |           |                    |                      |                         |
| F020                                                                             |           | 4                  | F020                 | 1 (0.454)               |
| Wastes (except wastewater and spent carbon from hydrogen chloride purifi-        |           |                    |                      |                         |
| cation) from the production or manufacturing use (as a reactant, chemical in-    |           |                    |                      |                         |
| termediate, or component in a formulating process) of tri- or                    |           |                    |                      |                         |
| tetrachlorophenol or of intermediates used to produce their pesticide deriva-    |           |                    |                      |                         |
| tives. (This listing does not include wastes from the production of              |           |                    |                      |                         |
| hexachlorophene from highly purified 2,4,5-trichlorophenol.)                     |           |                    |                      |                         |
| F021                                                                             |           | 4                  | F021                 | 1 (0.454)               |
| Wastes (except wastewater and spent carbon from hydrogen chloride purifi-        |           | -                  | 1021                 | 1 (0.404)               |
| cation) from the production or manufacturing use (as a reactant, chemical in-    |           |                    |                      |                         |
|                                                                                  |           |                    |                      |                         |
| termediate, or component in a formulating process) of pentachlorophenol or       |           |                    |                      |                         |
| of intermediates used to produce its derivatives.                                |           |                    | 5000                 |                         |
| F022                                                                             |           | 4                  | F022                 | 1 (0.454)               |
| Wastes (except wastewater and spent carbon from hydrogen chloride purifi-        |           |                    |                      |                         |
| cation) from the manufacturing use (as a reactant, chemical intermediate, or     |           |                    |                      |                         |
| component in a formulating process) of tetra-, penta-, or                        |           |                    |                      |                         |
| hexachlorobenzenes under alkaline conditions.                                    |           |                    |                      |                         |
|                                                                                  |           |                    |                      |                         |

| Hazardous substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CASRN | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------|-------------------------|
| F023<br>Wastes (except wastewater and spent carbon from hydrogen chloride purifi-<br>cation) from the production of materials on equipment previously used for the<br>production or manufacturing use (as a reactant, chemical intermediate, or a<br>component in a formulating process) of tri- and tetrachlorophenols. (This list-<br>ing does not include wastes from equipment used only for the production or<br>use of hexachlorophene from highly purified 2,4,5-trichlorophenol.) |       | 4                  | F023                 | 1 (0.454)               |
| Fo24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 4                  | F024                 | 1 (0.454)               |
| F025<br>Condensed light ends, spent filters and filter aids, and spent desiccant wastes<br>from the production of certain chlorinated aliphatic hydrocarbons, by free rad-<br>ical catalyzed processes. These chlorinated aliphatic hydrocarbons are those<br>having carbon chain lengths ranging from one to and including five, with<br>varying amounts and positions of chlorine substitution.                                                                                         |       | 4                  | F025                 | 1 (0.454)               |
| F026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 4                  | F026                 | 1 (0.454)               |
| F027<br>Discarded unused formulations containing tri-, tetra-, or pentachlorophenol or<br>discarded unused formulations containing compounds derived from these<br>chlorophenols. (This listing does not include formulations containing<br>hexachlorophene synthesized from prepurified 2,4,5- trichlorophenol as the<br>sole component.)                                                                                                                                                |       | 4                  | F027                 | 1 (0.454)               |
| F028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 4                  | F028                 | 1 (0.454)               |
| F032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 4                  | F032                 | 1 (0.454)               |
| F034<br>Wastewaters (except those that have not come into contact with process con-<br>taminants), process residuals, preservative drippage, and spent formulations<br>from wood preserving processes generated at plants that use creosote for-<br>mulations. This listing does not include K001 bottom sediment sludge from<br>the treatment of wastewater from wood preserving processes that use creo-                                                                                |       | 4                  | F034                 | 1 (0.454)               |
| sote and/or pentachlorophenol.<br>F035<br>Wastewaters (except those that have not come into contact with process con-<br>taminants), process residuals, preservative drippage, and spent formulations<br>from wood preserving processes generated at plants that use inorganic pre-<br>servatives containing arsenic or chromium. This listing does not include K001<br>bottom sediment sludge from the treatment of wastewater from wood pre-                                            |       | 4                  | F035                 | 1 (0.454)               |
| serving processes that use creosote and/or pentachlorophenol.<br>F037                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 4                  | F037                 | 1 (0.454)               |

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -                  |                      |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------|-------------------------|
| Hazardous substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CASRN | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
| Petroleum refinery primary oil/water/solids separation sludge-Any sludge gen-<br>erated from the gravitational separation of oil/water/solids during the storage<br>or treatment of process wastewaters and oily cooling wastewaters from pe-<br>troleum refineries. Such sludges include, but are not limited to those gen-<br>erated in oil/water/solids separators; tanks and impoundments; ditches and<br>other conveyances; sumps; and stormwater units receiving dry weather flow.<br>Sludges generated in stormwater units that do not receive dry weather flow,<br>sludges generated from non-contact once-through cooling waters segregated<br>for treatment from other process or oily cooling waters, sludges generated in<br>aggressive biological treatment units as defined in § 261.31(b)(2) (including<br>sludges generated in one or more additional units after wastewaters have<br>been treated in aggressive biological treatment units) and K051 wastes are<br>not included in this listing. This listing does include residuals generated from<br>processing or recycling oil-bearing hazardous secondary materials excluded<br>under § 261.4(a)(12)(i), if those residuals are to be disposed of.<br>F038 |       | 4                  | F038                 | 1 (0.454)               |
| Petroleum refinery secondary (emulsified) oil/water/solids separation sludge-<br>Any sludge and/or float generated from the physical and/or chemical separa-<br>tion of oil/water/solids in process wastewaters and oily cooling wastewaters<br>from petroleum refineries. Such wastes include, but are not limited to, all<br>sludges and floats generated in: induced air flotation (IAF) units, tanks and<br>impoundments, and all sludges generated in DAF units. Sludges generated<br>in stormwater units that do not receive dry weather flow, sludges generated<br>from non-contact once-through cooling waters segregated for treatment from<br>other process or oily cooling waters, sludges and floats generated in aggres-<br>sive biological treatment units as defined in §261.31(b)(2) (including sludges<br>and floats generated in one or more additional units after wastewaters have<br>been treated in aggressive biological treatment units) and F037, K048, and<br>K051 wastes are not included in this listing.                                                                                                                                                                                            |       | 4                  |                      |                         |
| F039<br>Leachate (liquids that have percolated through land disposed wastes) resulting<br>from the disposal of more than one restricted waste classified as hazardous<br>under subpart D of 40 CFR part 261. (Leachate resulting from the disposal<br>of one or more of the following EPA Hazardous Wastes and no other haz-<br>ardous wastes retains its EPA Hazardous Waste Number(s): F020, F021,<br>F022, F026, F027, and/or F028.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 4                  | F039                 | 1 (0.454)               |
| K001<br>Bottom sediment sludge from the treatment of wastewaters from wood pre-<br>serving processes that use creosote and/or pentachlorophenol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 4                  | K001                 | 1 (0.454)               |
| Wastewater treatment sludge from the production of chrome yellow and orange<br>pigments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 4                  | K002                 | 10 (4.54)               |
| Wastewater treatment sludge from the production of molybdate orange pig-<br>ments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 4                  | K003                 | 10 (4.54)               |
| W04.<br>Wastewater treatment sludge from the production of zinc yellow pigments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 4                  | K004                 | 10 (4.54)               |
| Wastewater treatment sludge from the production of chrome green pigments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 4                  | K005                 | 10 (4.54)               |
| Wastewater treatment sludge from the production of chrome oxide green pig-<br>ments (anhydrous and hydrated).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 4                  | K006                 | 10 (4.54)               |
| Wastewater treatment sludge from the production of iron blue pigments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 4                  | K007                 | 10 (4.54)               |
| K008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 4                  | K008                 | 10 (4.54)               |
| K009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 4                  | K009                 | 10 (4.54)               |
| Distillation bottoms from the production of acetaldehyde from ethylene.<br>K010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 4                  | K010                 | 10 (4.54)               |
| Distillation side cuts from the production of acetaldehyde from ethylene.<br>K011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 4                  | K011                 | 10 (4.54)               |
| Bottom stream from the wastewater stripper in the production of acrylonitrile.<br>K013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 4                  | K013                 | 10 (4.54)               |

K015 ..... Still bottoms from the distillation of benzyl chloride.

nitrile.

K013 .....

K014 ..... Bottoms from the acetonitrile purification column in the production of acrylo-

Bottom stream from the acetonitrile column in the production of acrylonitrile.

-----

.....

K013

10 (4.54)

10 (4.54)

5000 (2270)

4 K014

4 K015

| TABLE 302.4.—LIST OF HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES—Continued |  |
|-------------------------------------------------------------------------------|--|
| [Note: All Comments/Notes Are Located at the End of This Table]               |  |

| Hazardous substance                                                                                                                                                      | CASRN | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------|-------------------------|
| K016                                                                                                                                                                     |       | 4                  | K016                 | 1 (0.454)               |
| Heavy ends or distillation residues from the production of carbon tetrachloride.<br>K017<br>Heavy ends (still bottoms) from the purification column in the production of |       | 4                  | K017                 | 10 (4.54)               |
| epichlorohydrin.<br>K018                                                                                                                                                 |       | 4                  | K018                 | 1 (0.454)               |
| Heavy ends from the fractionation column in ethyl chloride production.<br>K019                                                                                           |       | 4                  | K019                 | 1 (0.454)               |
| Heavy ends from the distillation of ethylene dichloride in ethylene dichloride production.                                                                               |       |                    |                      |                         |
| K020<br>Heavy ends from the distillation of vinyl chloride in vinyl chloride monomer pro-<br>duction.                                                                    |       | 4                  | K020                 | 1 (0.454)               |
| K021<br>Aqueous spent antimony catalyst waste from fluoromethanes production.                                                                                            |       | 4                  | K021                 | 10 (4.54)               |
| K022<br>Distillation bottom tars from the production of phenol/acetone from cumene.                                                                                      |       | 4                  | K022                 | 1 (0.454)               |
| K023<br>Distillation light ends from the production of phthalic anhydride from naph-<br>thalene.                                                                         |       | 4                  | K023                 | 5000 (2270)             |
| K024<br>Distillation bottoms from the production of phthalic anhydride from naphthalene.                                                                                 |       | 4                  | K024                 | 5000 (2270)             |
| K025                                                                                                                                                                     |       | 4                  | K025                 | 10 (4.54)               |
| Distillation bottoms from the production of nitrobenzene by the nitration of ben-<br>zene.<br>K026                                                                       |       | 4                  | K026                 | 1000 (454)              |
| Stripping still tails from the production of methyl ethyl pyridines.<br>K027                                                                                             |       | 4                  | K027                 | 10 (4.54)               |
| Centrifuge and distillation residues from toluene diisocyanate production.<br>K028                                                                                       |       | 4                  | K028                 | 1 (0.454)               |
| Spent catalyst from the hydrochlorinator reactor in the production of 1,1,1-tri-<br>chloroethane.<br>K029                                                                |       | 4                  | K029                 | 1 (0.454)               |
| Waste from the product steam stripper in the production of 1,1,1- trichloro-<br>ethane.                                                                                  |       |                    |                      |                         |
| K030<br>Column bottoms or heavy ends from the combined production of trichloro-<br>ethylene and perchloroethylene.                                                       |       | 4                  | K030                 | 1 (0.454)               |
| K031<br>By-product salts generated in the production of MSMA and cacodylic acid.                                                                                         |       | 4                  | K031                 | 1 (0.454)               |
| K032<br>Wastewater treatment sludge from the production of chlordane.                                                                                                    |       | 4                  | K032                 | 10 (4.54)               |
| K033                                                                                                                                                                     |       | 4                  | K033                 | 10 (4.54)               |
| K034<br>Filter solids from the filtration of hexachlorocyclopentadiene in the production of                                                                              |       | 4                  | K034                 | 10 (4.54)               |
| chlordane.<br>K035                                                                                                                                                       |       | 4                  | K035                 | 1 (0.454)               |
| Wastewater treatment sludges generated in the production of creosote.<br>K036                                                                                            |       | 4                  | K036                 | 1 (0.454)               |
| Still bottoms from toluene reclamation distillation in the production of disulfoton. K037                                                                                |       | 4                  | K037                 | 1 (0.454)               |
| Wastewater treatment sludges from the production of disulfoton.<br>K038                                                                                                  |       | 4                  | K038                 | 10 (4.54)               |
| Wastewater from the washing and stripping of phorate production.<br>K039                                                                                                 |       | 4                  | K039                 | 10 (4.54)               |
| Filter cake from the filtration of diethylphosphorodithioic acid in the production of phorate. K040                                                                      |       |                    |                      |                         |
| Wastewater treatment sludge from the production of phorate.                                                                                                              |       | 4                  | K040                 | 10 (4.54)               |
| K041<br>Wastewater treatment sludge from the production of toxaphene.                                                                                                    |       | 4                  | K041                 | 1 (0.454)               |
| K042<br>Heavy ends or distillation residues from the distillation of tetrachlorobenzene in<br>the production of 2,4,5-T.                                                 |       | 4                  | K042                 | 10 (4.54)               |
| K043                                                                                                                                                                     |       | 4                  | K043                 | 10 (4.54)               |
| K044                                                                                                                                                                     |       | 4                  | K044                 | 10 (4.54)               |

|                                                                                                                                                                                                                                                                                                                                                                                                 |       | Statutory          | RCRA         | Einel DO                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|--------------|-------------------------|
| Hazardous substance                                                                                                                                                                                                                                                                                                                                                                             | CASRN | Statutory<br>code† | waste<br>No. | Final RQ<br>pounds (Kg) |
| Wastewater treatment sludges from the manufacturing and processing of explosives.                                                                                                                                                                                                                                                                                                               |       |                    |              |                         |
| K045<br>Spent carbon from the treatment of wastewater containing explosives.                                                                                                                                                                                                                                                                                                                    |       | 4                  | K045         | 10 (4.54)               |
| K046<br>Wastewater treatment sludges from the manufacturing, formulation and loading<br>of lead-based initiating compounds.                                                                                                                                                                                                                                                                     |       | 4                  | K046         | 10 (4.54)               |
| Pink/red water from TNT operations.                                                                                                                                                                                                                                                                                                                                                             |       | 4                  | K047         | 10 (4.54)               |
| Dissolved air flotation (DAF) float from the petroleum refining industry.                                                                                                                                                                                                                                                                                                                       |       | 4                  | K048         | 10 (4.54)               |
| K049                                                                                                                                                                                                                                                                                                                                                                                            |       | 4                  | K049         | 10 (4.54)               |
| Slop oil emulsion solids from the petroleum refining industry.<br>K050                                                                                                                                                                                                                                                                                                                          |       | 4                  | K050         | 10 (4.54)               |
| Heat exchanger bundle cleaning sludge from the petroleum refining industry.<br>K051                                                                                                                                                                                                                                                                                                             |       | 4                  | K051         | 10 (4.54)               |
| API separator sludge from the petroleum refining industry.<br>K052                                                                                                                                                                                                                                                                                                                              |       | 4                  | K052         | 10 (4.54)               |
| Tank bottoms (leaded) from the petroleum refining industry.<br>K060                                                                                                                                                                                                                                                                                                                             |       | 4                  | K060         | 1 (0.454)               |
| Ammonia still lime sludge from coking operations.<br>K061                                                                                                                                                                                                                                                                                                                                       |       | 4                  | K061         | 10 (4.54)               |
| Emission control dust/sludge from the primary production of steel in electric fur-<br>naces.                                                                                                                                                                                                                                                                                                    |       |                    |              |                         |
| K062<br>Spent pickle liquor generated by steel finishing operations of facilities within the<br>iron and steel industry (SIC Codes 331 and 332).                                                                                                                                                                                                                                                |       | 4                  | K062         | 10 (4.54)               |
| K064<br>Acid plant blowdown slurry/sludge resulting from the thickening of blowdown<br>slurry from primary copper production.                                                                                                                                                                                                                                                                   |       | 4                  | K064         | 10 (4.54)               |
| K065                                                                                                                                                                                                                                                                                                                                                                                            |       | 4                  | K065         | 10 (4.54)               |
| K066                                                                                                                                                                                                                                                                                                                                                                                            |       | 4                  | K066         | 10 (4.54)               |
| K069<br>Emission control dust/sludge from secondary lead smelting. (Note: This listing<br>is stayed administratively for sludge generated from secondary acid scrubber<br>systems. The stay will remain in effect until further administrative action is<br>taken. If EPA takes further action effecting the stay, EPA will publish a notice<br>of the action in the <b>Federal Register</b> .) |       | 4                  | K069         | 10 (4.54)               |
| K071<br>Brine purification muds from the mercury cell process in chlorine production,                                                                                                                                                                                                                                                                                                           |       | 4                  | K071         | 1 (0.454)               |
| where separately prepurified brine is not used.<br>K073<br>Chlorinated hydrocarbon waste from the purification step of the diaphragm                                                                                                                                                                                                                                                            |       | 4                  | K073         | 10 (4.54)               |
| cellprocess using graphite anodes in chlorine production.<br>K083                                                                                                                                                                                                                                                                                                                               |       | 4                  | K083         | 100 (45.4)              |
| Distillation bottoms from aniline production.<br>K084<br>Wastewater treatment sludges generated during the production of veterinary                                                                                                                                                                                                                                                             |       | 4                  | K084         | 1 (0.454)               |
| pharmaceuticals from arsenic or organo-arsenic compounds.<br>K085<br>Distillation or fractionation column bottoms from the production of                                                                                                                                                                                                                                                        |       | 4                  | K085         | 10 (4.54)               |
| chlorobenzenes.<br>K086<br>Solvent washes and sludges, caustic washes and sludges, or water washes<br>and sludges from cleaning tubs and equipment used in the formulation of ink                                                                                                                                                                                                               |       | 4                  | K086         | 10 (4.54)               |
| from pigments, driers, soaps, and stabilizers containing chromium and lead.<br>K087                                                                                                                                                                                                                                                                                                             |       | 4                  | K087         | 100 (45.4)              |
| Decanter tank tar sludge from coking operations.<br>K088                                                                                                                                                                                                                                                                                                                                        |       | 4                  | K088         | 10 (4.54)               |
| Spent potliners from primary aluminum reduction.<br>K090                                                                                                                                                                                                                                                                                                                                        |       | 4                  | K090         | 10 (4.54)               |
| Emission control dust or sludge from ferrochromiumsilicon production.<br>K091                                                                                                                                                                                                                                                                                                                   |       | 4                  | K091         | 10 (4.54)               |
| Emission control dust or sludge from ferrochromium production.<br>K093                                                                                                                                                                                                                                                                                                                          |       |                    | K093         | 5000 (2270)             |

| TABLE 302.4.—LIST OF HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES—Continued |
|-------------------------------------------------------------------------------|
| [Note: All Comments/Notes Are Located at the End of This Table]               |

| Hazardous substance                                                                                                                                                               | CASRN | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------|-------------------------|
| Distillation light ends from the production of phthalic anhydride from ortho-xy-lene.                                                                                             |       |                    |                      |                         |
| K094<br>Distillation bottoms from the production of phthalic anhydride from ortho-xylene.                                                                                         |       | 4                  | K094                 | 5000 (2270)             |
| K095                                                                                                                                                                              |       | 4                  | K095                 | 100 (45.4)              |
| Distillation bottoms from the production of 1,1,1-trichloroethane.<br>K096<br>Heavy ends from the heavy ends column from the production of 1,1,1-trichloro-<br>ethane.            | 4     | K096               | 100 (45.4)           |                         |
| K097<br>Vacuum stripper discharge from the chlordane chlorinator in the production of<br>chlordane.                                                                               |       | 4                  | K097                 | 1 (0.454)               |
| K098<br>Untreated process wastewater from the production of toxaphene.                                                                                                            |       | 4                  | K098                 | 1 (0.454)               |
| K099                                                                                                                                                                              |       | 4                  | K099                 | 10 (4.54)               |
| Untreated wastewater from the production of 2,4-D.<br>K100                                                                                                                        |       | 4                  | K100                 | 10 (4.54)               |
| Waste leaching solution from acid leaching of emission control dust/sludge<br>from secondary lead smelting.<br>K101                                                               |       | 4                  | K101                 | 1 (0.454)               |
| Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds.              |       |                    |                      |                         |
| Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds.                             |       | 4                  | K102                 | 1 (0.454)               |
| K103<br>Process residues from aniline extraction from the production of aniline.                                                                                                  |       | 4                  | K103                 | 100 (45.4)              |
| K104<br>Combined wastewater streams generated from nitrobenzene/aniline production.                                                                                               |       | 4                  | K104                 | 10 (4.54)               |
| K105<br>Separated aqueous stream from the reactor product washing step in the pro-                                                                                                |       | 4                  | K105                 | 10 (4.54)               |
| duction of chlorobenzenes.<br>K106<br>Wastewater treatment sludge from the mercury cell process in chlorine produc-                                                               |       | 4                  | K106                 | 1 (0.454)               |
| tion.<br>K107<br>Column bottoms from product separation from the production of 1,1-                                                                                               |       | 4                  | K107                 | 10 (4.54)               |
| dimethylhydrazine (UDMH) from carboxylic acid hydrazines.<br>K108                                                                                                                 |       | 4                  | K108                 | 10 (4.54)               |
| Condensed column overheads from product separation and condensed reactor vent gases from the production of 1,1- dimethylhydrazine (UDMH) from carboxylic acid hydrazides.<br>K109 |       | 4                  | K109                 | 10 (4.54)               |
| Spent filter cartridges from product purification from the production of 1,1-<br>dimethylhydrazine (UDMH) from carboxylic acid hydrazides.<br>K110                                |       | 4                  | K110                 | 10 (4.54)               |
| Condensed column overheads from intermediate separation from the produc-<br>tion of 1,1- dimethylhydrazine (UDMH) from carboxylic acid hydrazides.                                |       |                    |                      |                         |
| K111<br>Product washwaters from the production of dinitrotoluene via nitration of tol-<br>uene.                                                                                   |       | 4                  | K111                 | 10 (4.54)               |
| K112<br>Reaction by-product water from the drying column in the production of<br>toluenediamine via hydrogenation of dinitrotoluene.                                              |       | 4                  | K112                 | 10 (4.54)               |
| Condensed liquid light ends from the purification of toluenediamine in the pro-<br>duction of toluenediamine via hydrogenation of dinitrotoluene.                                 |       | 4                  | K113                 | 10 (4.54)               |
| K114                                                                                                                                                                              |       | 4                  | K114                 | 10 (4.54)               |
| K115<br>Heavy ends from the purification of toluenediamine in the production of<br>toluenediamine via hydrogenation of dinitrotoluene.                                            |       | 4                  | K115                 | 10 (4.54)               |
| K116<br>Organic condensate from the solvent recovery column in the production of tol-<br>uene diisocyanate via phosgenation of toluenediamine.                                    |       | 4                  | K116                 | 10 (4.54)               |

| Hazardous substance                                                                                                                                                                                                                                                                                                                                                       | CASRN | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------|-------------------------|
| Wastewater from the reactor vent gas scrubber in the production of ethylene dibromide via bromination of ethene.                                                                                                                                                                                                                                                          |       |                    |                      |                         |
| K118<br>Spent adsorbent solids from purification of ethylene dibromide in the production<br>of ethylene dibromide via bromination of ethene.                                                                                                                                                                                                                              |       | 4                  | K118                 | 1 (0.454)               |
| K123<br>Process wastewater (including supernates, filtrates, and washwaters) from the<br>production of ethylenebisdithiocarbamic acid and its salts.                                                                                                                                                                                                                      |       | 4                  | K123                 | 10 (4.54)               |
| K124<br>Reactor vent scrubber water from the production of ethylenebisdithiocarbamic acid and its salts.                                                                                                                                                                                                                                                                  |       | 4                  | K124                 | 10 (4.54)               |
| Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.                                                                                                                                                                                                                                                   |       | 4                  | K125                 | 10 (4.54)               |
| K126<br>Baghouse dust and floor sweepings in milling and packaging operations from                                                                                                                                                                                                                                                                                        |       | 4                  | K126                 | 10 (4.54)               |
| the production or formulation of ethylenebisdithiocarbamic acid and its salts.<br>K131<br>Wastewater from the reactor and spent sulfuric acid from the acid dryer from                                                                                                                                                                                                    |       | 4                  | K131                 | 100 (45.4)              |
| the production of methyl bromide.<br>K132<br>Spent absorbent and wastewater separator solids from the production of meth-                                                                                                                                                                                                                                                 |       | 4                  | K132                 | 1000 (454)              |
| yl bromide.<br>K136<br>Still bottoms from the purification of ethylene dibromide in the production of                                                                                                                                                                                                                                                                     |       | 4                  | K136                 | 1 (0.454)               |
| ethylene dibromide via bromination of ethene.<br>K141<br>Process residues from the recovery of coal tar, including, but not limited to, col-                                                                                                                                                                                                                              |       | 4                  | K141                 | 1 (0.454)               |
| lecting sump residues from the production of coke from coal or the recovery<br>of coke by-products produced from coal. This listing does not include K087<br>(decanter tank tar sludges from coking operations).                                                                                                                                                          |       | 4                  | K142                 | 1 (0 454)               |
| K142<br>Tar storage tank residues from the production of coke from coal or from the re-<br>covery of coke by-products produced from coal.                                                                                                                                                                                                                                 |       |                    |                      | 1 (0.454)               |
| K143<br>Process residues from the recovery of light oil, including, but not limited to,<br>those generated in stills, decanters, and wash oil recovery units from the re-<br>covery of coke by- products produced from coal.                                                                                                                                              |       | 4                  | K143                 | 1 (0.454)               |
| K144                                                                                                                                                                                                                                                                                                                                                                      |       | 4                  | K144                 | 1 (0.454)               |
| K145<br>Residues from naphthalene collection and recovery operations from the recov-                                                                                                                                                                                                                                                                                      |       | 4                  | K145                 | 1 (0.454)               |
| ery of coke by-products produced from coal.<br>K147<br>Tar storage tank residues from coal tar refining.                                                                                                                                                                                                                                                                  |       | 4                  | K147                 | 1 (0.454)               |
| K148Residues from coal tar distillation, including, but not limited to, still bottoms.                                                                                                                                                                                                                                                                                    |       | 4                  | K148                 | 1 (0.454)               |
| K149<br>Distillation bottoms from the production of alpha-(or methyl-) chlorinated toluenes, ring-chlorinated toluenes, benzoyl chlorides, and compounds with mixtures of these functional groups. [This waste does not include still bot-toms from the distillation of benzyl chloride.]                                                                                 |       | 4                  | K149                 | 10 (4.54)               |
| K150<br>Organic residuals, excluding spent carbon adsorbent, from the spent chlorine<br>gas and hydrochloric acid recovery processes associated with the production<br>of alpha- (or methyl-) chlorinated toluenes, ring-chlorinated toluenes, benzoyl                                                                                                                    |       | 4                  | K150                 | 10 (4.54)               |
| chlorides, and compounds with mixtures of these functional groups.<br>K151<br>Wastewater treatment sludges, excluding neutralization and biological sludges,<br>generated during the treatment of waste-waters from the production of alpha-<br>(or methyl-) chlorinated toluenes, ring-chlorinated toluenes, benzoyl                                                     |       | 4                  | K151                 | 10 (4.54)               |
| chlorides, and compounds with mixtures of these functional groups.<br>K156<br>Organic waste (including heavy ends, still bottoms, light ends, spent solvents,<br>filtrates, and decantates) from the production of carbamates and carbamoyl<br>oximes. (This listing does not apply to wastes generated from the manufac-<br>ture of 3-iodo-2-propynyl n-butylcarbamate.) |       | 4                  | K156                 | ##                      |

| Hazardous substance                                                                                                                                                                                                             | CASRN | Statutory<br>code† | RCRA<br>waste<br>No. | Final RQ<br>pounds (Kg) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------|-------------------------|
| K157<br>Wastewaters (including scrubber waters, condenser waters, washwaters, and<br>separation waters) from the production of carbamates and carbamoyl                                                                         |       | 4                  | K157                 | ##                      |
| oximes. (This listing does not apply to wastes generated from the manufac-<br>ture of 3-iodo-2-propynyl n-butylcarbamate.)<br>K158                                                                                              |       | 4                  | K158                 | ##                      |
| Bag house dusts and filter/separation solids from the production of carbamates<br>and carbamoyl oximes. (This listing does not apply to wastes generated from<br>the manufacture of 3-iodo-2-propynyl n-butylcarbamate.)        |       |                    |                      |                         |
| K159<br>Organics from the treatment of thiocarbamate wastes.                                                                                                                                                                    |       | 4                  | K159                 | ##                      |
| K161                                                                                                                                                                                                                            |       | 4                  | K161                 | ##                      |
| Purification solids (including filtration, evaporation, and centrifugation solids),<br>baghouse dust and floor sweepings from the production of dithiocarbamate<br>acids and their salts. (This does not include K125 or K126.) |       |                    |                      |                         |
| K169 <sup>r</sup><br>Crude oil storage tank sediment from petroleum refining operations.                                                                                                                                        |       | 4                  | K169                 | 10 (4.54)               |
| Clarified slurry oil tank sediment and/or in-line filter/separation solids from pe-<br>troleum refining operations.                                                                                                             |       | 4                  | K170                 | 1 (0.454)               |
| K171 <sup>f</sup> Spent hydrotreating catalyst from petroleum refining operations. (This listing does not include inert support media.)                                                                                         |       | 4                  | K171                 | 1 (0.454)               |
| K172 <sup>f</sup>                                                                                                                                                                                                               |       | 4                  | K172                 | 1 (0.454)               |
| Spent hydrorefining catalyst from petroleum refining operations. (This listing does not include inert support media.)                                                                                                           |       |                    |                      |                         |
| K174 <sup>f</sup>                                                                                                                                                                                                               |       | 4                  | K174                 | 1 (0.454)               |
| K175 <sup>r</sup>                                                                                                                                                                                                               |       | 4                  | K175                 | 1 (0.454)               |
| Baghouse filters from the production of antimony oxide, including filters from the production of intermediates (e.g., antimony metal or crude antimony oxide)                                                                   |       | 4                  | K176                 | 1 (0.454)               |
| K177<br>Slag from the production of antimony oxide that is speculatively accumulated or<br>disposed, including slag from the production of intermediates (e.g., antimony<br>metal or crude antimony oxide)                      |       | 4                  | K177                 | 5,000 (2270)            |
| K178<br>Residues from manufacturing and manufacturing-site storage of ferric chloride<br>from acids formed during the production of titanium dioxide using the chlo-<br>ride ilmenite process                                   |       | 4                  | K178                 | 1 (0.454)               |

† Indicates the statutory source defined by 1,2,3, and 4, as described in the note preceding Table 302.4.

++ No reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is larger than 100 micrometers (0.004 inches)

+++ The RQ for asbestos is limited to friable forms only.

## The Agency may adjust the statutory RQ for this hazardous substance in a future rulemaking; until then the statutory one-pound RQ applies.

§The adjusted RQs for radionuclides may be found in Appendix B to this table. \*\* Indicates that no RQ is being assigned to the generic or broad class.

<sup>a</sup>Benzene was already a CERCLA hazardous substance prior to the CAA Amendments of 1990 and received an adjusted 10-pound RQ based on potential carcinogenicity in an August 14, 1989, final rule (54 FR 33418). The CAA Amendments specify that "benzene (including benzene from gasoline)" is a hazardous air pollutant and, thus, a CERCLA hazardous substance.

<sup>b</sup> The CAA Amendments of 1990 list DDE (3547–04–4) as a CAA hazardous air pollutant. The CAS number, 3547–04–4, is for the chemical, p.p'dichlorodiphenylethane. DDE or p.p'-dichlorodiphenyldichloroethylene, CAS number 72–55–9, is already listed in Table 302.4 with a final RQ of 1 pound. The substance identified by the CAS number 3547–04–4 has been evaluated and listed as DDE to be consistent with the CAA section 112 listing, as amended.

Includes mineral fiber emissions from facilities manufacturing or processing glass, rock, or slag fibers (or other mineral derived fibers) of average diameter 1 micrometer or less

<sup>d</sup> Includes mono- and di-ethers of ethylene glycol, diethylene glycol, and triethylene glycol R-(OCH2CH2)n-OR' where:

n = 1, 2, or 3;R = alkyl C7 or less; or

R = phenyl or alkyl substituted phenyl; R' = H or alkyl C7 or less; or

OR consisting of carboxylic acid ester, sulfate, phosphate, nitrate, or sulfonate. • Includes organic compounds with more than one benzene ring, and which have a boiling point greater than or equal to 100°C. • See 40 CFR 302.6(b)(1) for application of the mixture rule to this hazardous waste.

5. Appendix A to § 302.4 is amended

| -  |  |
|----|--|
| hu |  |
| UV |  |

a. removing the following entries: 60117, 63252, 72208, 72548, 74931, 50293, 52857, 54115, 55630, 55914, 79016, 79221, 81072, 81812, 88857, 57125, 57249, 57976, 58899, 59507, 91941, 92875, 93721, 93765, 94757,

APPENDIX A TO § 302.4—SEQUENTIAL CAS REGISTRY NUMBER LIST OF CERCLA HAZARDOUS SUBSTANCES

| CASRN | Hazardous Substance                                    |                                |                       |                |   |   |  |
|-------|--------------------------------------------------------|--------------------------------|-----------------------|----------------|---|---|--|
| *     | *                                                      | *                              | *                     | *              | * | * |  |
| 50293 | Benzene, 1,1′-(2,2,2- trich<br>DDT.<br>4,4′-DDT.       | loroethylidene)bis[4           | I-chloro              |                |   |   |  |
| *     | *                                                      | *                              | *                     | *              | * | * |  |
| 2857  | Famphur.<br>Phosphorothioic acid, O-[⁄                 | 4-[(dimethylamino)s            | ulfonyl]phenyl] O,O-d | imethyl ester. |   |   |  |
| *     | *                                                      | *                              | *                     | *              | * | * |  |
| i4115 | Nicotine, & salts.<br>Pyridine, 3-(1-methyl-2-py       | rrolidinyl)-, (S)-, & s        | salts.                |                |   |   |  |
| *     | *                                                      | *                              | *                     | *              | * | * |  |
| 5630  | 1,2,3-Propanetriol, trinitrat                          | e.                             |                       |                |   |   |  |
| 5914  | Diisopropylfluorophosphat<br>Phosphorofluororidic acid | e (DFP).<br>bis(1-methylethyl) | ester.                |                |   |   |  |
| *     | *                                                      | *                              | *                     | *              | * | * |  |
| 7249  | Strychnidin-10-one, & sall<br>Strychnine, & salts.     | S.                             |                       |                |   |   |  |
| *     | *                                                      | *                              | *                     | *              | * | * |  |
| 7578  | beta-Propiolactone.                                    |                                |                       |                |   |   |  |
| *     | *                                                      | *                              | *                     | *              | * | * |  |
| 7976  | Benz[a]anthracene, 7,12-(<br>7,12-Dimethylbenz[a]anth  | dimethyl                       |                       |                |   |   |  |
| 8899  |                                                        |                                | 3β,4α,5α,6β)          |                |   |   |  |
| *     | *                                                      | *                              | *                     | *              | * | * |  |
| 59507 | p-Chloro-m-cresol.<br>Phenol, 4-chloro-3-methyl        |                                |                       |                |   |   |  |

59892 ..... N-Nitrosomorpholine.

#### APPENDIX A TO § 302.4—SEQUENTIAL CAS REGISTRY NUMBER LIST OF CERCLA HAZARDOUS SUBSTANCES—Continued

| CASRN          |                                                                             |                                                   | Hazardous           | Substance              |                   |                     |
|----------------|-----------------------------------------------------------------------------|---------------------------------------------------|---------------------|------------------------|-------------------|---------------------|
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 60117          | Benzenamine, N,N-dim<br>Dimethyl aminoazoben:<br>p-Dimethylaminoazobei      | zene.                                             |                     |                        |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 0355           | Acetamide.                                                                  |                                                   |                     |                        |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 3252           | Carbaryl.<br>1-Naphthalenol, methyl                                         | carbamate.                                        |                     |                        |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 4675           | Diethyl sulfate.                                                            |                                                   |                     |                        |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 58122<br>72208 | Endrin, & metabolites. 2,7:3.6-Dimethanonaph                                | th[2,3-b]oxirene,3,4,5,<br>7aalpha)-, & metabolit | 6,9,9-hexachloro-1a | ,2,2a,3,6,6a,7,7a-octa | hydro-, (1aalpha, | 2beta,2abeta,3alpha |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 72548          | Benzene, 1,1'-(2,2-dich<br>DDD.<br>TDE.<br>4,4'-DDD.                        | loroethylidene)bis[4-ch                           | lloro               |                        |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 74931          | Methanethiol.<br>Methyl mercaptan.<br>Thiomethanol.                         |                                                   |                     |                        |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 9016           | Ethene, trichloro<br>Trichloroethylene.                                     |                                                   |                     |                        |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 9118           | Chloroacetic acid.                                                          |                                                   |                     |                        |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 9221           | Carbonochloridic acid,<br>Methyl chlorocarbonate                            | nethyl ester.                                     |                     |                        |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 31072          | Saccharin, & salts.<br>1,2-Benzisothiazol-3(2F                              | I)-one, 1,1-dioxide, & s                          | salts.              |                        |                   |                     |
| 31812          | Warfarin, & salts.<br>2H-1-Benzopyran-2-one                                 |                                                   |                     | alts.                  |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| 8857           | Phenol, 2-(1-methylprop                                                     | oyl)-4,6-dinitro                                  |                     |                        |                   |                     |
| 0040           |                                                                             |                                                   |                     |                        |                   |                     |
| *              | *                                                                           | *                                                 | *                   | *                      | *                 | *                   |
| )1667<br>)1941 | N,N-Diethylaniline.<br>[1,1'-Biphenyl]-4,4'-dian<br>3,3'-Dichlorobenzidine. | nine,3,3'-dichloro                                |                     |                        |                   |                     |
| 92524          |                                                                             |                                                   |                     |                        |                   |                     |

#### APPENDIX A TO § 302.4—SEQUENTIAL CAS REGISTRY NUMBER LIST OF CERCLA HAZARDOUS SUBSTANCES—Continued

|                         | 0                                                                        |                            |             |          |   |    |
|-------------------------|--------------------------------------------------------------------------|----------------------------|-------------|----------|---|----|
| CASRN                   |                                                                          |                            | Hazardous S | ubstance |   |    |
| 92671<br>92875<br>92933 | Benzidine.<br>[1,1'-Biphenyl]-4,4'-diamine.                              |                            |             |          |   |    |
| 93765                   | Acetic acid, (2,4,5-trichlorop<br>2,4,5-T.<br>2,4,5-T acid.              | henoxy)                    |             |          |   |    |
| *                       | *                                                                        | *                          | *           | *        | * | *  |
| 94757                   | Acetic acid, (2,4-dichlorophe<br>2,4-D Acid.<br>2,4-D, salts and esters. | enoxy)-, salts & es        | ters.       |          |   |    |
| *                       | *                                                                        | *                          | *           | *        | * | *  |
| 95476<br>95487          |                                                                          |                            |             |          |   |    |
| *                       | *                                                                        | *                          | *           | *        | * | *  |
| 96093                   | Styrene oxide.                                                           |                            |             |          |   |    |
| *                       | *                                                                        | *                          | *           | *        | * | *  |
| 98873                   | Benzal chloride.<br>Benzene, (dichloromethyl)                            |                            |             |          |   |    |
| *                       | *                                                                        | *                          | *           | *        | * | *  |
| 100447                  | Benzene, (chloromethyl)<br>Benzyl chloride.                              |                            |             |          |   |    |
| *                       | *                                                                        | *                          | *           | *        | * | *  |
| 101144                  | Benzenamine, 4,4'-methyler<br>4,4'-Methylenebis(2-chloroar               | nebis[2-chloro<br>niline). |             |          |   |    |
| *                       | *                                                                        | *                          | *           | *        | * | *  |
| 101688                  | MDI.<br>Methylene diphenyl diisocya<br>4,4'-Methylenedianiline.          | nate.                      |             |          |   |    |
| *                       | *                                                                        | *                          | *           | *        | * | *  |
| 106423<br>106445        |                                                                          |                            |             |          |   |    |
| *                       | *                                                                        | *                          | *           | *        | * | *  |
| 106503                  | p-Phenylenediamine.                                                      |                            |             |          |   |    |
| *                       | *                                                                        | *                          | *           | *        | * | *  |
| 106007                  | 1,2-Epoxybutane.                                                         |                            |             |          |   |    |
| *                       | r,∠-∟poxybutane.                                                         | *                          | *           | *        | * | *  |
|                         |                                                                          |                            |             |          |   |    |
| 106934                  | Ethane, 1,2-dibromo<br>Ethylene dibromide.                               |                            |             |          |   |    |
| 106990*                 | 1,3-Butadiene.                                                           | *                          | *           | *        | * | *  |
|                         | -                                                                        |                            |             | 'n       | ~ | ** |
| 107011                  | Ethylono alva-                                                           |                            |             |          |   |    |

107211 ..... Ethylene glycol.

#### APPENDIX A TO § 302.4—SEQUENTIAL CAS REGISTRY NUMBER LIST OF CERCLA HAZARDOUS SUBSTANCES—Continued

|                      |    | -                                                                                         |                                |                   |    |   |   |
|----------------------|----|-------------------------------------------------------------------------------------------|--------------------------------|-------------------|----|---|---|
| CASF                 | RN |                                                                                           |                                | Hazardous Substan | ce |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
| 108101 .             |    | Hexone.<br>Methyl isobutyl ketone.<br>4-Methyl-2-pentanone.                               |                                |                   |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
|                      |    | m-Xylene.<br>m-Cresol.                                                                    |                                |                   |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
| 108952 .             |    | Phenol.                                                                                   |                                |                   |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
| 110543 .<br>110758 . |    | Hexane.<br>Ethene, (2-chloroethoxy)<br>2-Chloroethyl vinyl ether.                         |                                |                   |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
| 111422 .<br>111444 . |    |                                                                                           |                                |                   |    |   |   |
| 111546 .             |    |                                                                                           | ediylbis-, salts & est         | ers.              |    |   |   |
| 111911 .             |    | Bis(2-chloroethoxy) methane.<br>Dichloromethoxyethane.                                    |                                |                   |    |   |   |
| 114261 .             |    | Ethane, 1,1'-[methylenebis(oxy)]<br>Phenol, 2-(1-methylethoxy)-, me<br>Propoxur (Baygon). | bis(2-chloro<br>thylcarbamate. |                   |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
| 116063 .             |    | Aldicarb.<br>Propanal, 2-methyl-2-(methylthio                                             | )-, O-[(methylamino            | )carbonyl]oxime.  |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
| 119904 .             |    | [1,1'-Biphenyl]-4,4'-diamine,3,3'-                                                        | dimethoxy                      |                   |    |   |   |
| 119937 .             |    | 3,3'-Dimethoxybenzidine.<br>[1,1'-Biphenyl]-4,4'-diamine,3,3'-<br>3,3'-Dimethylbenzidine. | dimethyl                       |                   |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
| 120581 .             |    | lsosafrole.<br>1,3-Benzodioxole, 5-(1-propenyl)                                           | )_                             |                   |    |   |   |
| 120809 .             |    | Catechol.                                                                                 |                                |                   |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
| 121448 .             |    | Ethanamine, N,N-diethyl<br>Triethylamine.                                                 |                                |                   |    |   |   |
| 121697 .             |    | N,N-Dimethylaniline.                                                                      |                                |                   |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
|                      |    | Hydroquinone.                                                                             |                                |                   |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
|                      |    | Propionaldehyde.                                                                          |                                |                   |    |   |   |
|                      | *  | *                                                                                         | *                              | *                 | *  | * | * |
| 123911 .             |    | 1,4-Diethyleneoxide.<br>1.4-Dioxane.                                                      |                                |                   |    |   |   |

1,4-Dioxane.

#### APPENDIX A TO § 302.4—SEQUENTIAL CAS REGISTRY NUMBER LIST OF CERCLA HAZARDOUS SUBSTANCES—Continued

| CASE  | RN | Hazardous Substance                      |                       |                        |                     |                         |                    |  |  |
|-------|----|------------------------------------------|-----------------------|------------------------|---------------------|-------------------------|--------------------|--|--|
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
| 26998 |    | Chloroprene.                             |                       |                        |                     |                         |                    |  |  |
|       |    | Ethene, tertrachloro                     |                       |                        |                     |                         |                    |  |  |
|       |    | Perchloroethylene.                       |                       |                        |                     |                         |                    |  |  |
|       |    | Tetrachloroethylene.                     |                       |                        |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
| 32649 |    | Dibenzofuran.                            |                       |                        |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
| 33904 |    | Chloramben.                              |                       |                        |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
| 10000 |    | 1,3,4-Metheno-2H-cyclob                  | outa[cd]pentalen-2-o  | ne,1,1a,3,3a,4,5,5,5a  | 5b,6-decachloroocta | hydro                   |                    |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
| 18823 |    | L-Phenylalanine, 4-[bis(2                | -chloroethyl)amino]-  | ·.                     |                     |                         |                    |  |  |
|       |    | Melphalan.                               | • / •                 |                        |                     |                         |                    |  |  |
|       |    | Potassium cyanide K(CN                   | I).                   |                        |                     |                         |                    |  |  |
| 01004 |    | Aziridine.<br>Ethylenimine.              |                       |                        |                     |                         |                    |  |  |
|       |    | ,                                        |                       |                        |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
| 56627 |    | Calcium cyanamide.                       |                       |                        |                     |                         |                    |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
|       |    | Dibenzo[a,i]pyrene.                      |                       |                        |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
| 93395 |    | Indeno(1,2,3-cd)pyrene.                  |                       |                        |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
| )6440 |    | Fluoranthene.                            |                       |                        |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
| 18019 |    | Chrysene.                                |                       |                        |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
| 98022 |    |                                          |                       |                        |                     |                         |                    |  |  |
| 08044 |    | Phosphorodithioic acid, 0<br>Disulfoton. | D,O-diethyl S-[(ethyl | thio) methyl] ester.   |                     |                         |                    |  |  |
| 90044 |    | Phosphorodithioic acid, (                | D,O-diethyl S-[2-(eth | vlthio)ethyl] ester.   |                     |                         |                    |  |  |
|       |    |                                          |                       | , , ,                  |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
| 03344 |    | Lasiocarpine.                            |                       |                        |                     |                         |                    |  |  |
|       |    | 2-Butenoic acid, 2-meth                  | yl-, 7-[[2,3-dihydrox | y-2-(1-methoxyethyl)-  | 3-methyl-1-oxobutox | y]methyl]-2,3,5,7a-tetr | ahydro-1H-pyrroliz |  |  |
|       |    | 1-yl ester, [1S-[1alpha                  | (Z),7(2S*,3R*), 7aal  | pha]]                  |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
| 09002 |    |                                          |                       | 0.401                  | 500 · · · ·         | /                       |                    |  |  |
|       |    | 1,4:5,8-Dimethanonaphth 8abeta)          | naiene, 1,2,3,4,1     | u, iu-hexachloro-1,4,4 | a,5,8,8a-hexahydro- | , (1alpha,4alpha,4      | abeta,5alpha,8alpl |  |  |
|       |    | Jabelaj                                  |                       |                        |                     |                         |                    |  |  |
|       |    |                                          |                       |                        |                     |                         |                    |  |  |
|       | *  | *                                        | *                     | *                      | *                   | *                       | *                  |  |  |

Phenol, 4-(dimethylamino)-3,5-dimethyl-, methylcarbamate (ester).

-

#### APPENDIX A TO § 302.4—SEQUENTIAL CAS REGISTRY NUMBER LIST OF CERCLA HAZARDOUS SUBSTANCES—Continued

| CASRN          | Hazardous Substance                                                             |             |                 |                      |                       |                    |  |
|----------------|---------------------------------------------------------------------------------|-------------|-----------------|----------------------|-----------------------|--------------------|--|
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 334883         | Diazomethane.                                                                   |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 63581<br>65736 |                                                                                 | 234 10 10 b | ovachloro 14455 | 8a boyabydra (1alr   | sha dalaba dabata 51  | acta Shata Sahata) |  |
| 92808          |                                                                                 |             |                 | ,oa-nexanyuro-, (rai | nia,4aipiia,4abeta,5i |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 06616<br>06649 | Potassium silver cyanide.<br>Silver cyanide Ag(CN).                             | assium.     |                 |                      |                       |                    |  |
| 06683<br>06774 | Cyanogen bromide (CN)Br.<br>Cyanogen chloride (CN)Cl.                           |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 32274          | 2-Chloroacetophenone.                                                           |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 40841          | 2,2,4-Trimethylpentane.                                                         |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 42881          | Bis(chloromethyl)ether.<br>Dichloromethyl ether.<br>Methane, oxybis(chloro      |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 44923          | Copper cyanide Cu(CN).                                                          |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 57197<br>57211 | Nickel cyanide Ni(CN) <sub>2</sub> .<br>Zinc cyanide Zn(CN) <sub>2</sub> .      |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 92018          | Calcium cyanide Ca(CN) <sub>2</sub> .                                           |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 93602          | Vinyl bromide.                                                                  |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 06202          | Benzene, 2-methyl-1,3-dinitro<br>2,6-Dinitrotoluene.                            |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 80319<br>84935 | Hexamethylphosphoramide.<br>N-Nitroso-N-methylurea.<br>Urea, N-methyl-N-nitroso |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |
| 22060          | Hexamethylene-1,6-diisocyanate                                                  |             |                 |                      |                       |                    |  |
| *              | *                                                                               | *           | *               | *                    | *                     | *                  |  |

1314847 ...... Zinc phosphide  $Zn_3P_2$ .

#### APPENDIX A TO § 302.4—SEQUENTIAL CAS REGISTRY NUMBER LIST OF CERCLA HAZARDOUS SUBSTANCES—Continued

| Methiocarb.<br>Phenol, (3,5-dimethyl-4-(methylthio)-, methylcarbamate.         2763964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CASRN                | Hazardous Substance                                                  |                 |              |   |   |   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------|-----------------|--------------|---|---|---|--|--|
| Creasis (scioners and mixture).<br>Phenol, methyl.<br>3130207<br>Benzene, dimethyl.<br>Xylene (ixxel).<br>Xylenes (iscomers and mixture).<br>Xylenes (iscomers and mixture).<br>Xylenes (iscomers and mixture).<br>Xylenes (iscomers and mixture).<br>Xylenes (iscomers and mixture).<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Triffuralin.<br>Tri | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| Xylene.         Xylenes (isomers and mixture).         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1319773              | Cresols (isomers and mixture).<br>Cresylic acid (isomers and mixture | e).             |              |   |   |   |  |  |
| Xylene.         Xylenes (isomers and mixture).         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| 1563662       7-Benzofuranol, 2,3-dihydro-2,2-dimethyl-, methylcarbamate.         1562088       Trifluralin.         1562084       Methyl tert-butyl ether.         1634044       Methyl tert-butyl ether.         1632057       Mercaptodimethur.         Mercaptodimethur.       Methyl-4-(methylthio)-, methylcarbamate.         1633064       1         1632086       1         1632087       Mercaptodimethyl-4-(methylthio)-, methylcarbamate.         1633064       1         1632086       1         1632086       1         1632086       1         1632086       1         1632086       1         1632086       1         1632086       1         1632086       1         1632086       1         16340704       1         16340704       1         16340704       1         17440417       1         16340704       1         178394       1         16340704       1         1778394       1         1778394       1         1778394       1         1778394       1         1778394 <td>1330207</td> <td>Xylene.<br/>Xylene (mixed).</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1330207              | Xylene.<br>Xylene (mixed).                                           |                 |              |   |   |   |  |  |
| 1582098       Carbouran.<br>Trifuralin.         1634044       Methyl tert-butyl ether.         2032657       Mercaptodimethur.<br>Methiocarb.<br>Phenol. (3.5-dimethyl-4-(methylthio)-, methylcarbamate.         2763964       3(2H)-Isoxazolone, 5-(aminomethyl)<br>5-(Aminomethyl)-3-isoxazolol.         32763964       3(2H)-Isoxazolone, 5-(aminomethyl)<br>5-(Aminomethyl)-3-isoxazolol.         4       DDE.         547044       DDE.         547045       DDE.         547044       Carbouran.         6       1         7480564       Selenium sulfide SeS3.<br>Titanium tetrachloride.         7778394       Arsenic acid HyAsO4.         7778394       Arsenic acid HyAsO4.         7778395       1         7783064       Hydrogen sulfide H2S.         77783952       1         7783952       Chlorinated camphene.<br>Toxaphene.         7040472       Thallium chloride TICI.         7778392       1         778394       1         7783952       Chlorinated camphene.<br>Toxaphene.         704047254.       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| 1582098       Trifuralin.         1634044       Methyl tert-bulyl ether.         1634044       Methyl tert-bulyl ether.         2032657       Mercaptodimethur.<br>Methiosch.<br>Phenol, (3,5-dimethyl-4-(methylthio)-, methylcarbamate.         2032657       Mercaptodimethur.<br>Methiosch.<br>Phenol, (3,5-dimethyl-4-(methylthio)-, methylcarbamate.         2763964       .         3547044       DDE.         2763964       .         DDE.       .         2763964       .         Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Beryllium.<br>Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | Carbofuran.                                                          | imethyl-, methy | /lcarbamate. |   |   |   |  |  |
| .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1582098              | Trifluralin.                                                         |                 |              |   |   |   |  |  |
| .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| Phenol, (3,5-dimethyl-4-(methylthio)-, methylcarbamate.         2763964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1634044              | Methyl tert-butyl ether.                                             |                 |              |   |   |   |  |  |
| Methiocarb.<br>Phenol, (3,5-dimethyl-4-(methylthio)-, methylcarbamate.         2763964       3(2H)-Isoxazolone, 5-(aminomethyl)<br>5-(Aminomethyl)-3-isoxazolol.         *       *       *       *       *         3547044       DDE.       *       *       *       *       *       *         3547044       DDE.       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       * <td< td=""><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| 5-(Aminomethyl)-3-isoxazolol.         3547044       DDE.         3547044       DDE.         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2032657              | Methiocarb.                                                          | o)-, methylcark | pamate.      |   |   |   |  |  |
| 5-(Aminomethyl)-3-isoxazolol.         3547044       DDE.         3547044       DDE.         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2763964              | 3(2H)-Isoxazolone, 5-(aminomethy 5-(Aminomethy)-3-isoxazolol.        | yl)             |              |   |   |   |  |  |
| *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| 1       1       1       1       1       1       1         7440417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3547044              | DDE.                                                                 |                 |              |   |   |   |  |  |
| Beryllium powder.         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| 7550450        Titanium tetrachloride.         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7440417              |                                                                      |                 |              |   |   |   |  |  |
| 7550450        Titanium tetrachloride.         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| 7778394       Arsenic acid H <sub>3</sub> AsO <sub>4</sub> .         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7488564<br>7550450   | Selenium sulfide SeS <sub>2</sub> .<br>Titanium tetrachloride.       |                 |              |   |   |   |  |  |
| *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| 7783064       Hydrogen sulfide H2S.         *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7778394              | Arsenic acid H <sub>3</sub> AsO <sub>4</sub> .                       |                 |              |   |   |   |  |  |
| *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                    | *                                                                    | *               | *            | * | * | * |  |  |
| *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7783064              | Hydrogen sulfide H <sub>2</sub> S.                                   |                 |              |   |   |   |  |  |
| * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                                      | *               | *            | * | * | * |  |  |
| * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7791120              | Thallium chloride TICI.                                              |                 |              |   |   |   |  |  |
| Toxaphene.<br>11096825 Aroclor 1260.<br>11097691 Aroclor 1254.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                      | *               | *            | * | * | * |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11096825<br>11097691 | Toxaphene.<br>Aroclor 1260.<br>Aroclor 1254.                         |                 |              |   |   |   |  |  |
| * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                    | *                                                                    | *               | *            | * | * | * |  |  |

11141165 ..... Aroclor 1232.

#### APPENDIX A TO §302.4—SEQUENTIAL CAS REGISTRY NUMBER LIST OF CERCLA HAZARDOUS SUBSTANCES—Continued

| CASRN                                        |                                                                                                                 |                                                                             | Hazardous S                     | Substance                                       |                 |                       |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------|-------------------------------------------------|-----------------|-----------------------|
| *                                            | *                                                                                                               | *                                                                           | *                               | *                                               | *               | *                     |
| 12039520                                     | Selenious acid, dithalliu<br>Thallium (I) selenite.                                                             | um(1+) salt.                                                                |                                 |                                                 |                 |                       |
| *                                            | *                                                                                                               | *                                                                           | *                               | *                                               | *               | *                     |
|                                              | Aroclor 1248.<br>Aroclor 1016.                                                                                  |                                                                             |                                 |                                                 |                 |                       |
| *                                            | *                                                                                                               | *                                                                           | *                               | *                                               | *               | *                     |
| 13463393                                     | Nickel carbonyl Ni(CO)                                                                                          | 4, (T–4)                                                                    |                                 |                                                 |                 |                       |
| *                                            | *                                                                                                               | *                                                                           | *                               | *                                               | *               | *                     |
| 16752775                                     | Ethanimidothioic acid, l<br>Methomyl.                                                                           | N-[[(methylamino)carb                                                       | onyl] oxy]-, methyl es          | ster.                                           |                 |                       |
| *                                            | *                                                                                                               | *                                                                           | *                               | *                                               | *               | *                     |
| 17804352<br>18883664<br>20816120<br>20830813 | D-Glucose, 2-deoxy-2[[<br>Glucopyranose, 2-deox<br>Streptozotocin.<br>Osmium oxide OsO4, (<br>Osmium tetroxide. | (methylnitrosoamino)-<br>y-2-(3-methyl-3-nitroso<br>T–4)<br>e, 8-acetyl-10- | carbonyl]amino]<br>oureido)-, D | nethyl ester (Benomyl<br>oxy-alpha-L-lyxo-hexol |                 | 10-tetrahydro-6,8,11- |
| *                                            | *                                                                                                               | *                                                                           | *                               | *                                               | *               | *                     |
| 23135220                                     | Ethanimidothioic acid, 2                                                                                        | 2-(dimethylamino)-N-[[                                                      | (methylamino)carbon             | yl]oxy]-2-oxo-, methyl                          | ester (Oxamyl). |                       |
| *                                            | *                                                                                                               | *                                                                           | *                               | *                                               | *               | *                     |
| 39196184                                     | Thiofanox.<br>2-Butanone, 3,3-dimeth                                                                            | nyl-1-(methylthio)-,O-[(                                                    | methylamino)carbony             | /l] oxime.                                      |                 |                       |
| *                                            | *                                                                                                               | *                                                                           | *                               | *                                               | *               | *                     |
| 53469219                                     | Aroclor 1242.                                                                                                   |                                                                             |                                 |                                                 |                 |                       |

6. Section 302.5 is amended by revising paragraph (b) to read as follows:

### § 302.5 Determination of reportable quantities.

(b) Unlisted hazardous substances. Unlisted hazardous substances designated by 40 CFR 302.4(b) have the reportable quantity of 100 pounds, except for those unlisted hazardous wastes which exhibit toxicity identified in 40 CFR 261.24. Unlisted hazardous wastes which exhibit toxicity have the reportable quantities listed in Table 302.4 for the contaminant on which the characteristic of toxicity is based. The reportable quantity applies to the waste itself, not merely to the toxic contaminant. If an unlisted hazardous waste exhibits toxicity on the basis of more than one contaminant, the reportable quantity for that waste shall

be the lowest of the reportable quantities listed in Table 302.4 for those contaminants. If an unlisted hazardous waste exhibits the characteristic of toxicity and one or more of the other characteristics referenced in 40 CFR 302.4(b), the reportable quantity for that waste shall be the lowest of the applicable reportable quantities.

7. Section 302.6 is amended by revising paragraph (a) to read as follows:

#### § 302.6 Notification requirements.

(a) Any person in charge of a vessel or an offshore or an onshore facility shall, as soon as he or she has knowledge of any release (other than a federally permitted release or application of a pesticide) of a hazardous substance from such vessel or facility in a quantity equal to or exceeding the reportable quantity determined by this part in any 24-hour period, immediately notify the National Response Center ((800) 424–8802; in Washington, DC (202) 426–2675 or (202) 267–2675; the facsimile number is (202) 267–2165; and the telex number is 892427).

\* \*

8. Section 302.7 is amended by revising paragraph (a)(3) to read as follows:

#### § 302.7 Penalties.

(a) \* \* \*

(3) In charge of a facility from which a hazardous substance is released, other than a federally permitted release, in a quantity equal to or greater than that reportable quantity determined under this part who fails to notify immediately the National Response Center as soon as he or she has knowledge of such release or who submits in such a notification any information which he knows to be false or misleading shall be subject to all of the sanctions, including criminal penalties, set forth in section 103(b) of the Act.

9. Section 302.8 is amended by revising paragraphs (e)(1)(iv)(H) and (f)(4)(viii) to read as follows:

#### § 302.8 Continuous releases.

- (e) \* \* \*
- (1) \* \* \*
- (iv) \* \* \*

(H) A signed statement that the hazardous substance release(s) described is(are) continuous and stable in quantity and rate under the definitions in paragraph (b) of this section and that all reported information is accurate and current to the best knowledge of the person in charge.

(f) \* \*

(4) \* \* \*

(viii) A signed statement that the hazardous substance release(s) is(are) continuous and stable in quantity and rate under the definitions in paragraph (b) of this section and that all reported information is accurate and current to the best knowledge of the person in charge.

\* \* \* [FR Doc. 02-16866 Filed 7-8-02; 8:45 am]

BILLING CODE 6560-50-P

#### CORPORATION FOR NATIONAL AND COMMUNITY SERVICE

45 CFR Parts 2510, 2520, 2521, 2522, 2524, 2525, 2526, 2528, and 2550

#### RIN 3045-AA32

#### AmeriCorps Grant Regulations

AGENCY: Corporation for National and Community Service. ACTION: Final rule.

**SUMMARY:** The Corporation for National and Community Service (hereinafter the "Corporation") is amending several provisions relating to the AmeriCorps national service program, including requirements for AmeriCorps grants and rules on how AmeriCorps members may use the AmeriCorps education award. This final rule will eliminate several unnecessary and burdensome requirements in the AmeriCorps grants program, and conform the Corporation's regulations to changes in law.

DATES: The amendments are effective August 8, 2002.

FOR FURTHER INFORMATION CONTACT: Gary Kowalczyk, Coordinator of National Service Programs, Corporation for National and Community Service, (202) 606-5000, ext. 340. T.D.D. (202) 565-2799. This is not a toll-free number. This final rule may be requested in an alternative format for persons with visual impairments.

#### SUPPLEMENTARY INFORMATION:

#### Background

Pursuant to the National and Community Service Act of 1990, as amended (42 U.S.C. 12501 et seq.), the Corporation makes grants to support service performed by AmeriCorps members. In addition, the Corporation, through the National Service Trust, provides education awards and certain interest payments to AmeriCorps members who successfully complete a term of service in an approved national service position.

The Corporation published a proposed rule on March 26, 2002 (67 FR 13738) with the goal of eliminating several unnecessary and burdensome requirements in the AmeriCorps grants program, and conforming the Corporation's regulations to changes in law.

#### **Discussion of the Final Rule**

The Corporation received comments from nine individuals and organizations in response to the proposed rule. As a general matter, only one of the comments the Corporation received resulted in a change to the proposed rule. Consequently, other than § 2520.30, the final rule is identical to the proposed rule as published on March 26, 2002.

#### Flexibility in Types of AmeriCorps Activities

One commenter specifically approved of the Corporation's proposal to broaden the circumstances under which AmeriCorps members may engage in activities that provide an indirect benefit to their community. The Corporation may approve such activities with respect to disaster relief, homeland defense, and other compelling community needs.

#### **Eligibility of Religious Organizations** for AmeriCorps Grants

Two commenters specifically endorsed the Corporation's references to religious organizations in several lists of types of organizations eligible to apply for AmeriCorps grants. A basic purpose of these amendments is to clarify that religious organizations are eligible on the same basis as any other private nonprofit organization to apply for

AmeriCorps grants and operate AmeriCorps programs.

#### Elimination of "Six Month Rule"

Five commenters wrote in support of eliminating the "six month rule." The final rule, thus, eliminates a requirement under which grantees could not select any prospective AmeriCorps member who is or was previously employed by a prospective project sponsor within six months of the member's enrollment in the program. The commenters agreed that there are more effective and efficient ways to ensure that grantees are complying with rules against displacement, without imposing a blanket "six month rule." By continuing to require grantees to show how a proposed project will address unmet needs and by enforcing existing rules against displacement, the Corporation can ensure that any former employees enrolled as AmeriCorps members will perform service that goes well beyond-in both degree and kindtheir former job duties.

#### Use of Education Award for **Educational Courses Offered by Title IV Institutions of Higher Education**

Three commenters supported the Corporation's expansion of the use of the education award to allow AmeriCorps members to use their education award to pay any current educational expenses at institutions of higher education that have entered into program participation agreements with the U.S. Department of Education under Title IV of the Higher Education Act (HEA).

#### **Refunds to the National Service Trust**

The Corporation received no comments relating to the proposed rule on refunds to the National Service Trust.

#### **Declaration Sufficient Documentation** of Member's Attainment of High School Diploma

Three commenters specifically supported the Corporation's proposal to allow self-declaration as sufficient documentation of a member's attainment of a high school diploma or its equivalent. The final rule provides that an individual's written declaration under penalty of law is sufficient to establish this element of eligibility without additional documentation.

One commenter suggested that the Corporation replace the current regulations relating to documentation of citizenship, nationality, and lawful permanent resident alien status by authorizing grantees to use the I-9 to document eligibility for AmeriCorps.

# **APPENDIX B**

## Important Contact Information

### ATTACHMENT 2

## Appendix B

### IMPORTANT CONTACT INFORMATION

| Agency Name                                                                                                     | Phone Number/ Email                                                                                     |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Ventura Port District (VPD):<br>Brian Pendleton, MRED                                                           | (805) 642-8538                                                                                          |
| General Manager                                                                                                 | bpendleton@venturaharbor.com                                                                            |
| California State Warning Center (Cal OES)                                                                       | (800) 852-7550 or (916) 845-8911                                                                        |
| National Response Center                                                                                        | 1-800-424-8802                                                                                          |
| United States Coast Guard<br>Los Angeles/Long Beach Sector                                                      | (310) 521-3805                                                                                          |
| Unified Program Agency (UPA) - Liaison Hotline                                                                  | 1-888-988-7058                                                                                          |
| California Occupational Safety and Health<br>Administration – Call Center                                       | 844 LABOR-DIR (or 1-844-522-6734)                                                                       |
| Department of Toxic Substances and Control (DTSC) –<br>Emergency Response                                       | (800) 260-3972 or (916) 255-6504 (Mon –<br>Fri only; after hours, weekends or holidays<br>call Cal OES) |
| California Department of Public Health Preharvest<br>Shellfish Program                                          | (510) 412-4635                                                                                          |
| US Food and Drug Administration                                                                                 | (866) 300-4374                                                                                          |
| California Department of Health Services, Radiological<br>Health Branch – Los Angeles                           | (213) 351-7897                                                                                          |
| Department of Conservation- Sacramento                                                                          | (916) 322-1080                                                                                          |
| California Public Utilities Commission (PUC)- Los<br>Angeles                                                    | (213) 576-7000                                                                                          |
| Department of Fish and Wildlife, Office of Spill<br>Prevention and Response (OSPR)- West Coast Spill<br>Hotline | (800) OILS-911                                                                                          |
| Regional Water Quality Control Board (RWQCB) -<br>Regional Board 4: Los Angeles                                 | (213) 576-6600                                                                                          |

### ATTACHMENT 2

# APPENDIX C

## **EPCRA** Reporting Requirements

### ATTACHMENT 2

## Appendix C

EPCRA and CERCLA REPORTING REQUIREMENTS



United States Environmental Protection Agency Office of Solid Waste and Emergency Response EPA 550-B-15-001 March 2015 www.epa.gov/emergencies

## LIST OF LISTS

Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act

- EPCRA Section 302 Extremely Hazardous Substances
- CERCLA Hazardous Substances
- EPCRA Section 313 Toxic Chemicals
- CAA 112(r) Regulated Chemicals for Accidental Release Prevention

## **TABLE OF CONTENTS**

Page

| Introduction                                                                                                                                                                                                                                                     | i  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| List of Lists – Consolidated List of Chemicals (by CAS #) Subject to the Emergency Planning<br>and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response,<br>Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act | 1  |
| Appendix A: Alphabetical Listing of Consolidated ListA-                                                                                                                                                                                                          | 1  |
| Appendix B: Radionuclides Listed Under CERCLAB-                                                                                                                                                                                                                  | 1  |
| Appendix C: RCRA Waste Streams and Unlisted Hazardous WastesC-                                                                                                                                                                                                   | 1  |
| Appendix D: EPCRA Section 313, Toxic Release Inventory (TRI) Chemical CategoriesD-                                                                                                                                                                               | -1 |
| Appendix E: CERCLA Hazardous Substances – Chemical CategoriesE-                                                                                                                                                                                                  | 1  |

#### LIST OF LISTS

#### Consolidated List of Chemicals Subject to the Emergency Planning and Community Rightto-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act

This consolidated chemical list includes chemicals subject to reporting requirements under the Emergency Planning and Community Right-to-Know Act (EPCRA), also known as Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and section 112(r) of the Clean Air Act (CAA). This consolidated list does not include all hazardous chemicals subject to the reporting requirements in EPCRA sections 311 and 312, for which material safety data sheets (MSDS) must be developed under the Hazard Communication Standard (29 CFR1910.1200). These hazardous chemicals are identified by broad criteria, rather than by enumeration. There are over 500,000 products that satisfy the criteria. See 40 CFR Part 370 for more information. This consolidated list has been prepared to help firms handling chemicals determine whether they need to submit reports under sections 302 and 313 of EPCRA and determine if releases of chemicals are reportable under section 102 and 103 of CERCLA and section 304 of EPCRA. It will also help firms determine whether they will be subject to accident prevention regulations under CAA section 112(r). Separate lists are also provided of Resource Conservation and Recovery Act (RCRA) waste streams and unlisted hazardous wastes, of radionuclides reportable under CERCLA and of definitions or explanation of chemical categories listed under EPCRA section 313 and CERCLA. These lists should be used as a reference tool, not as a definitive source of compliance information. Compliance information for EPCRA is published in the Code of Federal Regulations (CFR), 40 CFR parts 355, 370, and 372. Compliance information for CERCLA is published in 40 CFR part 302 and for CAA section 112(r) is published in 40 CFR part 68.

The chemicals on the consolidated list are ordered both by the Chemical Abstracts Service (CAS) registry number and alphabetically. Categories of chemicals which generally do not have CAS registry numbers, but which are cited under CERCLA, have Not Applicable (N.A.) listed in place of the CAS number. If the category of chemical is an EPCRA section 313, then the section 313 category code is also included in the CAS number column.

The lists include chemicals referenced under five federal statutory provisions, discussed below. More than one chemical name may be listed for one CAS number because the same chemical may appear on different lists under different names. For example, for CAS number 8001-35-2, the names toxaphene (from the section 313 list), camphechlor (from the section 302 list), and camphene, octachloro-(from the CERCLA list) all appear on this consolidated list. The chemical names on the consolidated lists generally are those names used in the regulatory programs developed under EPCRA, CERCLA, and CAA section 112(r), but each chemical may have other synonyms that do not appear on these lists.

### (1) EPCRA Section 302 Extremely Hazardous Substances (EHSs)

The presence of Extremely Hazardous Substances (EHSs) in quantities at or above the Threshold Planning Quantity (TPQ) requires certain emergency planning activities to be conducted. The EHSs and their TPQs are listed in 40 CFR part 355, Appendices A and B. For section 302 EHSs, Local Emergency Planning Committees (LEPCs) must develop emergency response plans and facility owner or operator must notify the State Emergency Response Commission (SERC) or Tribal Emergency Response Commission (TERC) and their LEPC if a chemical is present at the facility or above the EHS's TPQ. Additionally, if the TPQ is equaled or exceeded, facilities with a listed EHS are subject to the reporting requirements of EPCRA section 311 (provide material safety data sheet or a list of covered chemicals to the SERC or TERC, LEPC, and local fire department) and section 312 (submit inventory form -Tier I or Tier II). The minimum threshold for section 311-312 reporting for EHS substances is 500 pounds or the TPQ, whichever is less.

**TPQ.** The consolidated list presents the TPQ (in pounds) for section 302 chemicals in the column following the CAS number. For chemicals that are solids, there are two TPQs given (e.g., 500/10,000). In these cases, the lower quantity applies for solids in powder form with particle size less than 100 microns, or if the substance is in solution or in molten form. Otherwise, the 10,000 pound TPQ applies. If a solid EHS is in molten form, the facility must multiply the amount of EHS on-site by 0.3 before comparing to the lower listed TPQ. If a solid EHS is in solution form, the facility must multiply amount EHS on-site by 0.2 before comparing to the lower listed TPQ. The reducing factors of 0.3 for molten solids and 0.2 for solids in solution are not to be used for the 12 solid reactive chemicals are noted by footnote "a" in Appendix A and B in 40 CFR part 355. These twelve chemicals are not listed with two TPQs and higher threshold quantity of 10,000 pounds; they only have one TPQ.

**EHS RQ.** Releases of reportable quantities (RQ) of EHSs are subject to state and local reporting under section 304 of EPCRA. EPA has adjusted RQs for EHSs without CERCLA RQs to levels equal to their TPQs. The EHS RQ column lists these adjusted RQs for EHSs not listed under CERCLA and the CERCLA RQs for those EHSs that are CERCLA hazardous substances (see the next section for a discussion of CERCLA RQs).

Note that ammonium hydroxide is not covered under section 302; the EHS RQ is based on anhydrous ammonia. Ammonium hydroxide (which is also known as aqueous ammonia) is subject to CERCLA, with its own RQ.

### (2) CERCLA Hazardous Substances

Releases of CERCLA hazardous substances, in quantities equal to or greater than their reportable quantity (RQ), are subject to reporting to the National Response Center under CERCLA. Notification requirements for these releases are found in 40 CFR 302. Such releases are also subject to state and local reporting under section 304 of EPCRA. CERCLA hazardous substances, and their reportable quantities, are listed in 40 CFR part 302, Table 302.4. Radionuclides listed under CERCLA are provided in a separate list in Appendix B of this document, with RQs in Curies. Chemical categories under CERCLA (including metal

compound categories), which have N.A. listed for the CAS Number in the consolidated table, are also listed in Appendix E of this document with further explanation of each chemical category, where information was available.

**RQ.** The CERCLA RQ column in the consolidated list shows the RQs (in pounds) for chemicals that are CERCLA hazardous substances.

**Metals.** For metals listed under CERCLA (antimony, arsenic, beryllium, cadmium, chromium, copper, lead, nickel, selenium, silver, thallium, and zinc), no reporting of releases of the solid form is required if the mean diameter of the pieces of the solid metal released is greater than 100 micrometers (0.004 inches) (Ref: Footnote after Table 302.4 in 40 CFR 302.4). The RQs shown on the consolidated list apply to smaller particles.

Note that the consolidated list does not include all CERCLA regulatory synonyms. See 40 CFR part 302, Table 302.4 for a complete list.

**Sulfur monochloride.** (formula  $S_2Cl_2$ ) is listed with an incorrect CAS number of 12771-08-3, which is found on the CERCLA Hazardous Substances list. The correct CAS number should be 10025-67-9, however, the List of Lists will still include the CAS number of 12771-08-3 because it has not been changed on the CERCLA list. According to the Chemical Abstract Services which assigns CAS numbers, the correct CAS number for sulfur monochloride is 10025-67-9, which is now included on the List of Lists with an explanatory footnote.

CAS number 12771-08-3 is assigned to the substance sulfur chloride (formula SCI<sup>-</sup>) which was listed as a synonym for sulfur monochloride when EPA finalized the Clean Water Act Designation of Hazardous Substances rule (43 FR 10474, March 13, 1978). The CAS number 10025-67-9 is used for sulfur monochloride on EPA's TSCA Inventory and EPA's Substance Registry Services lists.

### (3) CAA Section 112(r) List of Substances for Accidental Release Prevention

Under the accident prevention provisions of section 112(r) of the CAA, EPA developed a list of 77 toxic substances and 63 flammable substances. Threshold quantities (TQs) were established for these substances. The list and TQs identify processes subject to accident prevention regulations. The list of substances and TQs and the requirements for risk management programs for accidental release prevention are found in 40 CFR part 68. This consolidated list includes both the common name for each listed chemical under section 112(r) and the chemical name, if different from the common name, as separate listings.

The CAA section 112(r) list includes several substances in solution that are covered only in concentrations above a specified level. These substances include ammonia (concentration 20% or greater) (CAS number 7664-41-7); hydrochloric acid (37% or greater) (7647-01-0); hydrogen fluoride/hydrofluoric acid (50% or greater) (7664-39-3); and nitric acid (80% or greater) (7697-37-2). Hydrogen chloride (anhydrous) and ammonia (anhydrous) are listed, in addition to the solutions of these substances, with different TQs. Only the anhydrous form of sulfur dioxide

(7446-09-5) is covered. These substances are presented on the consolidated list with the concentration limit or specified form (e.g., anhydrous), as they are listed under CAA section 112(r). Flammable fuels used as a fuel or held for sale as a fuel at a retail facility are not subject to the rule.

**TQ.** The CAA section 112(r) TQ column in the consolidated list shows the TQs (in pounds) for chemicals listed for accidental release prevention. The TQ applies to the quantity of substance in a process, not at the facility as a whole.

### (4) EPCRA Section 313 Toxic Chemicals (a.k.a Toxics Release Inventory (TRI) Chemicals)

Emissions, transfers, and waste management data for chemicals listed under section 313 must be reported annually as part of the community right-to-know provisions of EPCRA (40 CFR part 372). These reports are also known as Toxics Release Inventory (TRI) reports.

**Section 313.** The notation "313" in the column for section 313 indicates that the chemical is subject to reporting under section 313 and section 6607 of the Pollution Prevention Act under the name listed. In cases where a chemical is listed under section 313 with a second name in parentheses or brackets, the second name is included on this consolidated list with an "X" in the section 313 column. An "X" in this column also may indicate that the same chemical with the same CAS number appears on another list with a different chemical name. The "X" listed with the chemical name "Ammonia (anhydrous)" and "Ammonia (concentration of 20% or greater)" does not mean that the section 313 reporting for these substances are limited to those forms, but it does include them.

**Diisocyanates, Dioxins and Dioxin-like Compounds, and PACs.** In the November 30, 1994, expansion of the section 313 list, 20 specific chemicals were added as members of the diisocyanate category, and 19 specific chemicals were added as members of the polycyclic aromatic compounds (PAC) category. The PAC category was expanded to 25 total chemicals by additions made in October 1999 and November 2010. In October 1999, EPA added a category of dioxin and dioxin-like compounds that includes 17 specific chemicals. These chemicals are included in the CAS order listing on this consolidated list, although chemicals belonging to these categories are reportable under section 313 by category, rather than by individual chemical name. The symbol "#" following the "313" notation in the section 313 column identifies diisocyanates, the symbol "!" identifies the dioxin and dioxin-like compounds, and the symbol "+" identifies PACs, as noted in the Summary of Codes.

Ammonium Salts. The EPCRA section 313 listing for ammonia includes the following qualifier "includes anhydrous ammonia and aqueous ammonia from water dissociable ammonium salts and other sources; 10 percent of total aqueous ammonia is reportable under this listing." The qualifier for ammonia means that anhydrous forms of ammonia are 100% reportable and aqueous forms are limited to 10% of total aqueous ammonia. Therefore, when determining threshold and releases and other waste management quantities all anhydrous ammonia is included but only 10% of total aqueous ammonia is included. Any evaporation of

ammonia from aqueous ammonia solutions is considered anhydrous ammonia and should be included in threshold determinations and release and other waste management calculations.

In this document ammonium salts are not specifically identified as being reportable EPCRA section 313 chemicals. However, water dissociable ammonia salts, such as ammonium chloride, are reportable if they are placed in water. When ammonium salts are placed in water, reportable aqueous ammonia is manufactured. As indicated in the ammonia qualifier, all aqueous ammonia solutions from water dissociable ammonium salts are covered by the ammonia listing. For example, ammonium chloride is a water-dissociable ammonium salt and reportable aqueous ammonia will be manufactured when it is placed in water.

Unlike other ammonium salts, ammonium hydroxide is specifically identified as being a reportable EPCRA section 313 chemical. This is because the chemical ammonium hydroxide (NH4OH) is a misnomer. It is a common name used to describe a solution of ammonia in water (i.e., aqueous ammonia), typically a concentrated solution of 28 to 30 percent ammonia. EPA has consistently responded to questions regarding the reportability of these purported ammonium hydroxide solutions under the EPCRA section 313 ammonia listing by stating that these are 28 to 30 percent solutions of ammonia in water and that the solutions are reportable under the EPCRA section 313 ammonia listing. For a more detailed discussion, see page 34175 of the Federal Register final rule of June 30, 1995 (60 FR 34172). (See also EPA's EPCRA section 313, *Guidance for Reporting Aqueous Ammonia*, EPA 745-R00-005, http://www2.epa.gov/toxics-release-inventory-tri-program/guidance-aqueous-ammonia

**Stayed TRI Chemicals.** There are two EPRCA section 313 chemicals that are listed in the CFR but for which the Agency has issued an administrative stay that excludes them from reporting until the stays are lifted. These chemicals, identified by "313s" in the Sec. 313 table column, are methyl mercaptan (CAS number 74-93-1), and 2, 2-dibromo-3nitrilopropionamide (CAS number 10222-01-2). Check the TRI website <u>http://www2.epa.gov/toxics-release-inventory-triprogram/tri-listed-chemicals</u> for updated regulatory information. On October 11, 2011, EPA reinstated the TRI reporting requirements for hydrogen sulfide (CAS number 7783-06-4). This action is effective for the 2012 TRI reporting year, with the first 2012 TRI reports due from facilities by July 1, 2013. For more information, see <u>http://www2.epa.gov/toxics-release-inventory-triprogram/hydrogen-sulfide-lifting-administrative-stay</u>

**New TRI Chemical, o-Nitrotoluene.** On November 7, 2013, the chemical o-nitrotoluene (CAS number 88-72-2) to the TRI list (78 FR 66848). The action is effective for the 2014 TRI reporting year with the first reports due from facilities by July 1, 2015. For more information, see <a href="http://www2.epa.gov/toxics-release-inventory-tri-program/addition-ortho-nitrotoluene-final-rule">http://www2.epa.gov/toxics-release-inventory-tri-program/addition-ortho-nitrotoluene-final-rule</a>

**New TRI Category, Nonylphenols.** On September 20, 2014, the category of nonylphenol (Category code N530) was added to the TRI chemical list (79 FR 58686). The action is effective for the 2015 TRI reporting year with the first reports due from facilities by July 1, 2016. For more information, see

<u>http://www2.epa.gov/toxics-release-inventory-tri-program/addition-nonylphenol-category-final-rule.</u> The nonylphenol category covers six specific chemicals identified by chemical name and CAS number. These chemicals are included in the CAS order listing on this consolidated list,

۷

although chemicals belonging to these categories are reportable under section 313 by category, rather than by individual chemical name. The symbol "\$" following the "313" notation in the section 313 column identifies nonylphenols, as noted in the Summary of Codes.

**TRI Reporting Thresholds.** Reporting under EPCRA section 313 is triggered by the quantity of a chemical that is manufactured, processed, or otherwise used during the calendar year. For most TRI chemicals, the thresholds are 25,000 pounds manufactured or processed or 10,000 pound otherwise used. Sixteen TRI chemicals and four TRI chemical categories that meet the criteria for persistence and bioaccumulation have lower thresholds, such as 10 or 100 pounds and 0.1 grams. These 20 chemical listings and their reporting thresholds can be found at <a href="http://www2.epa.gov/toxics-release-inventory-tri-program/persistent-bioaccumulative-toxic-pbt-chemicals-covered-tri">http://www2.epa.gov/toxics-release-inventory-tri-program/persistent-bioaccumulative-toxic-pbt-chemicals-covered-tri</a>

### (5) Chemical Categories

The CERCLA and EPCRA section 313 lists include a number of chemical categories as well as specific chemicals. Categories appear on this consolidated list at the beginning of the CAS number order listing. The specific chemicals or substances that are included in the CERCLA category Radionuclides can be found in Appendix B. Appendix D contains explanations and definitions for the EPCRA section 313 (TRI) chemical categories. For the CERCLA listed categories reported with CAS number of N.A., Appendix E contains information available on the CERCLA chemical categories from their original statutory and regulatory sources.

Specific chemicals listed as members of the diisocyanates, dioxin and dioxin-like compounds, nonylphenol, and PAC categories under EPCRA section 313 are included in the list of specific chemicals by CAS number, not in the category listing.

EPA has attempted to identify those chemicals on the consolidated list that are clearly reportable under one or more of the EPCRA section 313 (TRI) chemical categories. For example, mercuric acetate (CAS number 1600-27-7), listed under section 302, is not specifically listed under section 313, but is reportable under the section 313 "Mercury Compounds" category (no CAS number). Listed chemicals that have been identified as being reportable under one or more EPCRA section 313 categories are identified by "313c" in the Sec. 313 table column.

The chemicals on the consolidated list have not been systematically evaluated to determine whether they fall into any of the CERCLA listed categories. Some chemicals not specifically listed under CERCLA may be subject to CERCLA reporting as part of a category. For example, strychnine sulfate (CAS number 60-41-3), listed under EPCRA section 302, is not individually listed on the CERCLA list, but is subject to CERCLA reporting under the listing for strychnine and salts (CAS number 57-24-9), with an RQ of 10 pounds. Similarly, nicotine sulfate (CAS number 65-30-5) is subject to CERCLA reporting under the listing for nicotine and salts (CAS number 54-11-5, RQ 100 pounds), and warfarin sodium (CAS number 129-06-6) is subject to CERCLA reporting under the listing for warfarin and salts, concentration >0.3% (CAS number 81-81-2, RQ 100 pounds).

Note that some CERCLA listings, although they include CAS numbers, are for general categories and are not restricted to the specific CAS number (e.g., warfarin and salts). The CERCLA list also includes a number of generic categories that have not been assigned RQs; chemicals falling into these categories are considered CERCLA hazardous substances, but they are not required to be reported under CERCLA unless otherwise listed under CERCLA with an RQ.

## (6) RCRA Hazardous Wastes

The consolidated list includes specific chemicals from the RCRA P and U lists only (40 CFR 261.33). This listing is provided as an indicator that companies may already have data on a specific chemical that may be useful for EPCRA reporting. It is not intended to be a comprehensive list of RCRA P and U chemicals. RCRA hazardous wastes consisting of waste streams on the F and K lists, and wastes exhibiting the characteristics of ignitability, corrosivity, reactivity, and toxicity, are provided in Appendix C in this document. This list also includes K181 hazardous waste with a statutory one-pound RQ (indicated by an asterisk "\*" following the RQ. The descriptions of the F and K waste streams have been abbreviated; see 40 CFR part 302, Table 302.4, or 40 CFR part 261 for complete descriptions.

**RCRA Code.** The letter-and-digit code in the RCRA Code column is the chemical's RCRA hazardous waste code.

### Summary of Codes

Codes in Section 313 column

- + Member of EPCRA Section 313 PAC category.
- # Member of EPCRA Section 313 diisocyanate category.
- c Although not listed by name and CAS number, this chemical is reportable under one or more of the EPCRA section 313 chemical categories.
- s Indicates that this chemical is currently under an administrative stay of the EPCRA section 313 reporting requirements, therefore, no Toxics Release Inventory reports are required until the stay is removed.
- ! Member of the EPCRA section 313 dioxin and dioxin-like compounds category.
- X Indicates that this is a second name for an EPCRA section 313 chemical already included on this consolidated list. May also indicate that the same chemical with the same CAS number appears on another list with a different chemical name.
- \$ Member of the EPCRA section 313 nonylphenol category.

#### Codes in CERCLA RQ column

- \* The Agency may adjust the statutory RQ for this RCRA hazardous substance (K181 waste) in a future rulemaking; until then the statutory one-pound RQ applies.
- PMN This EHS chemical was identified from a Premanufacture Review Notice (PMN) submitted to EPA. The submitter has claimed certain information on the submission to be confidential, including specific chemical identity.
- & Indicates that no RQ is assigned to this generic or broad class, although the class is a CERCLA hazardous substance. See 50 Federal Register 13456 (April 4, 1985).
- Releases in amounts less than 1,000 pounds per 24 hours of nitrogen oxide or nitrogen dioxide to the air that are the result of combustion and combustion related activities are exempt from the notification requirements of EPCRA section 304 and CERCLA.

viii

# LIST OF LISTS

#### CONSOLIDATED LIST OF CHEMICALS (BY CAS NUMBER) SUBJECT TO EPCRA, CERCLA AND CAA SECTION 112(r)

| NAME                                                             | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Chlordane (Technical Mixture and Metabolites)                    | N.A.                         |                          |                          | &            |                |              |                     |
| Chlorinated Benzenes                                             | N.A.                         |                          |                          | &            |                |              |                     |
| Chlorinated Ethanes                                              | N.A.                         |                          |                          | &            |                |              |                     |
| Chlorinated Naphthalene                                          | N.A.                         |                          |                          | &            |                |              |                     |
| Chloroalkyl Ethers                                               | N.A.                         |                          |                          | &            |                |              |                     |
| Coke Oven Emissions                                              | N.A.                         |                          |                          | 1            |                |              |                     |
| Creosote                                                         | N.A.                         |                          |                          | 1            |                | U051         |                     |
| Cyanides (soluble salts and complexes), not otherwise specified  | N.A.                         |                          |                          | 10           | 313c           | P030         |                     |
| DDT and Metabolites                                              | N.A.                         |                          |                          | &            |                |              |                     |
| Dichlorobenzidine                                                | N.A.                         |                          |                          | &            |                |              |                     |
| Diphenylhydrazine                                                | N.A.                         |                          |                          | &            |                |              |                     |
| Endosulfan and Metabolites                                       | N.A.                         |                          |                          | &            |                |              |                     |
| Endrin and Metabolites                                           | N.A.                         |                          |                          | &            |                |              |                     |
| Fine mineral fibers                                              | N.A.                         |                          |                          | &            |                |              |                     |
| Haloethers                                                       | N.A.                         |                          |                          | &            |                |              |                     |
| Halomethanes                                                     | N.A.                         |                          |                          | &            |                |              |                     |
| Heptachlor and Metabolites                                       | N.A.                         |                          |                          | &            |                |              |                     |
| Nitrophenols                                                     | N.A.                         |                          |                          | &            |                |              |                     |
| Nitrosamines                                                     | N.A.                         |                          |                          | &            |                |              |                     |
| Phthalate Esters                                                 | N.A.                         |                          |                          | &            |                |              |                     |
| Polycyclic organic matter                                        | N.A.                         |                          |                          | &            |                |              |                     |
| Polynuclear Aromatic Hydrocarbons                                | N.A.                         |                          |                          | &            |                |              |                     |
| Antimony Compounds                                               | N010                         |                          |                          | &            | 313            |              |                     |
| Arsenic Compounds                                                | N020                         |                          |                          | &            | 313            |              |                     |
| Barium Compounds                                                 | N040                         |                          |                          |              | 313            |              |                     |
| Beryllium Compounds                                              | N050                         |                          |                          | &            | 313            |              |                     |
| Cadmium Compounds                                                | N078                         |                          |                          | &            | 313            |              |                     |
| Chlorinated Phenols                                              | N084                         |                          |                          | &            | 313            |              |                     |
| Chlorophenols                                                    | N084                         |                          |                          | &            | 313            |              |                     |
| Chromium Compounds                                               | N090                         |                          |                          | &            | 313            |              |                     |
| Cobalt Compounds                                                 | N096                         |                          |                          | &            |                |              |                     |
| Copper Compounds                                                 | N100                         |                          |                          | &            |                | 1            |                     |
| Cyanide Compounds                                                | N106                         |                          |                          | &            |                | 1            |                     |
| Diisocyanates (includes only 20 chemicals)                       | N120                         |                          |                          |              | 313            |              |                     |
| Dioxin and dioxin-like compounds<br>(includes only 17 chemicals) | N150                         |                          |                          |              | 313            |              |                     |
| Ethylenebisdithiocarbamic acid, salts and esters                 | N171                         |                          |                          |              | 313            |              |                     |
| Glycol Ethers                                                    | N230                         |                          |                          | &            | 313            |              |                     |
| Lead Compounds                                                   | N420                         |                          |                          | &            | 313            |              |                     |
| Manganese Compounds                                              | N450                         |                          |                          | &            | 313            |              |                     |

| NAME                                                          | CAS/313           | Section 302  |               | CERCLA |      |      | CAA          |
|---------------------------------------------------------------|-------------------|--------------|---------------|--------|------|------|--------------|
|                                                               | Category<br>Codes | (EHS) TPQ    | 304 EHS<br>RQ | RQ     | 313  | CODE | 112(r)<br>TQ |
| Mercury Compounds                                             | N458              |              |               | &      | 313  |      |              |
| Nickel Compounds                                              | N495              |              |               | &      | 313  |      |              |
| Nicotine and salts                                            | N503              |              |               |        | 313  |      |              |
| Nitrate compounds (water dissociable)                         | N511              |              |               |        | 313  |      |              |
| Nonylphenol (includes only 6                                  | N530              |              |               |        | 313  |      |              |
| chemicals)                                                    |                   |              |               |        |      |      |              |
| Polybrominated Biphenyls (PBBs)                               | N575              |              |               |        | 313  |      |              |
| Polychlorinated alkanes (C10 to C13)                          | N583              |              |               |        | 313  |      |              |
| Polycyclic aromatic compounds<br>(includes only 23 chemicals) | N590              |              |               |        | 313  |      |              |
| Selenium Compounds                                            | N725              |              |               | &      | 313  |      |              |
| Silver Compounds                                              | N740              |              |               | &      | 313  |      |              |
| Strychnine and salts                                          | N746              |              |               |        | 313  |      |              |
| Thallium Compounds                                            | N760              |              |               | &      | 313  |      |              |
| Vanadium Compounds                                            | N770              |              |               |        | 313  |      |              |
| Warfarin and salts                                            | N874              |              |               |        | 313  |      |              |
| Zinc Compounds                                                | N982              |              |               | &      | 313  |      |              |
| Organorhodium Complex (PMN-82-<br>147)                        | 0                 | 10/10,000    | 10            | PMN    |      |      |              |
| Formaldehyde                                                  | 50-00-0           | 500          | 100           | 100    | 313  | U122 | 15,000       |
| Formaldehyde (solution)                                       | 50-00-0           | 500          | 100           | 100    | Х    | U122 | 15,000       |
| Mitomycin C                                                   | 50-07-7           | 500/10,000   | 10            | 10     |      | U010 | ,            |
| Ergocalciferol                                                |                   | 1,000/10,000 |               |        |      |      |              |
| Cyclophosphamide                                              | 50-18-0           |              | ,             | 10     |      | U058 |              |
| DDT                                                           | 50-29-3           |              |               | 1      |      | U061 |              |
| Benzo[a]pyrene                                                | 50-32-8           |              |               | 1      | 313+ | U022 |              |
| Reserpine                                                     | 50-55-5           |              |               | 5,000  |      | U200 |              |
| Piperonyl butoxide                                            | 51-03-6           |              |               | ,      | 313  |      |              |
| Fluorouracil                                                  | 51-21-8           |              | 500           |        | 313  |      |              |
| 5-Fluorouracil                                                | 51-21-8           |              | 500           |        | X    |      |              |
| 2,4-Dinitrophenol                                             | 51-28-5           |              |               | 10     |      | P048 |              |
| Epinephrine                                                   | 51-43-4           |              |               | 1,000  |      | P042 |              |
| 2-Chloro-N-(2-chloroethyl)-N-<br>methylethanamine             | 51-75-2           | 10           | 10            | .,     | Х    |      |              |
| Mechlorethamine                                               | 51-75-2           | 10           | 10            |        | Х    |      |              |
| Nitrogen mustard                                              | 51-75-2           | 10           |               |        | 313  |      |              |
| Carbamic acid, ethyl ester                                    | 51-79-6           |              |               | 100    | X    | U238 |              |
| Ethyl carbamate                                               | 51-79-6           |              |               | 100    |      | U238 |              |
| Urethane                                                      | 51-79-6           |              |               | 100    | 313  | U238 |              |
| Carbachol chloride                                            | 51-83-2           |              | 500           |        |      |      |              |
| Phosphonic acid, (2,2,2-trichloro-1-                          | 52-68-6           |              |               | 100    | Х    |      |              |
| hydroxyethyl)-,dimethyl ester                                 |                   |              |               |        |      |      |              |
| Trichlorfon                                                   | 52-68-6           |              |               | 100    | 313  |      |              |
| Famphur                                                       | 52-85-7           |              |               | 1,000  | 313  | P097 |              |
| Dibenz[a,h]anthracene                                         | 53-70-3           |              |               | ,<br>1 | 313+ | U063 |              |
| 2-Acetylaminofluorene                                         | 53-96-3           |              |               | 1      | 313  | U005 |              |
| Nicotine                                                      | 54-11-5           |              | 100           | 100    |      | P075 |              |
| Nicotine and salts                                            | 54-11-5           |              |               | 100    | 313c | P075 |              |
| Pyridine, 3-(1-methyl-2-pyrrolidinyl)-                        | 54-11-5           |              | 100           |        |      | P075 |              |

| NAME                                                                                         | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE   | CAA<br>112(r)<br>TQ |
|----------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|----------------|---------------------|
| ,(S)-                                                                                        |                              |                          |                          |              |                |                |                     |
| Aminopterin                                                                                  | 54-62-6                      | 500/10,000               | 500                      |              |                |                |                     |
| N-Nitrosodiethylamine                                                                        | 55-18-5                      | ,                        |                          | 1            | 313            | U174           |                     |
| Benzamide                                                                                    | 55-21-0                      |                          |                          |              | 313            |                |                     |
| O,O-Dimethyl O-(3-methyl-4-                                                                  | 55-38-9                      |                          |                          |              | Х              |                |                     |
| (methylthio) phenyl) ester,                                                                  |                              |                          |                          |              |                |                |                     |
| phosphorothioic acid                                                                         | 55.00.0                      |                          |                          |              | 040            |                |                     |
| Fenthion                                                                                     | 55-38-9                      |                          |                          |              | 313            | <b>D</b> 0 0 1 | <u> </u>            |
| Nitroglycerin                                                                                | 55-63-0                      |                          |                          | 10           | 313            | P081           | <u> </u>            |
| Diisopropylfluorophosphate                                                                   | 55-91-4                      | 100                      | 100                      | 100          |                | P043           | ļ                   |
| Isofluorphate                                                                                | 55-91-4                      | 100                      | 100                      | 100          |                | P043           |                     |
| Methylthiouracil                                                                             | 56-04-2                      |                          |                          | 10           |                | U164           |                     |
| Carbon tetrachloride                                                                         | 56-23-5                      |                          |                          | 10           | 313            | U211           |                     |
| Cantharidin                                                                                  | 56-25-7                      | 100/10,000               | 100                      |              |                |                |                     |
| Bis(tributyltin) oxide                                                                       | 56-35-9                      |                          |                          |              | 313            |                |                     |
| Parathion                                                                                    | 56-38-2                      | 100                      | 10                       | 10           | 313            | P089           |                     |
| Phosphorothioic acid, O,O-diethyl-O-<br>(4-nitrophenyl) ester                                | 56-38-2                      | 100                      | 10                       | 10           | Х              | P089           |                     |
| 3-Methylcholanthrene                                                                         | 56-49-5                      |                          |                          | 10           | 313+           | U157           |                     |
| Diethylstilbestrol                                                                           | 56-53-1                      |                          |                          | 1            |                | U089           |                     |
| Benz[a]anthracene                                                                            | 56-55-3                      |                          |                          | 10           | 313+           | U018           |                     |
| Coumaphos                                                                                    | 56-72-4                      | 100/10,000               | 10                       | 10           |                |                |                     |
| 1,1-Dimethyl hydrazine                                                                       | 57-14-7                      | 1,000                    | 10                       | 10           | 313            | U098           | 15,000              |
| Dimethylhydrazine                                                                            | 57-14-7                      | 1,000                    | 10                       | 10           | Х              | U098           | 15,000              |
| Hydrazine, 1,1-dimethyl-                                                                     | 57-14-7                      | 1,000                    | 10                       | 10           | Х              | U098           | 15,000              |
| Strychnine                                                                                   | 57-24-9                      | 100/10,000               | 10                       | 10           | 313c           | P108           |                     |
| Strychnine, and salts                                                                        | 57-24-9                      | ,                        |                          | 10           | 313c           | P108           |                     |
| Pentobarbital sodium                                                                         | 57-33-0                      |                          |                          |              | 313            |                |                     |
| Phenytoin                                                                                    | 57-41-0                      |                          |                          |              | 313            |                |                     |
| Physostigmine                                                                                | 57-47-6                      | 100/10,000               | 100                      | 100          |                | P204           |                     |
| beta-Propiolactone                                                                           | 57-57-8                      | 500                      | 10                       | 10           | 313            | -              |                     |
| Physostigmine, salicylate (1:1)                                                              | 57-64-7                      | 100/10,000               |                          |              |                | P188           |                     |
| Chlordane                                                                                    | 57-74-9                      |                          |                          | 1            | 313            | U036           |                     |
| 4,7-Methanoindan, 1,2,3,4,5,6,7,8,8-                                                         | 57-74-9                      | ,                        |                          | 1            | Х              | U036           |                     |
| octachloro-2,3,3a,4,7,7a-hexahydro-                                                          |                              |                          |                          |              |                | 11004          | <u> </u>            |
| 7,12-Dimethylbenz[a]anthracene                                                               | 57-97-6                      |                          |                          | 1            | 313+           | U094           | ļ                   |
| Phenoxarsine, 10,10'-oxydi-                                                                  | 58-36-6                      |                          | 500                      |              |                |                |                     |
| Cyclohexane, 1,2,3,4,5,6-hexachloro-,(1.alpha.,2.alpha.,3.beta.,4.alpha.,5.a lpha.,6.beta.)- | 58-89-9                      | 1,000/10,000             | 1                        | 1            | Х              | U129           |                     |
| Hexachlorocyclohexane (gamma<br>isomer)                                                      | 58-89-9                      | 1,000/10,000             | 1                        | 1            | Х              | U129           |                     |
| Lindane                                                                                      | 58-89-9                      | 1,000/10,000             | 1                        | 1            | 313            | U129           |                     |
| 2,3,4,6-Tetrachlorophenol                                                                    | 58-90-2                      | .,,,,                    | · ·                      | 10           | 313c           | 2.20           |                     |
| p-Chloro-m-cresol                                                                            | 59-50-7                      |                          |                          | 5,000        |                | U039           |                     |
| Phenylhydrazine hydrochloride                                                                |                              | 1,000/10,000             | 1,000                    |              |                |                |                     |
| N-Nitrosomorpholine                                                                          | 59-89-2                      | .,000,10,000             | 1,000                    | 1            | 313            |                |                     |
| Ethylenediamine-tetraacetic acid<br>(EDTA)                                                   | 60-00-4                      |                          |                          | 5,000        | 0.0            |                |                     |

| NAME                                              | CAS/313<br>Category | Section 302<br>(EHS) TPQ | 304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r) |
|---------------------------------------------------|---------------------|--------------------------|---------|--------------|----------------|--------------|---------------|
|                                                   | Codes               |                          | RQ      |              |                |              | TQ            |
| 4-Aminoazobenzene                                 | 60-09-3             |                          |         |              | 313            |              |               |
| 4-Dimethylaminoazobenzene                         | 60-11-7             |                          |         | 10           |                | U093         |               |
| Dimethylaminoazobenzene                           | 60-11-7             |                          |         | 10           | Х              | U093         |               |
| Ethane, 1,1'-oxybis-                              | 60-29-7             |                          |         | 100          |                | U117         | 10,000        |
| Ethyl ether                                       | 60-29-7             |                          |         | 100          |                | U117         | 10,000        |
| Hydrazine, methyl-                                | 60-34-4             | 500                      | 10      | 10           | Х              | P068         | 15,000        |
| Methyl hydrazine                                  | 60-34-4             | 500                      | 10      | 10           | 313            | P068         | 15,000        |
| Acetamide                                         | 60-35-5             |                          |         | 100          | 313            |              |               |
| Strychnine, sulfate                               | 60-41-3             | ,                        | 10      | 10           | 313c           |              |               |
| Dimethoate                                        | 60-51-5             | 500/10,000               | 10      | 10           | 313            | P044         |               |
| Dieldrin                                          | 60-57-1             |                          |         | 1            |                | P037         |               |
| Amitrole                                          | 61-82-5             |                          |         | 10           | 313            | U011         |               |
| Phenylmercuric acetate                            | 62-38-4             | 500/10,000               | 100     | 100          | 313c           | P092         |               |
| Phenylmercury acetate                             | 62-38-4             | 500/10,000               | 100     | 100          | 313c           | P092         |               |
| Phenacetin                                        | 62-44-2             |                          |         | 100          |                | U187         |               |
| Ethyl methanesulfonate                            | 62-50-0             |                          |         | 1            |                | U119         |               |
| Aniline                                           | 62-53-3             | 1,000                    | 5,000   | 5,000        | 313            | U012         |               |
| Thioacetamide                                     | 62-55-5             |                          |         | 10           | 313            | U218         |               |
| Thiourea                                          | 62-56-6             |                          |         | 10           | 313            | U219         |               |
| Dichlorvos                                        | 62-73-7             | 1,000                    | 10      | 10           | 313            |              |               |
| Phosphoric acid, 2-dichloroethenyl dimethyl ester | 62-73-7             | 1,000                    | 10      | 10           | Х              |              |               |
| Fluoroacetic acid, sodium salt                    | 62-74-8             | 10/10,000                | 10      | 10           | Х              | P058         |               |
| Sodium fluoroacetate                              | 62-74-8             | 10/10,000                | 10      | 10           | 313            | P058         |               |
| Methanamine, N-methyl-N-nitroso-                  | 62-75-9             | 1,000                    | 10      | 10           | Х              | P082         |               |
| N-Nitrosodimethylamine                            | 62-75-9             | 1,000                    | 10      | 10           | 313            | P082         |               |
| Nitrosodimethylamine                              | 62-75-9             | 1,000                    | 10      | 10           | Х              | P082         |               |
| Carbaryl                                          | 63-25-2             |                          |         | 100          | 313            | U279         |               |
| 1-Naphthalenol, methylcarbamate                   | 63-25-2             |                          |         | 100          | Х              | U279         |               |
| Phenol, 3-(1-methylethyl)-,<br>methylcarbamate    | 64-00-6             | 500/10,000               | 10      | 10           |                | P202         |               |
| Formic acid                                       | 64-18-6             |                          |         | 5,000        | 313            | U123         |               |
| Acetic acid                                       | 64-19-7             |                          |         | 5,000        |                |              |               |
| Diethyl sulfate                                   | 64-67-5             |                          |         | 10           | 313            |              |               |
| Tetracycline hydrochloride                        | 64-75-5             |                          |         |              | 313            |              |               |
| Colchicine                                        | 64-86-8             | 10/10,000                | 10      |              |                |              |               |
| Nicotine sulfate                                  | 65-30-5             | 100/10,000               | 100     | 100          | 313c           |              |               |
| Benzoic acid                                      | 65-85-0             |                          |         | 5,000        |                |              |               |
| Uracil mustard                                    | 66-75-1             |                          |         | 10           |                | U237         |               |
| Cycloheximide                                     | 66-81-9             | 100/10,000               | 100     |              |                |              |               |
| Methanol                                          | 67-56-1             |                          |         | 5,000        | 313            | U154         |               |
| Isopropyl alcohol (mfg-strong acid process)       | 67-63-0             |                          |         |              | 313            |              |               |
| Acetone                                           | 67-64-1             |                          |         | 5,000        |                | U002         |               |
| Chloroform                                        | 67-66-3             | 10,000                   | 10      | 10           | 313            | U044         | 20,000        |
| Methane, trichloro-                               | 67-66-3             | ,                        |         |              | X              | U044         | 20,000        |
| Hexachloroethane                                  | 67-72-1             |                          |         | 100          |                | U131         | 2,200         |
| Dimethylformamide                                 | 68-12-2             |                          |         | 100          | X              |              |               |
| N,N-Dimethylformamide                             | 68-12-2             |                          |         | 100          |                |              |               |

| NAME                                        | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|---------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 2,5-Cyclohexadiene-1,4-dione, 2,3,5-        | 68-76-8                      |                          |                          |              | Х              |              |                     |
| tris(1-aziridinyl)-                         |                              |                          |                          |              |                |              |                     |
| Triaziquone                                 | 68-76-8                      |                          |                          |              | 313            |              |                     |
| Guanidine, N-methyl-N'-nitro-N-<br>nitroso- | 70-25-7                      |                          |                          | 10           |                | U163         |                     |
| Hexachlorophene                             | 70-30-4                      |                          |                          | 100          | 313            | U132         |                     |
| Propiophenone, 4'-amino                     | 70-69-9                      | 100/10,000               | 100                      |              |                |              |                     |
| n-Butyl alcohol                             | 71-36-3                      | ,                        |                          | 5,000        | 313            | U031         |                     |
| Benzene                                     | 71-43-2                      |                          |                          | 10           | 313            | U019         |                     |
| Methyl chloroform                           | 71-55-6                      |                          |                          | 1,000        | X              | U226         |                     |
| 1,1,1-Trichloroethane                       | 71-55-6                      |                          |                          | 1,000        | 313            | U226         |                     |
| Digitoxin                                   | 71-63-6                      | 100/10,000               | 100                      | 1,000        | 0.10           | 0220         |                     |
| Endrin                                      | 72-20-8                      |                          |                          | 1            |                | P051         |                     |
| Benzene, 1,1'-(2,2,2-                       | 72-43-5                      |                          |                          | 1            | Х              | U247         |                     |
| trichloroethylidene)bis [4-methoxy-         | 70 40 5                      |                          |                          | 1            | 040            | 11047        |                     |
| Methoxychlor                                | 72-43-5                      |                          |                          | 1            | 313            | U247         |                     |
| DDD                                         | 72-54-8                      |                          |                          | 1            |                | U060         |                     |
| DDE                                         | 72-55-9                      |                          |                          | 1            | 0.4.0          | 1.1000       |                     |
| Trypan blue                                 | 72-57-1                      |                          |                          | 10           | 313            | U236         | 40.000              |
| Methane                                     | 74-82-8                      | 4 0 0 0                  | 4 0 0 0                  | 4 0 0 0      | 0.40           |              | 10,000              |
| Bromomethane                                | 74-83-9                      | ,                        |                          |              |                | U029         |                     |
| Methyl bromide                              | 74-83-9                      | 1,000                    | 1,000                    | 1,000        | Х              | U029         |                     |
| Ethane                                      | 74-84-0                      |                          |                          |              |                |              | 10,000              |
| Ethene                                      | 74-85-1                      |                          |                          |              | Х              |              | 10,000              |
| Ethylene                                    | 74-85-1                      |                          |                          |              | 313            |              | 10,000              |
| Acetylene                                   | 74-86-2                      |                          |                          |              |                |              | 10,000              |
| Ethyne                                      | 74-86-2                      |                          |                          |              |                |              | 10,000              |
| Chloromethane                               | 74-87-3                      |                          |                          | 100          | 313            | U045         | 10,000              |
| Methane, chloro-                            | 74-87-3                      |                          |                          | 100          | Х              | U045         | 10,000              |
| Methyl chloride                             | 74-87-3                      |                          |                          | 100          | Х              | U045         | 10,000              |
| Methyl iodide                               | 74-88-4                      |                          |                          | 100          | 313            | U138         |                     |
| Methanamine                                 | 74-89-5                      |                          |                          | 100          |                |              | 10,000              |
| Monomethylamine                             | 74-89-5                      |                          |                          | 100          |                |              | 10,000              |
| Hydrocyanic acid                            | 74-90-8                      |                          |                          | 10           | Х              | P063         | 2,500               |
| Hydrogen cyanide                            | 74-90-8                      | 100                      |                          |              | 313            | P063         | 2,500               |
| Methanethiol                                | 74-93-1                      | 500                      |                          |              |                | U153         | 10,000              |
| Methyl mercaptan                            | 74-93-1                      | 500                      | 100                      | 100          | 313s           | U153         | 10,000              |
| Thiomethanol                                | 74-93-1                      | 500                      | 100                      | 100          | Х              | U153         | 10,000              |
| Methylene bromide                           | 74-95-3                      |                          |                          | 1,000        | 313            | U068         |                     |
| Propane                                     | 74-98-6                      |                          |                          |              |                |              | 10,000              |
| 1-Propyne                                   | 74-99-7                      |                          |                          |              |                |              | 10,000              |
| Propyne                                     | 74-99-7                      |                          |                          |              |                |              | 10,000              |
| Chloroethane                                | 75-00-3                      |                          |                          | 100          | 313            |              | 10,000              |
| Ethane, chloro-                             | 75-00-3                      |                          |                          | 100          | Х              |              | 10,000              |
| Ethyl chloride                              | 75-00-3                      |                          |                          | 100          | Х              |              | 10,000              |
| Ethene, chloro-                             | 75-01-4                      |                          |                          | 1            | Х              | U043         | 10,000              |
| Vinyl chloride                              | 75-01-4                      |                          |                          | 1            | 313            | U043         | 10,000              |
| Ethene, fluoro-                             | 75-02-5                      |                          |                          |              |                |              | 10,000              |
| Vinyl fluoride                              | 75-02-5                      |                          |                          |              | 313            |              | 10,000              |

| NAME                       | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Ethanamine                 | 75-04-7                      |                          |                          | 100          |                |              | 10,000              |
| Monoethylamine             | 75-04-7                      |                          |                          | 100          |                |              | 10,000              |
| Acetonitrile               | 75-05-8                      |                          |                          | 5,000        | 313            | U003         |                     |
| Acetaldehyde               | 75-07-0                      |                          |                          | 1,000        | 313            | U001         | 10,000              |
| Ethanethiol                | 75-08-1                      |                          |                          |              |                |              | 10,000              |
| Ethyl mercaptan            | 75-08-1                      |                          |                          |              |                |              | 10,000              |
| Dichloromethane            | 75-09-2                      |                          |                          | 1,000        | 313            | U080         |                     |
| Methylene chloride         | 75-09-2                      |                          |                          | 1,000        | Х              | U080         |                     |
| Carbon disulfide           | 75-15-0                      | 10,000                   | 100                      | 100          | 313            | P022         | 20,000              |
| Cyclopropane               | 75-19-4                      |                          |                          |              |                |              | 10,000              |
| Calcium carbide            | 75-20-7                      |                          |                          | 10           |                |              |                     |
| Ethylene oxide             | 75-21-8                      | 1,000                    | 10                       | 10           | 313            | U115         | 10,000              |
| Oxirane                    | 75-21-8                      |                          | 10                       | 10           | Х              | U115         | 10,000              |
| Bromoform                  | 75-25-2                      |                          |                          | 100          | 313            | U225         | ,                   |
| Tribromomethane            | 75-25-2                      |                          |                          | 100          | Х              | U225         |                     |
| Dichlorobromomethane       | 75-27-4                      |                          |                          | 5,000        | 313            |              |                     |
| Isobutane                  | 75-28-5                      |                          |                          | -,           |                |              | 10,000              |
| Propane, 2-methyl          | 75-28-5                      |                          |                          |              |                |              | 10,000              |
| Isopropyl chloride         | 75-29-6                      |                          |                          |              |                |              | 10,000              |
| Propane, 2-chloro-         | 75-29-6                      |                          |                          |              |                |              | 10,000              |
| Isopropylamine             | 75-31-0                      |                          |                          |              |                |              | 10,000              |
| 2-Propanamine              | 75-31-0                      |                          |                          |              |                |              | 10,000              |
| 1,1-Dichloroethane         | 75-34-3                      |                          |                          | 1,000        | Х              | U076         | ,                   |
| Ethylidene Dichloride      | 75-34-3                      |                          |                          | 1,000        |                | U076         |                     |
| 1,1-Dichloroethylene       | 75-35-4                      |                          |                          | 100          | X              | U078         | 10,000              |
| Ethene, 1,1-dichloro-      | 75-35-4                      |                          |                          | 100          | Х              | U078         | 10,000              |
| Vinylidene chloride        | 75-35-4                      |                          |                          | 100          | 313            | U078         | 10,000              |
| Acetyl chloride            | 75-36-5                      |                          |                          | 5,000        |                | U006         | ,                   |
| Difluoroethane             | 75-37-6                      |                          |                          | -,           |                |              | 10,000              |
| Ethane, 1,1-difluoro-      | 75-37-6                      |                          |                          |              |                |              | 10,000              |
| Ethene, 1,1-difluoro-      | 75-38-7                      |                          |                          |              |                |              | 10,000              |
| Vinylidene fluoride        | 75-38-7                      |                          |                          |              |                |              | 10,000              |
| Dichlorofluoromethane      | 75-43-4                      |                          |                          |              | 313            |              | -,                  |
| HCFC-21                    | 75-43-4                      |                          |                          |              | Х              |              |                     |
| Carbonic dichloride        | 75-44-5                      |                          | 10                       | 10           | Х              | P095         | 500                 |
| Phosgene                   | 75-44-5                      |                          | 10                       | 10           | 313            | P095         | 500                 |
| Chlorodifluoromethane      | 75-45-6                      |                          |                          |              | 313            |              |                     |
| HCFC-22                    | 75-45-6                      |                          |                          |              | Х              |              |                     |
| Methanamine, N,N-dimethyl- | 75-50-3                      |                          |                          | 100          |                |              | 10,000              |
| Trimethylamine             | 75-50-3                      |                          |                          | 100          |                |              | 10,000              |
| Nitromethane               | 75-52-5                      |                          |                          |              | 313            |              | -,                  |
| Aziridine, 2-methyl        | 75-55-8                      |                          | 1                        | 1            | X              | P067         | 10,000              |
| Propyleneimine             | 75-55-8                      |                          | 1                        | 1            | 313            | P067         | 10,000              |
| Oxirane, methyl-           | 75-56-9                      |                          | 100                      | 100          | X              |              | 10,000              |
| Propylene oxide            | 75-56-9                      |                          | 100                      | 100          | 313            |              | 10,000              |
| Cacodylic acid             | 75-60-5                      |                          |                          | 1            |                | U136         | 3,200               |
| Bromotrifluoromethane      | 75-63-8                      |                          |                          |              | 313            | 2.00         |                     |
| Halon 1301                 | 75-63-8                      |                          |                          |              | X              |              |                     |

| NAME                                        | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|---------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| tert-Butylamine                             | 75-64-9                      |                          |                          | 1,000        |                |              |                     |
| tert-Butyl alcohol                          | 75-65-0                      |                          |                          |              | 313            |              |                     |
| 1-Chloro-1,1-difluoroethane                 | 75-68-3                      |                          |                          |              | 313            |              |                     |
| HCFC-142b                                   | 75-68-3                      |                          |                          |              | Х              |              |                     |
| CFC-11                                      | 75-69-4                      |                          |                          | 5,000        | Х              | U121         |                     |
| Trichlorofluoromethane                      | 75-69-4                      |                          |                          | 5,000        | 313            | U121         |                     |
| Trichloromonofluoromethane                  | 75-69-4                      |                          |                          | 5,000        | X              | U121         |                     |
| CFC-12                                      | 75-71-8                      |                          |                          | 5,000        | X              | U075         |                     |
| Dichlorodifluoromethane                     | 75-71-8                      |                          |                          | 5,000        | 313            | U075         |                     |
| CFC-13                                      | 75-72-9                      |                          |                          | 0,000        | X              |              |                     |
| Chlorotrifluoromethane                      | 75-72-9                      |                          |                          |              | 313            |              |                     |
| Plumbane, tetramethyl-                      | 75-74-1                      | 100                      | 100                      |              | 0.0            |              | 10,000              |
| Tetramethyllead                             | 75-74-1                      | 100                      | 100                      |              | 313c           |              | 10,000              |
| Silane, tetramethyl-                        | 75-76-3                      | 100                      | 100                      |              | 0100           |              | 10,000              |
| Tetramethylsilane                           | 75-76-3                      |                          |                          |              |                |              | 10,000              |
| Silane, chlorotrimethyl-                    | 75-77-4                      | 1,000                    | 1,000                    |              |                |              | 10,000              |
| Trimethylchlorosilane                       | 75-77-4                      | 1,000                    | 1,000                    |              |                |              | 10,000              |
| Dimethyldichlorosilane                      | 75-78-5                      | 500                      |                          |              |                |              | 5,000               |
| Silane, dichlorodimethyl-                   | 75-78-5                      | 500                      | 500                      |              |                |              | 5,000               |
| Methyltrichlorosilane                       | 75-79-6                      | 500                      | 500                      |              |                |              | 5,000               |
| Silane, trichloromethyl-                    | 75-79-6                      | 500                      | 500                      |              |                |              | 5,000               |
| -                                           | 75-86-5                      | 1,000                    | 10                       | 10           | Х              | P069         | 5,000               |
| Acetone cyanohydrin<br>2-Methyllactonitrile | 75-86-5                      | 1,000                    |                          | 10           | 313            | P069<br>P069 |                     |
|                                             |                              | 1,000                    | 10                       |              | 313            |              |                     |
| Acetaldehyde, trichloro-                    | 75-87-6                      |                          |                          | 5,000        | 040            | U034         |                     |
| 2-Chloro-1,1,1-trifluoroethane              | 75-88-7                      |                          |                          |              | 313            |              |                     |
| HCFC-133a                                   | 75-88-7                      |                          |                          | 5 000        | Х              |              |                     |
| 2,2-Dichloropropionic acid                  | 75-99-0                      |                          |                          | 5,000        | 0.4.0          | 11404        |                     |
| Pentachloroethane                           | 76-01-7                      |                          | =                        | 10           | 313            | U184         |                     |
| Trichloroacetyl chloride                    | 76-02-8                      | 500                      | 500                      |              | 313            |              |                     |
| Chloropicrin                                | 76-06-2                      |                          |                          |              | 313            |              |                     |
| Ethane, 1,1,2-trichloro-1,2,2,-trifluoro-   | 76-13-1                      |                          |                          |              | Х              |              |                     |
| Freon 113                                   | 76-13-1                      |                          |                          |              | 313            |              |                     |
| CFC-114                                     | 76-14-2                      |                          |                          |              | Х              |              |                     |
| Dichlorotetrafluoroethane                   | 76-14-2                      |                          |                          |              | 313            |              |                     |
| CFC-115                                     | 76-15-3                      |                          |                          |              | Х              |              |                     |
| Monochloropentafluoroethane                 | 76-15-3                      |                          |                          |              | 313            |              |                     |
| Heptachlor                                  | 76-44-8                      |                          |                          | 1            | 313            | P059         |                     |
| 1,4,5,6,7,8,8-Heptachloro-3a,4,7,7a-        | 76-44-8                      |                          |                          | 1            | Х              | P059         |                     |
| tetrahydro-4,7-methano-1H-indene            |                              |                          |                          |              | 0.4.0          |              |                     |
| Triphenyltin hydroxide                      | 76-87-9                      |                          |                          |              | 313            |              |                     |
| Phenolphthalein                             | 77-09-8                      |                          |                          |              | 313            | 11466        |                     |
| Hexachlorocyclopentadiene                   | 77-47-4                      | 100                      | 10                       | 10           | 313            | U130         |                     |
| Dicyclopentadiene                           | 77-73-6                      |                          |                          |              | 313            |              |                     |
| Dimethyl sulfate                            | 77-78-1                      | 500                      | 100                      | 100          | 313            | U103         |                     |
| Tabun                                       | 77-81-6                      |                          |                          |              |                |              |                     |
| Tetraethyl lead                             | 78-00-2                      | 100                      | 10                       | 10           | 313c           | P110         |                     |
| Dioxathion                                  | 78-34-2                      | 500                      | 500                      |              |                |              |                     |
| DEF                                         | 78-48-8                      |                          |                          |              | Х              |              |                     |

| NAME                               | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| S,S,S-Tributyltrithiophosphate     | 78-48-8                      |                          |                          |              | 313            |              |                     |
| Amiton                             | 78-53-5                      | 500                      | 500                      |              |                |              |                     |
| Isophorone                         | 78-59-1                      |                          |                          | 5,000        |                |              |                     |
| Oxetane, 3,3-bis(chloromethyl)-    | 78-71-7                      | 500                      | 500                      | ,            |                |              |                     |
| Butane, 2-methyl-                  | 78-78-4                      |                          |                          |              |                |              | 10,000              |
| Isopentane                         | 78-78-4                      |                          |                          |              |                |              | 10,000              |
| 1,3-Butadiene, 2-methyl-           | 78-79-5                      |                          |                          | 100          |                |              | 10,000              |
| Isoprene                           | 78-79-5                      |                          |                          | 100          | 313            |              | 10,000              |
| iso-Butylamine                     | 78-81-9                      |                          |                          | 1,000        |                |              | -,                  |
| Isobutyronitrile                   | 78-82-0                      | 1,000                    | 1,000                    | .,           |                |              | 20,000              |
| Propanenitrile, 2-methyl-          | 78-82-0                      | 1,000                    | 1,000                    |              |                |              | 20,000              |
| Isobutyl alcohol                   | 78-83-1                      | .,                       | .,                       | 5,000        |                | U140         | ,                   |
| Isobutyraldehyde                   | 78-84-2                      |                          |                          | 0,000        | 313            |              |                     |
| 1,2-Dichloropropane                | 78-87-5                      |                          |                          | 1,000        | 313            | U083         |                     |
| Propane 1,2-dichloro-              | 78-87-5                      |                          |                          | 1,000        |                | U083         |                     |
| 2,3-Dichloropropene                | 78-88-6                      |                          |                          | 100          | 313            | 0000         |                     |
| sec-Butyl alcohol                  | 78-92-2                      |                          |                          | 100          | 313            |              |                     |
| Methyl ethyl ketone                | 78-93-3                      |                          |                          | 5,000        | 010            | U159         |                     |
| Methyl vinyl ketone                | 78-94-4                      | 10                       | 10                       | 0,000        |                | 0100         |                     |
| Lactonitrile                       | 78-97-7                      | 1,000                    | 1,000                    |              |                |              |                     |
| 1,1-Dichloropropane                | 78-99-9                      | 1,000                    | 1,000                    | 1,000        |                |              |                     |
| 1,1,2-Trichloroethane              | 79-00-5                      |                          |                          | 1,000        | 313            | U227         |                     |
| Trichloroethylene                  | 79-01-6                      |                          |                          | 100          | 313            | U228         |                     |
| Acrylamide                         |                              | 1,000/10,000             | 5,000                    | 5,000        | 313            | U007         |                     |
| Propionic acid                     | 79-09-4                      | 1,000/10,000             | 0,000                    | 5,000        |                | 0001         |                     |
| Acrylic acid                       | 79-10-7                      |                          |                          | 5,000        | 313            | U008         |                     |
| Chloroacetic acid                  | 79-11-8                      | 100/10,000               | 100                      | 100          | 313            | 0000         |                     |
| Thiosemicarbazide                  | 79-19-6                      | ,                        | 100                      | 100          | 313            | P116         |                     |
| Ethaneperoxoic acid                | 79-21-0                      | 500                      | 500                      | 100          | X              | 1 110        | 10,000              |
| Peracetic acid                     | 79-21-0                      | 500                      | 500                      |              | 313            |              | 10,000              |
| Carbonochloridic acid, methylester | 79-22-1                      |                          |                          | 1,000        |                | U156         | 5,000               |
| Methyl chlorocarbonate             | 79-22-1                      | 500                      |                          | 1,000        |                | U156         | 5,000               |
| Methyl chloroformate               | 79-22-1                      | 500                      | ,                        | 1,000        | X              | U156         | 5,000               |
| iso-Butyric acid                   | 79-31-2                      | 000                      | 1,000                    | 5,000        |                | 0100         | 0,000               |
| 1,1,2,2-Tetrachloroethane          | 79-34-5                      |                          |                          | 100          | 313            | U209         |                     |
| Ethene, chlorotrifluoro-           | 79-38-9                      |                          |                          | 100          | 010            | 0200         | 10,000              |
| Trifluorochloroethylene            | 79-38-9                      |                          |                          |              |                |              | 10,000              |
| Dimethylcarbamyl chloride          | 79-44-7                      |                          |                          | 1            | 313            | U097         | 10,000              |
| 2-Nitropropane                     | 79-46-9                      |                          |                          | 10           |                | U171         |                     |
| Tetrabromobisphenol A              | 79-40-9                      |                          |                          | 10           | 313            | 5171         |                     |
| 4,4'-Isopropylidenediphenol        | 80-05-7                      |                          |                          |              | 313            |              |                     |
| Cumene hydroperoxide               | 80-05-7                      |                          |                          | 10           | 313            | U096         |                     |
| Hydroperoxide, 1-methyl-1-         | 80-15-9                      |                          |                          | 10           |                | U096         |                     |
| phenylethyl-                       | 00-10-9                      |                          |                          | 10           | ^              | 0090         |                     |
| Methyl methacrylate                | 80-62-6                      |                          |                          | 1,000        | 313            | U162         |                     |
| Methyl 2-chloroacrylate            | 80-63-7                      | 500                      | 500                      | .,000        |                |              |                     |
| Saccharin (manufacturing)          | 81-07-2                      |                          | 000                      | 100          | 313            | U202         |                     |
| Saccharin and salts                | 81-07-2                      |                          |                          | 100          |                | U202         |                     |

| NAME                                | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 1-Amino-2,4-dibromoanthraquinone    | 81-49-2                      |                          |                          |              | 313            |              |                     |
| Warfarin                            | 81-81-2                      | 500/10,000               | 100                      | 100          | X 313c         | P001         |                     |
| Warfarin, & salts, conc.>0.3%       | 81-81-2                      |                          |                          | 100          | X 313c         | P001         |                     |
| C.I. Food Red 15                    | 81-88-9                      |                          |                          |              | 313            |              |                     |
| 1-Amino-2-methylanthraquinone       | 82-28-0                      |                          |                          |              | 313            |              |                     |
| Diphacinone                         | 82-66-6                      | 10/10,000                | 10                       |              |                |              |                     |
| PCNB                                | 82-68-8                      |                          |                          | 100          | Х              | U185         |                     |
| Pentachloronitrobenzene             | 82-68-8                      |                          |                          | 100          | Х              | U185         |                     |
| Quintozene                          | 82-68-8                      |                          |                          | 100          | 313            | U185         |                     |
| Acenaphthene                        | 83-32-9                      |                          |                          | 100          |                |              |                     |
| Diethyl phthalate                   | 84-66-2                      |                          |                          | 1,000        |                | U088         |                     |
| n-Butyl phthalate                   | 84-74-2                      |                          |                          | 10           | Х              | U069         |                     |
| Dibutyl phthalate                   | 84-74-2                      |                          |                          | 10           | 313            | U069         |                     |
| Diquat                              | 85-00-7                      |                          | 1                        | 1,000        |                | İ            |                     |
| Phenanthrene                        | 85-01-8                      |                          |                          | 5,000        | 313            |              |                     |
| Phthalic anhydride                  | 85-44-9                      |                          |                          | 5,000        | 313            | U190         |                     |
| Butyl benzyl phthalate              | 85-68-7                      |                          |                          | 100          |                |              |                     |
| N-Nitrosodiphenylamine              | 86-30-6                      |                          |                          | 100          | 313            |              |                     |
| Azinphos-methyl                     | 86-50-0                      |                          | 1                        |              |                |              |                     |
| Guthion                             | 86-50-0                      | ,                        |                          | 1            |                |              |                     |
| Fluorene                            | 86-73-7                      | ,                        |                          | 5,000        |                |              |                     |
| ANTU                                | 86-88-4                      | 500/10,000               | 100                      | 100          |                | P072         |                     |
| Thiourea, 1-naphthalenyl-           | 86-88-4                      | ,                        | 100                      | 100          |                | P072         |                     |
| 2,6-Xylidine                        | 87-62-7                      |                          |                          |              | 313            | _            |                     |
| 2,6-Dichlorophenol                  | 87-65-0                      |                          |                          | 100          |                | U082         |                     |
| Hexachloro-1,3-butadiene            | 87-68-3                      |                          |                          | 1            | 313            | U128         |                     |
| Hexachlorobutadiene                 | 87-68-3                      |                          |                          | 1            | X              | U128         |                     |
| PCP                                 | 87-86-5                      |                          |                          | 10           | Х              |              |                     |
| Pentachlorophenol                   | 87-86-5                      |                          |                          | 10           | 313            |              |                     |
| Aniline, 2,4,6-trimethyl-           | 88-05-1                      | 500                      | 500                      |              |                |              |                     |
| 2,4,6-Trichlorophenol               | 88-06-2                      |                          |                          | 10           | 313            |              |                     |
| o-Nitrotoluene                      | 88-72-2                      |                          |                          | 1,000        | 313            |              |                     |
| 2-Nitrophenol                       | 88-75-5                      |                          |                          | 100          | 313            |              |                     |
| Dinitrobutyl phenol                 | 88-85-7                      |                          | 1,000                    |              | 313            | P020         |                     |
| Dinoseb                             | 88-85-7                      |                          | 1,000                    |              | Х              | P020         |                     |
| Picric acid                         | 88-89-1                      |                          | ,                        | ,            | 313            |              |                     |
| o-Anisidine                         | 90-04-0                      |                          |                          | 100          | 313            |              |                     |
| 2-Phenylphenol                      | 90-43-7                      |                          |                          |              | 313            |              |                     |
| Michler's ketone                    | 90-94-8                      |                          |                          |              | 313            |              |                     |
| Benzene, 1,3-diisocyanato-2-methyl- | 91-08-7                      |                          | 100                      | 100          | Х              |              | 10,000              |
| Toluene-2,6-diisocyanate            | 91-08-7                      |                          | 100                      | 100          | 313            |              | 10,000              |
| Naphthalene                         | 91-20-3                      |                          |                          | 100          | 313            | U165         | ,                   |
| Quinoline                           | 91-22-5                      |                          |                          | 5,000        | 313            |              |                     |
| o-Nitroanisole                      | 91-23-6                      |                          |                          | .,           | 313            |              |                     |
| 2-Chloronaphthalene                 | 91-58-7                      |                          |                          | 5,000        |                | U047         |                     |
| beta-Naphthylamine                  | 91-59-8                      |                          |                          | 10           | 313            | U168         |                     |
| N,N-Diethylaniline                  | 91-66-7                      |                          |                          | 1,000        |                |              |                     |
| Methapyrilene                       | 91-80-5                      |                          |                          | 5,000        |                | U155         |                     |

| NAME                                   | CAS/313<br>Category | Section 302<br>(EHS) TPQ | 304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r) |
|----------------------------------------|---------------------|--------------------------|---------|--------------|----------------|--------------|---------------|
|                                        | Codes               |                          | RQ      |              |                |              | TQ            |
| 3,3'-Dimethoxybenzidine-4,4'-          | 91-93-0             |                          |         |              | 313#           |              |               |
| diisocyanate<br>3,3'-Dichlorobenzidine | 91-94-1             |                          |         | 1            | 313            | U073         |               |
| 3,3'-Dimethyl-4,4'-diphenylene         | 91-94-1             |                          |         | I            | 313#           | 0073         |               |
| diisocyanate                           | 91-97-4             |                          |         |              | 313#           |              |               |
| Biphenyl                               | 92-52-4             |                          |         | 100          | 313            |              |               |
| 4-Aminobiphenyl                        | 92-67-1             |                          |         | 100          | 313            |              |               |
| Benzidine                              | 92-87-5             |                          |         | 1            | 313            | U021         |               |
| 4-Nitrobiphenyl                        | 92-93-3             |                          |         | 10           | 313            | 0021         |               |
| Methyleugenol                          | 93-15-2             |                          |         | 10           | 313            |              |               |
| Месоргор                               | 93-65-2             |                          |         |              | 313            |              |               |
| Silvex (2,4,5-TP)                      | 93-72-1             |                          |         | 100          | 010            |              |               |
| 2,4,5-T acid                           | 93-76-5             |                          |         | 1,000        |                |              |               |
| 2,4,5-T esters                         | 93-79-8             |                          |         | 1,000        |                |              |               |
| 2,4-D Esters                           | 94-11-1             |                          |         | 1,000        | Х              |              |               |
| 2,4-D isopropyl ester                  | 94-11-1             |                          |         | 100          | 313            |              | l             |
| Benzoyl peroxide                       | 94-36-0             |                          |         | 100          | 313            |              | l             |
| Dihydrosafrole                         | 94-58-6             |                          |         | 10           | 313            | U090         |               |
| Safrole                                | 94-59-7             |                          |         | 100          | 313            | U203         |               |
| (4-Chloro-2-methylphenoxy) acetic      | 94-74-6             |                          |         | 100          | X              | 0200         |               |
| acid                                   | 04740               |                          |         |              | Λ              |              |               |
| MCPA                                   | 94-74-6             |                          |         |              | Х              |              |               |
| Methoxone                              | 94-74-6             |                          |         |              | 313            |              |               |
| Acetic acid, (2,4-dichlorophenoxy)-    | 94-75-7             |                          |         | 100          | Х              | U240         |               |
| 2,4-D                                  | 94-75-7             |                          |         | 100          | 313            | U240         |               |
| 2,4-D Acid                             | 94-75-7             |                          |         | 100          | Х              | U240         |               |
| 2,4-D, salts and esters                | 94-75-7             |                          |         | 100          |                | U240         |               |
| 2,4-D Esters                           | 94-79-1             |                          |         | 100          |                |              |               |
| 2,4-D butyl ester                      | 94-80-4             |                          |         | 100          | 313            |              |               |
| 2,4-D Esters                           | 94-80-4             |                          |         | 100          | Х              |              |               |
| 2,4-DB                                 | 94-82-6             |                          |         |              | 313            |              |               |
| Benzene, o-dimethyl-                   | 95-47-6             |                          |         | 1,000        | Х              | U239         |               |
| o-Xylene                               | 95-47-6             |                          |         | 1,000        | 313            | U239         |               |
| o-Cresol                               | 95-48-7             | 1,000/10,000             | 100     |              | 313            | U052         |               |
| o-Dichlorobenzene                      | 95-50-1             |                          |         | 100          | Х              | U070         |               |
| 1,2-Dichlorobenzene                    | 95-50-1             |                          |         | 100          | 313            | U070         |               |
| o-Toluidine                            | 95-53-4             |                          |         | 100          | 313            | U328         |               |
| 1,2-Phenylenediamine                   | 95-54-5             |                          |         |              | 313            |              |               |
| 2-Chlorophenol                         | 95-57-8             |                          |         | 100          |                | U048         |               |
| 1,2,4-Trimethylbenzene                 | 95-63-6             |                          |         |              | 313            |              |               |
| p-Chloro-o-toluidine                   | 95-69-2             |                          |         |              | 313            |              |               |
| 2,4-Diaminotoluene                     | 95-80-7             |                          |         | 10           | 313            |              |               |
| 1,2,4,5-Tetrachlorobenzene             | 95-94-3             |                          |         | 5,000        |                | U207         |               |
| 2,4,5-Trichlorophenol                  | 95-95-4             |                          |         | 10           | 313            |              |               |
| Styrene oxide                          | 96-09-3             |                          |         | 100          | 313            |              |               |
| DBCP                                   | 96-12-8             |                          |         | 1            | X              | U066         |               |
| 1,2-Dibromo-3-chloropropane            | 96-12-8             |                          |         | 1            | 313            | U066         |               |
| 1,2,3-Trichloropropane                 | 96-18-4             |                          |         |              | 313            | -            |               |
| Methyl acrylate                        | 96-33-3             |                          |         |              | 313            |              | L             |

| NAME                                         | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Ethylene thiourea                            | 96-45-7                      |                          |                          | 10           | 313            | U116         |                     |
| Dichlorophene                                | 97-23-4                      |                          |                          |              | 313            |              |                     |
| 2,2'-Methylenebis(4-chlorophenol             | 97-23-4                      |                          |                          |              | Х              |              |                     |
| C.I. Solvent Yellow 3                        | 97-56-3                      |                          |                          |              | 313            |              |                     |
| Ethyl methacrylate                           | 97-63-2                      |                          |                          | 1,000        |                | U118         |                     |
| Furfural                                     | 98-01-1                      |                          |                          | 5,000        |                | U125         |                     |
| Benzenearsonic acid                          | 98-05-5                      | 10/10,000                | 10                       | -,           |                |              |                     |
| Benzoic trichloride                          | 98-07-7                      | 100                      | 10                       | 10           | 313            | U023         |                     |
| Benzotrichloride                             | 98-07-7                      | 100                      | 10                       | 10           | X              | U023         |                     |
| Benzenesulfonyl chloride                     | 98-09-9                      |                          |                          | 100          |                | U020         |                     |
| Trichlorophenylsilane                        | 98-13-5                      | 500                      | 500                      |              |                |              |                     |
| Benzenamine, 3-(trifluoromethyl)-            | 98-16-8                      | 500                      | 500                      |              |                |              |                     |
| Cumene                                       | 98-82-8                      |                          |                          | 5,000        | 313            | U055         |                     |
| Acetophenone                                 | 98-86-2                      |                          |                          | 5,000        | 313            | U003         |                     |
| Benzal chloride                              | 98-87-3                      | 500                      | 5,000                    | 5,000        | 313            | U017         |                     |
| Benzoyl chloride                             | 98-88-4                      | 000                      | 0,000                    | 1,000        | 313            | 0017         |                     |
| Nitrobenzene                                 | 98-95-3                      | 10,000                   | 1,000                    | 1,000        | 313            | U169         |                     |
| m-Nitrotoluene                               | 99-08-1                      | 10,000                   | 1,000                    | 1,000        | 010            | 0100         |                     |
| Dichloran                                    | 99-30-9                      |                          |                          | 1,000        | 313            |              |                     |
| 2,6-Dichloro-4-nitroaniline                  | 99-30-9                      |                          |                          |              | X              |              |                     |
| 1,3,5-Trinitrobenzene                        | 99-35-4                      |                          |                          | 10           | ~              | U234         |                     |
| 5-Nitro-o-toluidine                          | 99-55-8                      |                          |                          | 100          | 313            | U181         |                     |
| 5-Nitro-o-anisidine                          | 99-59-2                      |                          |                          | 100          | 313            | 0101         |                     |
| m-Dinitrobenzene                             | 99-59-2                      |                          |                          | 100          | 313            |              |                     |
| Dimethyl-p-phenylenediamine                  | 99-03-0                      | 10/10,000                | 10                       | 100          | 515            |              |                     |
| p-Nitrotoluene                               | 99-98-9                      | 10/10,000                | 10                       | 1,000        |                |              |                     |
| p-Nitroaniline                               | 100-01-6                     |                          |                          | 5,000        | 313            | P077         |                     |
|                                              | 100-01-6                     |                          |                          | 5,000        | 313            | U170         |                     |
| 4-Nitrophenol                                | 100-02-7                     |                          |                          | 100          | 313<br>X       | U170         |                     |
| p-Nitrophenol                                |                              | 500/10 000               | 500                      | 100          | ~              | 0170         |                     |
| Benzene, 1-(chloromethyl)-4-nitro-           | 100-14-1                     | ,                        | 500                      | 100          | 242            |              |                     |
| p-Dinitrobenzene                             | 100-25-4                     |                          |                          | 100          | 313            |              |                     |
| Ethylbenzene                                 | 100-41-4                     |                          |                          | 1,000        | 313            |              |                     |
| Styrene                                      | 100-42-5                     | 500                      | 400                      | 1,000        | 313            | <b>D</b> 000 |                     |
| Benzyl chloride                              | 100-44-7                     | 500                      | 100                      | 100          | 313            | P028         |                     |
| Benzonitrile                                 | 100-47-0                     |                          |                          | 5,000        | 040            | 11470        |                     |
| N-Nitrosopiperidine                          | 100-75-4                     |                          |                          | 10           | 313            | U179         |                     |
| Anilazine                                    | 101-05-3                     |                          |                          |              | 313            |              |                     |
| 4,6-Dichloro-N-(2-chlorophenyl)-1,3,5-       | 101-05-3                     |                          |                          |              | Х              |              |                     |
| triazin-2-amine<br>MBOCA                     | 101-14-4                     |                          |                          | 10           | v              | U158         |                     |
|                                              | 101-14-4                     |                          |                          | 10           | X<br>313       |              |                     |
| 4,4'-Methylenebis(2-chloroaniline)<br>Barban | 101-14-4                     |                          |                          | 10           | 515            | U158<br>U280 |                     |
|                                              | 101-27-9                     |                          |                          | 100          |                |              |                     |
| 4-Bromophenyl phenyl ether                   |                              |                          |                          | 100          | 040            | U030         |                     |
| 4,4'-Methylenebis(N,N-                       | 101-61-1                     |                          |                          |              | 313            |              |                     |
| dimethyl)benzenamine<br>MDI                  | 101-68-8                     |                          |                          | 5,000        | Х              |              |                     |
| Methylenebis(phenylisocyanate)               | 101-68-8                     |                          |                          | 5,000        |                |              |                     |
| 4,4'-Methylenedianiline                      | 101-66-6                     |                          |                          | 5,000<br>10  | 313            |              |                     |
| 4,4 -ivietri yierieularilline                | 101-77-9                     |                          |                          | 10           | 313            |              |                     |

| NAME                                 | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|--------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 4,4'-Diaminodiphenyl ether           | 101-80-4                     |                          |                          |              | 313            |              |                     |
| Diglycidyl resorcinol ether          | 101-90-6                     |                          |                          |              | 313            |              |                     |
| Isocyanic acid, 3,4-dichlorophenyl   | 102-36-3                     | 500/10,000               | 500                      |              |                |              |                     |
| ester                                |                              |                          |                          |              |                |              |                     |
| Phenylthiourea                       | 103-85-5                     | 100/10,000               | 100                      | 100          |                | P093         |                     |
| p-Chlorophenyl isocyanate            | 104-12-1                     |                          |                          |              | 313            |              |                     |
| 4-Nonylphenol                        | 104-40-5                     |                          |                          |              | 313\$          |              |                     |
| 1,4-Phenylene diisocyanate           | 104-49-4                     |                          |                          |              | 313#           |              |                     |
| p-Anisidine                          | 104-94-9                     |                          |                          |              | 313            |              |                     |
| sec-Butyl acetate                    | 105-46-4                     |                          |                          | 5,000        |                |              |                     |
| 2,4-Dimethylphenol                   | 105-67-9                     |                          |                          | 100          | 313            | U101         |                     |
| Benzene, p-dimethyl-                 | 106-42-3                     |                          |                          | 100          | Х              | U239         |                     |
| p-Xylene                             | 106-42-3                     |                          |                          | 100          | 313            | U239         |                     |
| p-Cresol                             | 106-44-5                     |                          |                          | 100          | 313            | U052         |                     |
| 1,4-Dichlorobenzene                  | 106-46-7                     |                          |                          | 100          | 313            | U072         |                     |
| p-Chloroaniline                      | 106-47-8                     |                          |                          | 1,000        | 313            | P024         |                     |
| p-Toluidine                          | 106-49-0                     |                          |                          | 100          |                | U353         |                     |
| p-Phenylenediamine                   | 106-50-3                     |                          |                          | 5,000        | 313            |              |                     |
| p-Benzoquinone                       | 106-51-4                     |                          |                          | 10           |                | U197         | 1                   |
| Quinone                              | 106-51-4                     |                          |                          | 10           |                | U197         |                     |
| 1,2-Butylene oxide                   | 106-88-7                     |                          |                          | 100          |                |              |                     |
| Epichlorohydrin                      | 106-89-8                     | 1,000                    | 100                      |              |                | U041         | 20,000              |
| Oxirane, (chloromethyl)-             | 106-89-8                     | 1,000                    | 100                      | 100          |                | U041         | 20,000              |
| 1,2-Dibromoethane                    | 106-93-4                     | 1,000                    |                          | 1            | 313            | U067         | 20,000              |
| Ethylene dibromide                   | 106-93-4                     |                          |                          | 1            | X              | U067         |                     |
| Propargyl bromide                    | 106-96-7                     | 10                       | 10                       |              |                |              |                     |
| Butane                               | 106-97-8                     |                          |                          |              |                |              | 10,000              |
| 1-Butene                             | 106-98-9                     |                          |                          |              |                |              | 10,000              |
| 1,3-Butadiene                        | 106-99-0                     |                          |                          | 10           | 313            |              | 10,000              |
| 1-Butyne                             | 107-00-6                     |                          |                          |              | 010            |              | 10,000              |
| Ethyl acetylene                      | 107-00-6                     |                          |                          |              |                |              | 10,000              |
| 2-Butene                             | 107-01-7                     |                          |                          |              |                |              | 10,000              |
| Acrolein                             | 107-02-8                     | 500                      | 1                        | 1            | 313            | P003         | 5,000               |
| 2-Propenal                           | 107-02-8                     | 500                      |                          | 1            |                | P003         | 5,000               |
| Allyl chloride                       | 107-05-1                     |                          | •                        | 1,000        | 313            |              | 0,000               |
| 1,2-Dichloroethane                   | 107-06-2                     |                          |                          | 100          |                | U077         | ł                   |
| Ethylene dichloride                  | 107-06-2                     |                          |                          | 100          |                | U077         | <u> </u>            |
| Chloroethanol                        | 107-07-3                     | 500                      | 500                      | 100          |                | 0011         | <u> </u>            |
| n-Propylamine                        | 107-10-8                     | 000                      | 000                      | 5,000        |                | U194         |                     |
| Allylamine                           | 107-11-9                     | 500                      | 500                      | 0,000        | 313            |              | 10,000              |
| 2-Propen-1-amine                     | 107-11-9                     | 500                      | 500                      |              | X              |              | 10,000              |
| Ethyl cyanide                        | 107-12-0                     | 500                      | 10                       | 10           |                | P101         | 10,000              |
| Propanenitrile                       | 107-12-0                     | 500                      | 10                       | 10           |                | P101         | 10,000              |
| Propionitrile                        | 107-12-0                     | 500                      | 10                       | 10           |                | P101         | 10,000              |
| Acrylonitrile                        | 107-12-0                     | 10,000                   |                          | 100          |                | U009         | 20,000              |
| 2-Propenenitrile                     | 107-13-1                     | 10,000                   |                          | 100          |                | U009<br>U009 | 20,000              |
| 1,2-Ethanediamine                    | 107-13-1                     | 10,000                   |                          |              |                | 0009         | 20,000              |
| T,2-Ethanediamine<br>Ethylenediamine | 107-15-3                     | 10,000                   |                          |              |                |              | 20,000              |

| NAME                                 | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|--------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Formaldehyde cyanohydrin             | 107-16-4                     | 1,000                    | 1,000                    |              |                |              |                     |
| Allyl alcohol                        | 107-18-6                     | 1,000                    | 100                      | 100          | 313            | P005         | 15,000              |
| 2-Propen-1-ol                        | 107-18-6                     | 1,000                    | 100                      | 100          | Х              | P005         | 15,000              |
| Propargyl alcohol                    | 107-19-7                     |                          |                          | 1,000        | 313            | P102         |                     |
| Chloroacetaldehyde                   | 107-20-0                     |                          |                          | 1,000        |                | P023         |                     |
| Ethylene glycol                      | 107-21-1                     |                          |                          | 5,000        |                |              |                     |
| Ethene, methoxy-                     | 107-25-5                     |                          |                          | ,            |                |              | 10,000              |
| Vinyl methyl ether                   | 107-25-5                     |                          |                          |              |                |              | 10,000              |
| Chloromethyl methyl ether            | 107-30-2                     | 100                      | 10                       | 10           | 313            | U046         | 5,000               |
| Methane, chloromethoxy-              | 107-30-2                     | 100                      |                          | 10           |                | U046         | 5,000               |
| Formic acid, methyl ester            | 107-31-3                     | 100                      | 10                       | 10           |                | 0010         | 10,000              |
| Methyl formate                       | 107-31-3                     |                          |                          |              |                |              | 10,000              |
| Sarin                                | 107-44-8                     | 10                       | 10                       |              |                |              | 10,000              |
| TEPP                                 | 107-49-3                     | 100                      |                          | 10           |                | P111         |                     |
| Tetraethyl pyrophosphate             | 107-49-3                     | 100                      |                          | 10           |                | P111         |                     |
| Butyric acid                         | 107-49-3                     | 100                      | 10                       | 5,000        |                |              |                     |
| -                                    | 107-92-6                     | 1,000                    | 5,000                    | 5,000        |                |              | 15 000              |
| Acetic acid ethenyl ester            |                              |                          | ,                        |              |                |              | 15,000              |
| Vinyl acetate                        | 108-05-4                     | 1,000                    |                          | 5,000        |                |              | 15,000              |
| Vinyl acetate monomer                | 108-05-4                     | 1,000                    | 5,000                    |              |                | 11404        | 15,000              |
| Methyl isobutyl ketone               | 108-10-1                     | 4 0 0 0                  | 4 000                    | 5,000        | 313            | U161         | 45.000              |
| Carbonochloridic acid, 1-methylethyl | 108-23-6                     | 1,000                    | 1,000                    |              |                |              | 15,000              |
| ester                                | 109.02.6                     | 1 000                    | 1 000                    |              |                |              | 15 000              |
| Isopropyl chloroformate              | 108-23-6<br>108-24-7         | 1,000                    | 1,000                    | E 000        |                |              | 15,000              |
| Acetic anhydride                     | 108-24-7                     |                          |                          | 5,000        |                | 11447        |                     |
| Maleic anhydride                     |                              |                          |                          | 5,000        |                | U147         |                     |
| Benzene, m-dimethyl-                 | 108-38-3                     |                          |                          | 1,000        |                | U239         |                     |
| m-Xylene                             | 108-38-3                     |                          |                          | 1,000        |                | U239         |                     |
| m-Cresol                             | 108-39-4                     |                          |                          | 100          | 313            | U052         |                     |
| 1,3-Phenylenediamine                 | 108-45-2                     |                          |                          | =            | 313            |              |                     |
| Resorcinol                           | 108-46-3                     |                          |                          | 5,000        |                | U201         |                     |
| Bis(2-chloro-1-methylethyl)ether     | 108-60-1                     |                          |                          | 1,000        |                | U027         |                     |
| Dichloroisopropyl ether              | 108-60-1                     |                          |                          | 1,000        |                | U027         |                     |
| Toluene                              | 108-88-3                     |                          |                          | 1,000        | 313            | U220         |                     |
| Chlorobenzene                        | 108-90-7                     |                          |                          | 100          | 313            | U037         |                     |
| Cyclohexanamine                      | 108-91-8                     |                          |                          |              |                |              | 15,000              |
| Cyclohexylamine                      | 108-91-8                     | 10,000                   | 10,000                   |              |                |              | 15,000              |
| Cyclohexanol                         | 108-93-0                     |                          |                          |              | 313            |              |                     |
| Cyclohexanone                        | 108-94-1                     |                          |                          | 5,000        |                | U057         |                     |
| Phenol                               | 108-95-2                     | 500/10,000               | 1,000                    | 1,000        | 313            | U188         |                     |
| Benzenethiol                         | 108-98-5                     | 500                      | 100                      | 100          |                | P014         |                     |
| Thiophenol                           | 108-98-5                     | 500                      | 100                      | 100          |                | P014         |                     |
| 2-Methylpyridine                     | 109-06-8                     |                          |                          | 5,000        | 313            | U191         |                     |
| 2-Picoline                           | 109-06-8                     |                          |                          | 5,000        | Х              | U191         |                     |
| Carbonochloridic acid, propylester   | 109-61-5                     |                          | 500                      |              | İ              |              | 15,000              |
| Propyl chloroformate                 | 109-61-5                     |                          |                          |              | İ              |              | 15,000              |
| Pentane                              | 109-66-0                     |                          |                          |              |                |              | 10,000              |
| 1-Pentene                            | 109-67-1                     |                          |                          |              |                |              | 10,000              |
| Butylamine                           | 109-73-9                     |                          |                          | 1,000        |                |              |                     |

| NAME                                                                         | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Malononitrile                                                                | 109-77-3                     | 500/10,000               | 1,000                    | 1,000        | 313            | U149         |                     |
| 2-Methoxyethanol                                                             | 109-86-4                     |                          |                          |              | 313            |              |                     |
| Diethylamine                                                                 | 109-89-7                     |                          |                          | 100          |                |              |                     |
| Ethene, ethoxy-                                                              | 109-92-2                     |                          |                          |              |                |              | 10,000              |
| Vinyl ethyl ether                                                            | 109-92-2                     |                          |                          |              |                |              | 10,000              |
| Ethyl nitrite                                                                | 109-95-5                     |                          |                          |              |                |              | 10,000              |
| Nitrous acid, ethyl ester                                                    | 109-95-5                     |                          |                          |              |                |              | 10,000              |
| Furan, tetrahydro-                                                           | 109-99-9                     |                          |                          | 1,000        |                | U213         |                     |
| Furan                                                                        | 110-00-9                     | 500                      | 100                      | 100          | 313            | U124         | 5,000               |
| Maleic acid                                                                  | 110-16-7                     |                          |                          | 5,000        |                |              |                     |
| Fumaric acid                                                                 | 110-17-8                     |                          |                          | 5,000        |                |              |                     |
| iso-Butyl acetate                                                            | 110-19-0                     |                          |                          | 5,000        |                |              |                     |
| Hexane                                                                       | 110-54-3                     |                          |                          | 5,000        |                |              |                     |
| n-Hexane                                                                     | 110-54-3                     |                          |                          | 5,000        |                | 1            |                     |
| trans-1,4-Dichloro-2-butene                                                  | 110-57-6                     | 500                      | 500                      | -,•          | 313            |              |                     |
| trans-1,4-Dichlorobutene                                                     | 110-57-6                     | 500                      |                          |              | X              |              |                     |
| 2-Chloroethyl vinyl ether                                                    | 110-75-8                     |                          |                          | 1,000        |                | U042         |                     |
| Ethanol, 2-ethoxy-                                                           | 110-80-5                     |                          |                          | 1,000        | Х              | U359         |                     |
| 2-Ethoxyethanol                                                              | 110-80-5                     |                          |                          | 1,000        |                | U359         |                     |
| Cyclohexane                                                                  | 110-82-7                     |                          |                          | 1,000        |                | U056         |                     |
| Pyridine                                                                     | 110-86-1                     |                          |                          | 1,000        | 313            | U196         |                     |
| Piperidine                                                                   | 110-89-4                     | 1,000                    | 1,000                    | 1,000        | 010            | 0.00         | 15,000              |
| Diethanolamine                                                               | 111-42-2                     | 1,000                    | 1,000                    | 100          | 313            |              | 10,000              |
| Bis(2-chloroethyl) ether                                                     | 111-44-4                     | 10,000                   | 10                       | 10           |                | U025         |                     |
| Dichloroethyl ether                                                          | 111-44-4                     | 10,000                   |                          | 10           |                | U025         |                     |
| Ethylenebisdithiocarbamic acid, salts                                        | 111-54-6                     | 10,000                   | 10                       | 5,000        | X              | U114         |                     |
| & esters                                                                     | 111 04 0                     |                          |                          | 0,000        | ~              |              |                     |
| Adiponitrile                                                                 | 111-69-3                     | 1,000                    | 1,000                    |              |                |              |                     |
| Bis(2-chloroethoxy) methane                                                  | 111-91-1                     |                          | ,                        | 1,000        | 313            | U024         |                     |
| Phenol, 2-(1-methylethoxy)-,                                                 | 114-26-1                     |                          |                          | 100          | Х              | U411         |                     |
| methylcarbamate                                                              |                              |                          |                          |              |                |              |                     |
| Propoxur                                                                     | 114-26-1                     |                          |                          | 100          | 313            | U411         |                     |
| Azaserine                                                                    | 115-02-6                     |                          |                          | 1            |                | U015         |                     |
| Propene                                                                      | 115-07-1                     |                          |                          |              | Х              |              | 10,000              |
| 1-Propene                                                                    | 115-07-1                     |                          |                          |              | Х              |              | 10,000              |
| Propylene                                                                    | 115-07-1                     |                          |                          |              | 313            |              | 10,000              |
| Methane, oxybis-                                                             | 115-10-6                     |                          |                          |              |                |              | 10,000              |
| Methyl ether                                                                 | 115-10-6                     |                          |                          |              |                |              | 10,000              |
| 2-Methylpropene                                                              | 115-11-7                     |                          |                          |              |                |              | 10,000              |
| 1-Propene, 2-methyl-                                                         | 115-11-7                     |                          |                          |              |                |              | 10,000              |
| Trichloroethylsilane                                                         | 115-21-9                     | 500                      | 500                      |              |                |              |                     |
| Dimefox                                                                      | 115-26-4                     | 500                      | 500                      |              |                |              |                     |
| Chlorendic acid                                                              | 115-28-6                     |                          |                          |              | 313            |              |                     |
| Endosulfan                                                                   | 115-29-7                     | 10/10,000                | 1                        | 1            |                | P050         |                     |
| Benzenemethanol, 4-chloroalpha4-<br>chlorophenyl)alpha<br>(trichloromethyl)- | 115-32-2                     |                          |                          | 10           | Х              |              |                     |
| Dicofol                                                                      | 115-32-2                     |                          |                          | 10           | 313            |              |                     |
| Fensulfothion                                                                | 115-90-2                     | 500                      | 500                      | 10           | 010            |              |                     |

| NAME                                          | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-----------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Aldicarb                                      | 116-06-3                     | 100/10,000               | 1                        | 1            | 313            | P070         |                     |
| Ethene, tetrafluoro-                          | 116-14-3                     |                          |                          |              |                |              | 10,000              |
| Tetrafluoroethylene                           | 116-14-3                     |                          |                          |              | 313            |              | 10,000              |
| 2-Aminoanthraquinone                          | 117-79-3                     |                          |                          |              | 313            |              | -,                  |
| Dichlone                                      | 117-80-6                     |                          |                          | 1            |                |              |                     |
| Bis(2-ethylhexyl)phthalate                    | 117-81-7                     |                          |                          | 100          | Х              | U028         |                     |
| DEHP                                          | 117-81-7                     |                          |                          | 100          | X              | U028         |                     |
| Di(2-ethylhexyl) phthalate                    | 117-81-7                     |                          |                          | 100          | 313            | U028         |                     |
| Di-n-octyl phthalate                          | 117-84-0                     |                          |                          | 5,000        |                | U107         |                     |
| n-Dioctylphthalate                            | 117-84-0                     |                          |                          | 5,000        |                | U107         |                     |
| Hexachlorobenzene                             | 118-74-1                     |                          |                          | 10           | 313            | U127         |                     |
| Isopropylmethylpyrazolyl<br>dimethylcarbamate | 119-38-0                     | 500                      | 100                      | 100          |                | P192         |                     |
| 3,3'-Dimethoxybenzidine                       | 119-90-4                     |                          |                          | 100          | 313            | U091         |                     |
| 3,3'-Dimethylbenzidine                        | 119-93-7                     |                          |                          | 10           | 313            | U095         |                     |
| o-Tolidine                                    | 119-93-7                     |                          |                          | 10           | Х              | U095         |                     |
| Anthracene                                    | 120-12-7                     |                          |                          | 5,000        | 313            |              |                     |
| 2,4-DP                                        | 120-36-5                     |                          |                          |              | 313            |              |                     |
| Isosafrole                                    | 120-58-1                     |                          |                          | 100          | 313            | U141         |                     |
| p-Cresidine                                   | 120-71-8                     |                          |                          |              | 313            |              |                     |
| Catechol                                      | 120-80-9                     |                          |                          | 100          | 313            |              |                     |
| 1,2,4-Trichlorobenzene                        | 120-82-1                     |                          |                          | 100          | 313            |              |                     |
| 2,4-Dichlorophenol                            | 120-83-2                     |                          |                          | 100          | 313            | U081         |                     |
| 2,4-Dinitrotoluene                            | 121-14-2                     |                          |                          | 10           | 313            | U105         |                     |
| Pyrethrins                                    | 121-21-1                     |                          |                          | 1            |                |              |                     |
| Pyrethrins                                    | 121-29-9                     |                          |                          | 1            |                |              |                     |
| Triethylamine                                 | 121-44-8                     |                          |                          | 5,000        | 313            | U404         |                     |
| N,N-Dimethylaniline                           | 121-69-7                     |                          |                          | 100          | 313            |              |                     |
| Malathion                                     | 121-75-5                     |                          |                          | 100          | 313            |              |                     |
| Benzeneethanamine, alpha,alpha-<br>dimethyl-  | 122-09-8                     |                          |                          | 5,000        |                | P046         |                     |
| Simazine                                      | 122-34-9                     |                          |                          |              | 313            |              |                     |
| Diphenylamine                                 | 122-39-4                     |                          |                          |              | 313            |              |                     |
| Propham                                       | 122-42-9                     |                          |                          | 1,000        |                | U373         |                     |
| 1,2-Diphenylhydrazine                         | 122-66-7                     |                          |                          | 10           | 313            | U109         |                     |
| Hydrazine, 1,2-diphenyl-                      | 122-66-7                     |                          |                          | 10           | Х              | U109         |                     |
| Hydrazobenzene                                | 122-66-7                     |                          |                          | 10           | Х              | U109         |                     |
| Hydroquinone                                  | 123-31-9                     | 500/10,000               | 100                      | 100          | 313            |              |                     |
| Maleic hydrazide                              | 123-33-1                     |                          |                          | 5,000        |                | U148         |                     |
| Propionaldehyde                               | 123-38-6                     |                          |                          | 1,000        | 313            |              |                     |
| 1,3-Phenylene diisocyanate                    | 123-61-5                     |                          |                          |              | 313#           |              |                     |
| Propionic anhydride                           | 123-62-6                     |                          |                          | 5,000        |                |              |                     |
| Paraldehyde                                   | 123-63-7                     |                          |                          | 1,000        |                | U182         |                     |
| Butyraldehyde                                 | 123-72-8                     |                          |                          |              | 313            |              |                     |
| 2-Butenal, (e)-                               | 123-73-9                     | 1,000                    | 100                      | 100          |                | U053         | 20,000              |
| Crotonaldehyde, (E)-                          | 123-73-9                     | 1,000                    | 100                      | 100          |                | U053         | 20,000              |
| Butyl acetate                                 | 123-86-4                     |                          |                          | 5,000        |                |              |                     |
| 1,4-Dioxane                                   | 123-91-1                     |                          |                          | 100          | 313            | U108         |                     |

| NAME                                                      | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-----------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| iso-Amyl acetate                                          | 123-92-2                     |                          |                          | 5,000        |                |              |                     |
| Adipic acid                                               | 124-04-9                     |                          |                          | 5,000        |                |              |                     |
| Dimethylamine                                             | 124-40-3                     |                          |                          | 1,000        | 313            | U092         | 10,000              |
| Methanamine, N-methyl-                                    | 124-40-3                     |                          |                          | 1,000        | Х              | U092         | 10,000              |
| Sodium methylate                                          | 124-41-4                     |                          |                          | 1,000        |                |              |                     |
| Chlorodibromomethane                                      | 124-48-1                     |                          |                          | 100          |                |              |                     |
| Sodium cacodylate                                         | 124-65-2                     | 100/10,000               | 100                      |              |                |              |                     |
| Dibromotetrafluoroethane                                  | 124-73-2                     |                          |                          |              | 313            |              |                     |
| Halon 2402                                                | 124-73-2                     |                          |                          |              | X              |              |                     |
| Picrotoxin                                                | 124-87-8                     | 500/10,000               | 500                      |              |                |              |                     |
| Tris(2,3-dibromopropyl) phosphate                         | 126-72-7                     | 000/10,000               |                          | 10           | 313            | U235         |                     |
| Methacrylonitrile                                         | 126-98-7                     | 500                      | 1,000                    |              | 313            | U152         | 10,000              |
| 2-Propenenitrile, 2-methyl-                               | 126-98-7                     | 500                      | 1,000                    |              | X              | U152         | 10,000              |
| Chloroprene                                               | 126-99-8                     | 500                      | 1,000                    | 1,000        | 313            | 5102         | 10,000              |
| Perchloroethylene                                         | 120-99-0                     |                          |                          | 100          | X              | U210         |                     |
| Tetrachloroethylene                                       | 127-18-4                     |                          |                          | 100          | 313            | U210         |                     |
| Zinc phenolsulfonate                                      | 127-10-4                     |                          |                          | 5,000        | 313c           | 0210         |                     |
| Potassium dimethyldithiocarbamate                         | 128-03-0                     |                          |                          | 3,000        | 313            |              |                     |
| Sodium dimethyldithiocarbamate                            | 128-03-0                     |                          |                          |              | 313            |              |                     |
| C.I. Vat Yellow 4                                         | 128-66-5                     |                          |                          |              | 313            |              |                     |
|                                                           |                              |                          | F 000                    | F 000        |                |              |                     |
| Pyrene                                                    |                              | 1,000/10,000             | 5,000                    |              |                |              |                     |
| Warfarin sodium                                           | 129-06-6                     | 100/10,000               | 100                      |              | 313c           | 114.00       |                     |
| 1,4-Naphthoquinone                                        | 130-15-4                     |                          |                          | 5,000        |                | U166         |                     |
| Dimethyl phthalate                                        | 131-11-3                     |                          |                          | 5,000        | 313            | U102         |                     |
| Sodium pentachlorophenate                                 | 131-52-2                     |                          |                          |              | 313            | <b>D</b> 000 |                     |
| Ammonium picrate                                          | 131-74-8                     |                          |                          | 10           |                | P009         |                     |
| 2-Cyclohexyl-4,6-dinitrophenol                            | 131-89-5                     |                          |                          | 100          |                | P034         |                     |
| Sodium o-phenylphenoxide                                  | 132-27-4                     |                          |                          |              | 313            |              |                     |
| Dibenzofuran                                              | 132-64-9                     |                          |                          | 100          | 313            |              |                     |
| Captan                                                    | 133-06-2                     |                          |                          | 10           |                |              |                     |
| 1H-Isoindole-1,3(2H)-dione,<br>3a,4,7,7a-tetrahydro-2-    | 133-06-2                     |                          |                          | 10           | X              |              |                     |
| [(trichloromethyl)thio]-<br>Folpet                        | 133-07-3                     |                          |                          |              | 313            |              |                     |
|                                                           | 133-90-4                     |                          |                          | 100          |                |              |                     |
| Benzoic acid, 3-amino-2,5-dichloro-                       |                              |                          |                          | 100          | X              |              |                     |
| Chloramben                                                | 133-90-4                     |                          |                          | 100          | 313            |              |                     |
| o-Anisidine hydrochloride                                 | 134-29-2                     |                          |                          | 100          | 313            | 1407         |                     |
| alpha-Naphthylamine<br>Benzeneamine, N-hydroxy-N-nitroso, | 134-32-7<br>135-20-6         |                          |                          | 100          | 313<br>X       | U167         |                     |
| ammonium salt<br>Cupferron                                | 135-20-6                     |                          |                          |              | 313            |              |                     |
| Dipropyl isocinchomeronate                                | 136-45-8                     |                          |                          |              | 313            |              |                     |
| Thiram                                                    | 137-26-8                     |                          |                          | 10           | 313            | U244         |                     |
| Ziram                                                     | 137-30-4                     | <u> </u>                 |                          | 10           |                | P205         |                     |
| Potassium N-methyldithiocarbamate                         | 137-41-7                     |                          |                          |              | 313            |              |                     |
| Metham sodium                                             | 137-42-8                     |                          |                          |              | 313            |              |                     |
| Sodium methyldithiocarbamate                              | 137-42-8                     |                          |                          |              | X              |              |                     |
| Disodium cyanodithioimidocarbonate                        | 138-93-2                     |                          |                          |              | 313            |              |                     |
| Nitrilotriacetic acid                                     | 139-13-9                     |                          |                          |              | 313            |              |                     |

| NAME                                               | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 3,3'-Dimethyldiphenylmethane-4,4'-<br>diisocyanate | 139-25-3                     |                          |                          |              | 313#           |              |                     |
| 4,4'-Thiodianiline                                 | 139-65-1                     |                          |                          |              | 313            |              |                     |
| Benzyl cyanide                                     | 140-29-4                     | 500                      | 500                      |              |                |              |                     |
| Pyridine, 2-methyl-5-vinyl-                        | 140-76-1                     | 500                      | 500                      |              |                |              |                     |
| Ethyl acrylate                                     | 140-88-5                     |                          |                          | 1,000        | 313            | U113         |                     |
| Butyl acrylate                                     | 141-32-2                     |                          |                          |              | 313            |              |                     |
| Dicrotophos                                        | 141-66-2                     | 100                      | 100                      |              |                |              |                     |
| Ethyl acetate                                      | 141-78-6                     |                          |                          | 5,000        |                | U112         |                     |
| 1,3-Dichloropropane                                | 142-28-9                     |                          |                          | 1,000        |                |              |                     |
| Nabam                                              | 142-59-6                     |                          |                          |              | 313            |              |                     |
| Cupric acetate                                     | 142-71-2                     |                          |                          | 100          | 313c           |              |                     |
| Dipropylamine                                      | 142-84-7                     |                          |                          | 5,000        |                | U110         |                     |
| Sodium cyanide (Na(CN))                            | 143-33-9                     | 100                      | 10                       | 10           | 313c           | P106         |                     |
| Kepone                                             | 143-50-0                     |                          |                          | 1            |                | U142         |                     |
| Fluoroacetic acid                                  | 144-49-0                     | 10/10,000                | 10                       |              |                |              |                     |
| Endothall                                          | 145-73-3                     |                          |                          | 1,000        |                | P088         |                     |
| Thiabendazole                                      | 148-79-8                     |                          |                          | ,            | 313            |              |                     |
| 2-(4-Thiazolyl)-1H-benzimidazole                   | 148-79-8                     |                          |                          |              | Х              |              |                     |
| Melphalan                                          | 148-82-3                     |                          |                          | 1            |                | U150         |                     |
| MBT                                                | 149-30-4                     |                          |                          |              | Х              |              |                     |
| 2-Mercaptobenzothiazole                            | 149-30-4                     |                          |                          |              | 313            |              |                     |
| Dichloromethylphenylsilane                         | 149-74-6                     | 1,000                    | 1,000                    |              |                |              |                     |
| Merphos                                            | 150-50-5                     | .,                       | .,                       |              | 313            |              |                     |
| Monuron                                            | 150-68-5                     |                          |                          |              | 313            |              |                     |
| Methoxyethylmercuric acetate                       | 151-38-2                     | 500/10,000               | 500                      |              | 313c           |              |                     |
| Potassium cyanide                                  | 151-50-8                     | 100                      |                          | 10           | 313c           | P098         |                     |
| Aziridine                                          | 151-56-4                     | 500                      |                          | 1            | X              | P054         | 10,000              |
| Ethyleneimine                                      | 151-56-4                     | 500                      |                          | 1            | 313            | P054         | 10,000              |
| Diphosphoramide, octamethyl-                       | 152-16-9                     | 100                      | 100                      | 100          |                | P085         | -,                  |
| p-Nitrosodiphenylamine                             | 156-10-5                     |                          |                          |              | 313            |              |                     |
| 1,2-Dichloroethylene                               | 156-60-5                     |                          |                          | 1,000        |                | U079         |                     |
| Calcium cyanamide                                  | 156-62-7                     |                          |                          | 1,000        |                |              |                     |
| Benzo(rst)pentaphene                               | 189-55-9                     |                          |                          | 10           |                | U064         |                     |
| Dibenz[a,i]pyrene                                  | 189-55-9                     |                          |                          | 10           | X              | U064         |                     |
| Dibenzo(a,h)pyrene                                 | 189-64-0                     |                          |                          | _            | 313+           |              |                     |
| Benzo[g,h,i]perylene                               | 191-24-2                     |                          |                          | 5,000        | 313            |              |                     |
| Dibenzo(a,l)pyrene                                 | 191-30-0                     |                          |                          | -,           | 313+           |              |                     |
| Dibenzo(a,e)pyrene                                 | 192-65-4                     |                          |                          |              | 313+           |              |                     |
| Indeno(1,2,3-cd)pyrene                             | 193-39-5                     |                          |                          | 100          | 313+           | U137         |                     |
| 7H-Dibenzo(c,g)carbazole                           | 194-59-2                     |                          |                          |              | 313+           | • • • •      |                     |
| Benzo(j)fluoranthene                               | 205-82-3                     |                          |                          |              | 313+           |              |                     |
| Benzo[b]fluoranthene                               | 205-99-2                     |                          |                          | 1            | 313+           |              |                     |
| Fluoranthene                                       | 206-44-0                     |                          |                          | 100          | X              | U120         |                     |
| Benzo(k)fluoranthene                               | 207-08-9                     | <u> </u>                 |                          | 5,000        | 313+           |              |                     |
| Acenaphthylene                                     | 208-96-8                     |                          |                          | 5,000        |                |              |                     |
| Benzo(a)phenanthrene                               | 218-01-9                     |                          |                          | 100          | 313+           | U050         |                     |
| Chrysene                                           | 218-01-9                     |                          |                          | 100          |                | U050         |                     |

| NAME                                                                                                                                                   | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Dibenz(a,j)acridine                                                                                                                                    | 224-42-0                     |                          |                          |              | 313+           |              |                     |
| Benz[c]acridine                                                                                                                                        | 225-51-4                     |                          |                          | 100          | 0101           | U016         |                     |
| Dibenz(a,h)acridine                                                                                                                                    | 226-36-8                     |                          |                          | 100          | 313+           | 0010         |                     |
| Isobenzan                                                                                                                                              | 297-78-9                     |                          | 100                      |              | 010.           |              |                     |
| O,O-Diethyl O-pyrazinyl                                                                                                                                | 297-97-2                     | 500                      | 100                      | 100          |                | P040         |                     |
| phosphorothioate                                                                                                                                       | 291-91-2                     | 500                      | 100                      | 100          |                | F 040        |                     |
| Thionazin                                                                                                                                              | 297-97-2                     | 500                      | 100                      | 100          |                | P040         |                     |
| Methyl parathion                                                                                                                                       | 298-00-0                     |                          | 100                      | 100          | 313            | P071         |                     |
| Parathion-methyl                                                                                                                                       | 298-00-0                     |                          | 100                      | 100          | X              | P071         |                     |
| Phorate                                                                                                                                                | 298-02-2                     | 100/10,000               | 100                      | 100          | ~              | P094         |                     |
| Disulfoton                                                                                                                                             | 298-02-2                     | 500                      | 10                       | 10           |                | P094         |                     |
|                                                                                                                                                        |                              |                          |                          | I            |                | F039         |                     |
| Amphetamine                                                                                                                                            | 300-62-9                     | 1,000                    | 1,000                    | 40           | 040            |              |                     |
| Naled                                                                                                                                                  | 300-76-5                     |                          |                          | 10           | 313            |              |                     |
| Lead acetate                                                                                                                                           | 301-04-2                     |                          |                          | 10           |                | U144         |                     |
| S-(2-(Ethylsulfinyl)ethyl) O,O-dimethyl                                                                                                                | 301-12-2                     |                          |                          |              | Х              |              |                     |
| ester phosphorothioic acid                                                                                                                             |                              |                          |                          |              | 0.1.0          |              |                     |
| Oxydemeton methyl                                                                                                                                      | 301-12-2                     |                          |                          |              | 313            |              |                     |
| Hydrazine                                                                                                                                              | 302-01-2                     | 1,000                    | 1                        | 1            | 313            | U133         | 15,000              |
| Lasiocarpine                                                                                                                                           | 303-34-4                     |                          |                          | 10           |                | U143         |                     |
| Chlorambucil                                                                                                                                           | 305-03-3                     |                          |                          | 10           |                | U035         |                     |
| 2,2-Dichloro-1,1,1-trifluoroethane                                                                                                                     | 306-83-2                     |                          |                          |              | 313            |              |                     |
| HCFC-123                                                                                                                                               | 306-83-2                     |                          |                          |              | Х              |              |                     |
| Aldrin                                                                                                                                                 | 309-00-2                     | 500/10,000               | 1                        | 1            | 313            | P004         |                     |
| 1,4:5,8-Dimethanonaphthalene,<br>1,2,3,4,10,10-hexachloro-<br>1,4,4a,5,8,8a-hexahydro-<br>(1.alpha.,4.alpha.,4a.beta.,5.alpha.,8.<br>alpha.,8a.beta.)- | 309-00-2                     | 500/10,000               | 1                        | 1            | Х              | P004         |                     |
| Diethyl-p-nitrophenyl phosphate                                                                                                                        | 311-45-5                     |                          |                          | 100          |                | P041         |                     |
| Bromacil                                                                                                                                               | 314-40-9                     |                          |                          |              | 313            |              |                     |
| 5-Bromo-6-methyl-3-(1-methylpropyl)-<br>2,4-(1H,3H)-pyrimidinedione                                                                                    | 314-40-9                     |                          |                          |              | Х              |              |                     |
| Mexacarbate                                                                                                                                            | 315-18-4                     | 500/10,000               | 1,000                    | 1,000        |                | P128         |                     |
| Emetine, dihydrochloride                                                                                                                               | 316-42-7                     | 1/10,000                 | 1                        |              |                |              |                     |
| alpha-BHC                                                                                                                                              | 319-84-6                     |                          |                          | 10           | Х              |              |                     |
| alpha-Hexachlorocyclohexane                                                                                                                            | 319-84-6                     |                          |                          | 10           | 313            |              |                     |
| beta-BHC                                                                                                                                               | 319-85-7                     |                          |                          | 1            |                |              |                     |
| delta-BHC                                                                                                                                              | 319-86-8                     |                          |                          | 1            |                |              |                     |
| Trichloronate                                                                                                                                          | 327-98-0                     |                          | 500                      |              |                |              |                     |
| 2,5-Dinitrophenol                                                                                                                                      | 329-71-5                     |                          | 500                      | 10           |                |              |                     |
| Diuron                                                                                                                                                 | 330-54-1                     |                          |                          | 100          |                |              |                     |
|                                                                                                                                                        | 330-54-1                     |                          |                          | 100          | 313            |              |                     |
| Linuron                                                                                                                                                |                              |                          |                          | 4            |                |              |                     |
| Diazinon                                                                                                                                               | 333-41-5                     |                          |                          | 1            | 313            |              |                     |
| Diazomethane                                                                                                                                           | 334-88-3                     |                          | 4 000                    | 100          | 313            |              | 45.000              |
| Boron trifluoride compound with methyl ether (1:1)                                                                                                     | 353-42-4                     | 1,000                    | 1,000                    |              |                |              | 15,000              |
| Boron, trifluoro[oxybis[methane]]-, (T-<br>4)-                                                                                                         | 353-42-4                     | 1,000                    | 1,000                    |              |                |              | 15,000              |
| Carbonic difluoride                                                                                                                                    | 353-50-4                     |                          |                          | 1,000        |                | U033         |                     |
| Bromochlorodifluoromethane                                                                                                                             | 353-59-3                     |                          |                          |              | 313            |              |                     |

| NAME                                  | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|---------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Halon 1211                            | 353-59-3                     |                          |                          |              | Х              |              |                     |
| HCFC-121a                             | 354-11-0                     |                          |                          |              | Х              |              |                     |
| 1,1,1,2-Tetrachloro-2-fluoroethane    | 354-11-0                     |                          |                          |              | 313            |              |                     |
| HCFC-121                              | 354-14-3                     |                          |                          |              | X              |              |                     |
| 1,1,2,2-Tetrachloro-1-fluoroethane    | 354-14-3                     |                          |                          |              | 313            |              |                     |
| 1,2-Dichloro-1,1,2-trifluoroethane    | 354-23-4                     |                          |                          |              | 313            |              |                     |
| HCFC-123a                             | 354-23-4                     |                          |                          |              | X              |              |                     |
| 1-Chloro-1,1,2,2-tetrafluoroethane    | 354-25-6                     |                          |                          |              | 313            |              |                     |
| HCFC-124a                             | 354-25-6                     |                          |                          |              | X              |              |                     |
| Brucine                               | 357-57-3                     |                          |                          | 100          | 313            | P018         |                     |
| Fluoroacetyl chloride                 | 359-06-8                     | 10                       | 10                       | 100          | 010            | 1 010        |                     |
| Ethylene fluorohydrin                 | 371-62-0                     | 10                       | 10                       |              |                |              |                     |
| Ergotamine tartrate                   | 379-79-3                     | -                        | 500                      |              |                |              |                     |
| 1,2-Dichloro-1,1,2,3,3-               | 422-44-6                     | 300/10,000               | 500                      |              | 313            |              |                     |
| pentafluoropropane                    | 422-44-0                     |                          |                          |              | 515            |              |                     |
| HCFC-225bb                            | 422-44-6                     |                          |                          |              | Х              |              |                     |
| 2,3-Dichloro-1,1,1,2,3-               | 422-48-0                     |                          |                          |              | 313            |              |                     |
| pentafluoropropane                    | 422-40-0                     |                          |                          |              | 010            |              |                     |
| HCFC-225ba                            | 422-48-0                     |                          |                          |              | Х              |              |                     |
| 3,3-Dichloro-1,1,1,2,2-               | 422-56-0                     |                          |                          |              | 313            |              |                     |
| pentafluoropropane                    |                              |                          |                          |              |                |              |                     |
| HCFC-225ca                            | 422-56-0                     |                          |                          |              | Х              |              |                     |
| 1,2-Dichloro-1,1,3,3,3-               | 431-86-7                     |                          |                          |              | 313            |              |                     |
| pentafluoropropane                    |                              |                          |                          |              |                |              |                     |
| HCFC-225da                            | 431-86-7                     |                          |                          |              | Х              |              |                     |
| Cyanogen                              | 460-19-5                     |                          |                          | 100          |                | P031         | 10,000              |
| Ethanedinitrile                       | 460-19-5                     |                          |                          | 100          |                | P031         | 10,000              |
| 3-Chloro-1,1,1-trifluoropropane       | 460-35-5                     |                          |                          |              | 313            |              |                     |
| HCFC-253fb                            | 460-35-5                     |                          |                          |              | Х              |              |                     |
| 1,2-Propadiene                        | 463-49-0                     |                          |                          |              |                |              | 10,000              |
| Propadiene                            | 463-49-0                     |                          |                          |              |                |              | 10,000              |
| Carbon oxide sulfide (COS)            | 463-58-1                     |                          |                          | 100          | Х              |              | 10,000              |
| Carbonyl sulfide                      | 463-58-1                     |                          |                          | 100          | 313            |              | 10,000              |
| 2,2-Dimethylpropane                   | 463-82-1                     |                          |                          |              |                |              | 10,000              |
| Propane, 2,2-dimethyl-                | 463-82-1                     |                          |                          |              |                |              | 10,000              |
| Isodrin                               | 465-73-6                     | 100/10,000               | 1                        | 1            | 313            | P060         | ,                   |
| Chlorfenvinfos                        | 470-90-6                     |                          | 500                      |              |                |              |                     |
| Auramine                              | 492-80-8                     |                          |                          | 100          | Х              | U014         |                     |
| C.I. Solvent Yellow 34                | 492-80-8                     |                          |                          | 100          |                | U014         |                     |
| Chlornaphazine                        | 494-03-1                     |                          |                          | 100          | 010            | U026         |                     |
| Diaminotoluene                        | 496-72-0                     |                          |                          | 100          |                | U221         |                     |
| Methylmercuric dicyanamide            | 502-39-6                     |                          | 500                      | 10           | 313c           | 5221         |                     |
|                                       | 504-24-5                     |                          |                          | 1,000        | 3130           | P008         |                     |
| 4-Aminopyridine<br>Pyridine, 4-amino- | 504-24-5                     |                          |                          | 1,000        |                | P008         |                     |
| 1,3-Pentadiene                        |                              |                          | 1,000                    | 1,000        |                | U186         | 10.000              |
|                                       | 504-60-9                     |                          | E00                      | 100          |                | 0100         | 10,000              |
| Ethane, 1,1'-thiobis[2-chloro-        | 505-60-2                     |                          | 500                      |              | X              |              |                     |
| Mustard gas                           | 505-60-2                     | 500                      | 500                      |              | 313            | DOOG         |                     |
| Potassium silver cyanide              | 506-61-6                     | 500                      | 1                        | 1            | 313c           | P099         |                     |
| Silver cyanide                        | 506-64-9                     |                          |                          | 1            | 313c           | P104         |                     |

| NAME                                                                               | CAS/313<br>Category | Section 302<br>(EHS) TPQ | 304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r) |
|------------------------------------------------------------------------------------|---------------------|--------------------------|---------|--------------|----------------|--------------|---------------|
|                                                                                    | Codes               |                          | RQ      |              |                |              | TQ            |
| Cyanogen bromide                                                                   | 506-68-3            | 500/10,000               | 1,000   |              |                | U246         |               |
| Cyanogen chloride                                                                  | 506-77-4            | 4 0 0 0 4 0 0 0 0        | 1 0 0 0 | 10           |                | P033         | 10,000        |
| Cyanogen iodide                                                                    |                     | 1,000/10,000             | 1,000   |              | 313c           |              |               |
| Ammonium carbonate                                                                 | 506-87-6            |                          |         | 5,000        |                |              |               |
| Acetyl bromide                                                                     | 506-96-7            |                          |         | 5,000        |                |              |               |
| 1,3-Dichloro-1,1,2,2,3-                                                            | 507-55-1            |                          |         |              | 313            |              |               |
| pentafluoropropane                                                                 |                     |                          |         |              | X              |              |               |
| HCFC-225cb                                                                         | 507-55-1            |                          |         | 10           | X              | 5446         | 40.000        |
| Methane, tetranitro-                                                               | 509-14-8            | 500                      |         | 10           | 0.10           | P112         | 10,000        |
| Tetranitromethane                                                                  | 509-14-8            | 500                      | 10      |              |                | P112         | 10,000        |
| Benzeneacetic acid, 4-chloroalpha<br>(4-chlorophenyl)alphahydroxy-,<br>ethyl ester | 510-15-6            |                          |         | 10           | X              | U038         |               |
| Chlorobenzilate                                                                    | 510-15-6            |                          |         | 10           | 313            | U038         |               |
| sec-Butylamine                                                                     | 513-49-5            |                          |         | 1,000        |                |              |               |
| Dithiazanine iodide                                                                | 514-73-8            | 500/10,000               | 500     |              |                |              |               |
| o-Dinitrobenzene                                                                   | 528-29-0            |                          |         | 100          | 313            |              |               |
| 2-Chloroacetophenone                                                               | 532-27-4            |                          |         | 100          | 313            |              |               |
| Dazomet                                                                            | 533-74-4            |                          |         |              | 313            |              |               |
| Tetrahydro-3,5-dimethyl-2H-1,3,5-<br>thiadiazine-2-thione                          | 533-74-4            |                          |         |              | X              |              |               |
| Bis(chloromethyl) ketone                                                           | 534-07-6            | 10/10,000                | 10      |              |                |              |               |
| 4,6-Dinitro-o-cresol                                                               | 534-52-1            | 10/10,000                | 10      | 10           | 313            | P047         |               |
| Dinitrocresol                                                                      | 534-52-1            | 10/10,000                | 10      | 10           | Х              | P047         |               |
| 4,6-Dinitro-o-cresol and salts                                                     | 534-52-1            |                          |         | 10           |                | P047         |               |
| Crimidine                                                                          | 535-89-7            | 100/10,000               | 100     |              |                |              |               |
| Ethylbis(2-chloroethyl)amine                                                       | 538-07-8            | 500                      | 500     |              |                |              |               |
| 1,2-Dichloroethylene                                                               | 540-59-0            |                          |         |              | 313            |              |               |
| Hydrazine, 1,2-dimethyl-                                                           | 540-73-8            |                          |         | 1            |                | U099         |               |
| 2,2,4-Trimethylpentane                                                             | 540-84-1            |                          |         | 1,000        |                |              |               |
| tert-Butyl acetate                                                                 | 540-88-5            |                          |         | 5,000        |                |              |               |
| Uranyl acetate                                                                     | 541-09-3            |                          |         | 100          |                |              |               |
| Lewisite                                                                           | 541-25-3            | 10                       | 10      |              |                |              |               |
| Ethyl chloroformate                                                                | 541-41-3            |                          |         |              | 313            |              |               |
| Dithiobiuret                                                                       | 541-53-7            | 100/10,000               | 100     | 100          | Х              | P049         |               |
| 2,4-Dithiobiuret                                                                   | 541-53-7            | 100/10,000               |         | 100          | 313            | P049         |               |
| 1,3-Dichlorobenzene                                                                | 541-73-1            | ,                        |         | 100          | 313            | U071         |               |
| Barium cyanide                                                                     | 542-62-1            |                          |         | 10           | 313c           | P013         |               |
| 1,3-Dichloropropene                                                                | 542-75-6            |                          |         | 100          | X              | U084         |               |
| 1,3-Dichloropropylene                                                              | 542-75-6            |                          |         | 100          | 313            | U084         |               |
| 3-Chloropropionitrile                                                              | 542-76-7            | 1,000                    | 1,000   |              | 313            | P027         |               |
| Propionitrile, 3-chloro-                                                           | 542-76-7            | 1,000                    |         |              | X              | P027         |               |
| Bis(chloromethyl) ether                                                            | 542-88-1            | 100                      | 10      | 10           |                | P016         | 1,000         |
| Chloromethyl ether                                                                 | 542-88-1            | 100                      | 10      | 10           | X              | P016         | 1,000         |
| Dichloromethyl ether                                                               | 542-88-1            | 100                      | 10      | 10           |                | P016         | 1,000         |
| Methane, oxybis[chloro-                                                            | 542-88-1            | 100                      |         |              |                | P016         | 1,000         |
| Ethylthiocyanate                                                                   | 542-90-5            | 10,000                   |         |              |                |              | 1,000         |
| Cadmium acetate                                                                    | 543-90-8            |                          | 10,000  | 10           | 313c           |              |               |
| Cobaltous formate                                                                  | 544-18-3            |                          |         | 1,000        | 313c           |              |               |

| NAME                                 | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|--------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Copper cyanide                       | 544-92-3                     |                          |                          | 10           | 313c           | P029         |                     |
| Lithium carbonate                    | 554-13-2                     |                          |                          |              | 313            |              |                     |
| m-Nitrophenol                        | 554-84-7                     |                          |                          | 100          |                |              |                     |
| Tris(2-chloroethyl)amine             | 555-77-1                     | 100                      | 100                      |              |                |              |                     |
| Glycidol                             | 556-52-5                     |                          |                          |              | 313            |              |                     |
| Isothiocyanatomethane                | 556-61-6                     | 500                      | 500                      |              | Х              |              |                     |
| Methyl isothiocyanate                | 556-61-6                     | 500                      | 500                      |              | 313            |              |                     |
| Methyl thiocyanate                   | 556-64-9                     | 10,000                   |                          |              |                |              | 20,000              |
| Thiocyanic acid, methyl ester        | 556-64-9                     | 10,000                   |                          |              |                |              | 20,000              |
| Nickel cyanide                       | 557-19-7                     | -,                       | -,                       | 10           | 313c           | P074         | -,                  |
| Zinc cyanide                         | 557-21-1                     |                          |                          | 10           |                | P121         |                     |
| Zinc acetate                         | 557-34-6                     |                          |                          | 1,000        |                |              |                     |
| Zinc formate                         | 557-41-5                     |                          |                          | 1,000        |                |              |                     |
| 2-Chloropropylene                    | 557-98-2                     |                          |                          | .,           | 0.00           |              | 10,000              |
| 1-Propene, 2-chloro-                 | 557-98-2                     |                          |                          |              |                |              | 10,000              |
| Methanesulfonyl fluoride             | 558-25-8                     | 1,000                    | 1,000                    |              |                |              | 10,000              |
| Ethion                               | 563-12-2                     | 1,000                    | ,                        | 10           |                |              |                     |
| Semicarbazide hydrochloride          |                              | 1,000/10,000             |                          |              |                |              |                     |
| 3-Methyl-1-butene                    | 563-45-1                     | 1,000/10,000             | 1,000                    |              |                |              | 10,000              |
| 2-Methyl-1-butene                    | 563-46-2                     |                          |                          |              |                |              | 10,000              |
| 3-Chloro-2-methyl-1-propene          | 563-47-3                     |                          |                          |              | 313            |              | 10,000              |
| Thallium(I) acetate                  | 563-68-8                     |                          |                          | 100          | 313c           | U214         |                     |
| C.I. Basic Green 4                   | 569-64-2                     |                          |                          | 100          | 313            | 0214         |                     |
| 2,6-Dinitrophenol                    | 573-56-8                     |                          |                          | 10           |                |              |                     |
| Benzene, 2,4-diisocyanato-1-methyl-  | 584-84-9                     | 500                      | 100                      |              | x              |              | 10.000              |
| Toluene-2,4-diisocyanate             | 584-84-9                     | 500                      |                          |              | 313            |              | 10,000<br>10,000    |
| 2-Butene-cis                         | 590-18-1                     | 500                      | 100                      | 100          | 313            |              | 10,000              |
| 1-Chloropropylene                    | 590-18-1                     |                          |                          |              |                |              | 10,000              |
| 1-Propene, 1-chloro-                 | 590-21-6                     |                          |                          |              |                |              | 10,000              |
|                                      |                              |                          |                          | 1 000        |                | 0000         | 10,000              |
| 1-Acetyl-2-thiourea                  | 591-08-2                     |                          |                          | 1,000        |                | P002         |                     |
| Calcium cyanide                      | 592-01-8                     |                          |                          | 10           |                | P021         |                     |
| Mercuric cyanide                     | 592-04-1                     |                          |                          | 1            |                |              |                     |
| Mercuric thiocyanate                 | 592-85-8                     |                          |                          | 10           |                |              |                     |
| Lead thiocyanate                     | 592-87-0                     |                          |                          | 10           | 313c           |              |                     |
| Vinyl bromide                        | 593-60-2                     | 500                      | 100                      | 100          |                |              | 40.000              |
| Methanesulfenyl chloride, trichloro- | 594-42-3                     |                          |                          |              | X              |              | 10,000              |
| Perchloromethyl mercaptan            | 594-42-3                     |                          |                          |              | 313            |              | 10,000              |
| Trichloromethanesulfenyl chloride    | 594-42-3                     |                          |                          | 100          | Х              |              | 10,000              |
| Tetraethyltin                        | 597-64-8                     | 100                      | 100                      |              |                | D0/7         |                     |
| Bromoacetone                         | 598-31-2                     |                          |                          | 1,000        |                | P017         | 40.000              |
| Bromotrifluoroethylene               | 598-73-2                     |                          |                          |              |                |              | 10,000              |
| Ethene, bromotrifluoro-              | 598-73-2                     |                          |                          |              | 0.10           | 114.00       | 10,000              |
| 2,6-Dinitrotoluene                   | 606-20-2                     |                          |                          | 100          | 313            | U106         |                     |
| Hexachlorocyclohexane (all isomers)  | 608-73-1                     |                          |                          | &            |                |              |                     |
| Pentachlorobenzene                   | 608-93-5                     |                          |                          | 10           |                | U183         |                     |
| 3,4,5-Trichlorophenol                | 609-19-8                     |                          |                          | 10           |                |              |                     |
| 3,4-Dinitrotoluene                   | 610-39-9                     |                          |                          | 10           |                |              |                     |
| 3,3'-Dimethylbenzidine               | 612-82-8                     |                          |                          |              | 313            |              |                     |

| NAME                                   | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| dihydrochloride                        | 00000                        |                          |                          |              |                |              | 1 Q                 |
| o-Tolidine dihydrochloride             | 612-82-8                     |                          |                          |              | х              |              |                     |
| 3,3'-Dichlorobenzidine dihydrochloride | 612-83-9                     |                          |                          |              | 313            |              |                     |
| Thiourea, (2-methylphenyl)-            | 614-78-8                     | 500/10,000               | 500                      |              | 515            |              |                     |
| 2,4-Diaminoanisole                     | 615-05-4                     | 300/10,000               | 500                      |              | 313            |              |                     |
| 1,2-Phenylenediamine dihydrochloride   | 615-28-1                     |                          |                          |              | 313            |              |                     |
| N-Nitroso-N-methylurethane             | 615-53-2                     |                          |                          | 1            | 515            | U178         |                     |
| Di-n-propylnitrosamine                 | 621-64-7                     |                          |                          | 10           | X              | U111         |                     |
| N-Nitrosodi-n-propylamine              | 621-64-7                     |                          |                          | 10           | 313            | U111         |                     |
| 1,4-Phenylenediamine dihydrochloride   | 624-18-0                     |                          |                          | 10           | 313            | 0111         |                     |
| 2-Butene, (E)                          | 624-18-0                     |                          |                          |              | 313            |              | 10.000              |
| 2-Butene, (C)<br>2-Butene-trans        | 624-64-6                     |                          |                          |              |                |              | 10,000              |
|                                        |                              | 500                      | 10                       | 10           | v              | D064         | 10,000              |
| Methane, isocyanato-                   | 624-83-9                     | 500                      | 10                       |              | X              | P064         | 10,000              |
| Methyl isocyanate                      | 624-83-9                     | 500                      | 10                       | 10           | 313            | P064         | 10,000              |
| tert-Amyl acetate                      | 625-16-1                     |                          |                          | 5,000        |                |              |                     |
| sec-Amyl acetate                       | 626-38-0                     | 1 000                    | 4 000                    | 5,000        |                |              |                     |
| Chloroethyl chloroformate              | 627-11-2                     | 1,000                    | 1,000                    |              |                |              | 40.000              |
| 2-Pentene, (Z)-                        | 627-20-3                     |                          |                          | 5 000        |                |              | 10,000              |
| Amyl acetate                           | 628-63-7                     |                          |                          | 5,000        |                |              |                     |
| Mercury fulminate                      | 628-86-4                     |                          |                          | 10           | 313c           | P065         |                     |
| Selenourea                             | 630-10-4                     |                          |                          | 1,000        |                | P103         |                     |
| Ethane, 1,1,1,2-tetrachloro-           | 630-20-6                     |                          |                          | 100          | X              | U208         |                     |
| 1,1,1,2-Tetrachloroethane              | 630-20-6                     |                          |                          | 100          | 313            | U208         |                     |
| Ouabain                                | 630-60-4                     | 100/10,000               | 100                      |              |                |              |                     |
| Ammonium acetate                       | 631-61-8                     |                          |                          | 5,000        |                |              |                     |
| o-Toluidine hydrochloride              | 636-21-5                     |                          |                          | 100          | 313            | U222         |                     |
| Triphenyltin chloride                  | 639-58-7                     | 500/10,000               | 500                      |              | 313            |              |                     |
| Fluoroacetamide                        | 640-19-7                     | 100/10,000               | 100                      | 100          |                | P057         |                     |
| Dimetilan                              | 644-64-4                     | 500/10,000               | 1                        | 1            |                | P191         |                     |
| 2-Pentene, (E)-                        | 646-04-8                     |                          |                          |              |                |              | 10,000              |
| Cyanuric fluoride                      | 675-14-9                     |                          |                          |              | 313c           |              |                     |
| Methyl phosphonic dichloride           | 676-97-1                     | 100                      | 100                      |              |                |              |                     |
| Hexamethylphosphoramide                | 680-31-9                     |                          |                          | 1            | 313            |              |                     |
| N-Nitroso-N-methylurea                 | 684-93-5                     |                          |                          | 1            | 313            | U177         |                     |
| 1-Buten-3-yne                          | 689-97-4                     |                          |                          |              |                |              | 10,000              |
| Vinyl acetylene                        | 689-97-4                     |                          |                          |              |                |              | 10,000              |
| Diethylarsine                          | 692-42-2                     |                          |                          | 1            |                | P038         |                     |
| Dichlorophenylarsine                   | 696-28-6                     | 500                      | 1                        | 1            |                | P036         |                     |
| Phenyl dichloroarsine                  | 696-28-6                     | 500                      | 1                        | 1            |                | P036         |                     |
| N-(3,4-Dichlorophenyl)propanamide      | 709-98-8                     |                          |                          |              | Х              |              |                     |
| Propanil                               | 709-98-8                     |                          |                          |              | 313            |              |                     |
| Hexaethyl tetraphosphate               | 757-58-4                     |                          |                          | 100          |                | P062         |                     |
| N-Nitroso-N-ethylurea                  | 759-73-9                     |                          |                          | 1            | 313            | U176         |                     |
| EPTC                                   | 759-94-4                     |                          |                          |              | Х              |              |                     |
| Ethyl dipropylthiocarbamate            | 759-94-4                     |                          |                          |              | 313            |              |                     |
| Methacrylic anhydride                  | 760-93-0                     | 500                      | 500                      |              |                |              |                     |
| 2-Butene, 1,4-dichloro-                | 764-41-0                     |                          |                          | 1            | Х              | U074         |                     |
| 1,4-Dichloro-2-butene                  | 764-41-0                     |                          |                          | 1            | 313            | U074         |                     |

| NAME                                                                          | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Glycidylaldehyde                                                              | 765-34-4                     |                          |                          | 10           |                | U126         |                     |
| Carbophenothion                                                               | 786-19-6                     | 500                      | 500                      |              |                |              |                     |
| 1,1-Dichloro-1,2,2-trifluoroethane                                            | 812-04-4                     |                          |                          |              | 313            |              |                     |
| HCFC-123b                                                                     | 812-04-4                     |                          |                          |              | Х              |              |                     |
| Diethyl chlorophosphate                                                       | 814-49-3                     | 500                      | 500                      |              |                |              |                     |
| Acrylyl chloride                                                              | 814-68-6                     | 100                      | 100                      |              |                |              | 5,000               |
| 2-Propenoyl chloride                                                          | 814-68-6                     | 100                      | 100                      |              |                |              | 5,000               |
| Cupric tartrate                                                               | 815-82-7                     |                          |                          | 100          | 313c           |              | -,                  |
| Hexamethylene-1,6-diisocyanate                                                | 822-06-0                     |                          |                          | 100          | 313#           |              |                     |
| Diaminotoluene                                                                | 823-40-5                     |                          |                          | 10           |                | U221         |                     |
| Trimethylolpropane phosphite                                                  | 824-11-3                     | 100/10,000               | 100                      |              |                |              |                     |
| Ametryn                                                                       | 834-12-8                     |                          |                          |              | 313            |              |                     |
| N-Ethyl-N'-(1-methylethyl)-6-<br>(methylthio)-1,3,5,-triazine-2,4-<br>diamine | 834-12-8                     |                          |                          |              | X              |              |                     |
| C.I. Solvent Yellow 14                                                        | 842-07-9                     |                          |                          |              | 313            |              |                     |
| N-Methyl-2-pyrrolidone                                                        | 872-50-4                     |                          |                          |              | 313            |              |                     |
| Stannane, acetoxytriphenyl-                                                   | 900-95-8                     | 500/10,000               | 500                      |              |                |              |                     |
| Demeton-S-methyl                                                              | 919-86-8                     | 500                      | 500                      |              |                |              |                     |
| Methacryloyl chloride                                                         | 920-46-7                     | 100                      | 100                      |              |                |              |                     |
| N-Nitrosodi-n-butylamine                                                      | 924-16-3                     |                          |                          | 10           | 313            | U172         |                     |
| N-Methylolacrylamide                                                          | 924-42-5                     |                          |                          |              | 313            |              |                     |
| N-Nitrosopyrrolidine                                                          | 930-55-2                     |                          |                          | 1            |                | U180         |                     |
| 2,3,6-Trichlorophenol                                                         | 933-75-5                     |                          |                          | 10           | 313c           |              |                     |
| 2,3,5-Trichlorophenol                                                         | 933-78-8                     |                          |                          | 10           | 313c           |              |                     |
| Fonofos                                                                       | 944-22-9                     | 500                      | 500                      |              |                |              |                     |
| Phosfolan                                                                     | 947-02-4                     | 100/10,000               | 100                      |              |                |              |                     |
| Mephosfolan                                                                   | 950-10-7                     | 500                      | 500                      |              |                |              |                     |
| Methidathion                                                                  | 950-37-8                     | 500/10,000               | 500                      |              |                |              |                     |
| Diphenamid                                                                    | 957-51-7                     |                          |                          |              | 313            |              |                     |
| alpha - Endosulfan                                                            | 959-98-8                     |                          |                          | 1            |                |              |                     |
| Phosphoric acid, 2-chloro-1-(2,3,5-                                           | 961-11-5                     |                          |                          |              | Х              |              |                     |
| trichlorophenyl) ethenyl dimethyl ester                                       |                              |                          |                          |              |                |              |                     |
| Tetrachlorvinphos                                                             | 961-11-5                     |                          |                          |              | 313            |              |                     |
| C.I. Basic Red 1                                                              | 989-38-8                     |                          |                          |              | 313            |              |                     |
| Norbormide                                                                    | 991-42-4                     | 100/10,000               | 100                      |              |                |              |                     |
| Triethoxysilane                                                               | 998-30-1                     | 500                      | 500                      |              |                |              |                     |
| Chlormequat chloride                                                          | 999-81-5                     | 100/10,000               | 100                      |              |                |              |                     |
| Heptachlor epoxide                                                            | 1024-57-3                    |                          |                          | 1            |                |              |                     |
| Endosulfan sulfate                                                            | 1031-07-8                    |                          |                          | 1            |                |              |                     |
| Triamiphos                                                                    | 1031-47-6                    | 500/10,000               | 500                      |              |                |              |                     |
| Chromic acetate                                                               | 1066-30-4                    |                          |                          | 1,000        | 313c           |              |                     |
| Ammonium bicarbonate                                                          | 1066-33-7                    |                          |                          | 5,000        |                |              |                     |
| Trimethyltin chloride                                                         | 1066-45-1                    | 500/10,000               | 500                      |              |                |              |                     |
| Lead stearate                                                                 | 1072-35-1                    |                          |                          | 10           | 313c           |              |                     |
| Ammonium carbamate                                                            | 1111-78-0                    |                          |                          | 5,000        |                |              |                     |
| Butylethylcarbamothioic acid S-propyl ester                                   | 1114-71-2                    |                          |                          | ,            | Х              |              |                     |
| Pebulate                                                                      | 1114-71-2                    |                          |                          |              | 313            |              |                     |

| NAME                                     | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| N-Nitrosodiethanolamine                  | 1116-54-7                    |                          |                          | 1            |                | U173         |                     |
| Propane sultone                          | 1120-71-4                    |                          |                          | 10           | 313            | U193         |                     |
| 1,3-Propane sultone                      | 1120-71-4                    |                          |                          | 10           | Х              | U193         |                     |
| Nitrocyclohexane                         | 1122-60-7                    |                          | 500                      |              |                |              |                     |
| Pyridine, 4-nitro-, 1-oxide              | 1124-33-0                    |                          |                          |              |                |              |                     |
| Metolcarb                                | 1129-41-5                    |                          | 1,000                    |              |                | P190         |                     |
| Cycloate                                 | 1134-23-2                    |                          | ,                        | ,            | 313            |              |                     |
| Decabromodiphenyl oxide                  | 1163-19-5                    |                          |                          |              | 313            |              |                     |
| Ferric ammonium citrate                  | 1185-57-5                    |                          |                          | 1,000        |                |              |                     |
| Dichlobenil                              | 1194-65-6                    |                          |                          | 100          |                |              |                     |
| Xylenol                                  | 1300-71-6                    |                          |                          | 1,000        |                |              |                     |
| Arsenic pentoxide                        | 1303-28-2                    |                          | 1                        | ,            | 313c           | P011         |                     |
| Arsenic disulfide                        | 1303-32-8                    | ,                        |                          | 1            | 313c           | 1011         |                     |
| Arsenic trisulfide                       | 1303-33-9                    |                          |                          | 1            | 313c           |              |                     |
| Cadmium oxide                            | 1306-19-0                    |                          | 100                      |              | 313c           |              |                     |
| Antimony trioxide                        | 1309-64-4                    | ,                        | 100                      | 1,000        | 313c           |              |                     |
| Potassium hydroxide                      | 1310-58-3                    |                          |                          | 1,000        | 0100           |              |                     |
| Sodium hydroxide                         | 1310-73-2                    |                          |                          | 1,000        |                |              |                     |
| Molybdenum trioxide                      | 1313-27-5                    |                          |                          | 1,000        | 313            |              |                     |
| Thorium dioxide                          | 1314-20-1                    |                          |                          |              | 313            |              |                     |
| Thallic oxide                            | 1314-32-5                    |                          |                          | 100          | 313c           | P113         |                     |
| Vanadium pentoxide                       | 1314-62-1                    |                          | 1,000                    |              |                | P120         |                     |
| Sulfur phosphide                         | 1314-02-1                    | 100/10,000               | 1,000                    | 1,000        | 5150           | U189         |                     |
| Zinc phosphide                           | 1314-84-7                    | 500                      | 100                      |              | 313c           | P122         |                     |
| Zinc phosphide (conc. <= 10%)            | 1314-84-7                    | 500                      |                          |              | 313c           | U249         |                     |
| Zinc phosphide (conc. < 10%)             | 1314-84-7                    | 500                      |                          |              | 313c           | P122         |                     |
| Lead sulfide                             | 1314-84-7                    | 500                      | 100                      | 100          | 313c           | FIZZ         |                     |
|                                          | 1314-87-0                    |                          |                          | 5,000        | 3130           |              |                     |
| 2,4,5-T amines<br>Cresol (mixed isomers) | 1319-72-8                    |                          |                          | 100          | 313            | U052         |                     |
| 2,4-D Esters                             | 1319-77-3                    |                          |                          | 100          | X              | 0052         |                     |
| *                                        |                              |                          |                          |              |                |              |                     |
| 2,4-D propylene glycol butyl ether ester | 1320-18-9                    |                          |                          | 100          |                |              |                     |
| Nitrotoluene                             | 1321-12-6                    |                          |                          | 1,000        |                |              |                     |
| Arsenic trioxide                         | 1327-53-3                    | 100/10,000               | 1                        | 1            | 313c           | P012         |                     |
| Arsenous oxide                           | 1327-53-3                    | 100/10,000               | 1                        | 1            | 313c           | P012         |                     |
| Xylene (mixed isomers)                   | 1330-20-7                    |                          |                          | 100          | 313            | U239         |                     |
| Zinc borate                              | 1332-07-6                    |                          |                          | 1,000        | 313c           |              |                     |
| Asbestos (friable)                       | 1332-21-4                    |                          |                          | 1            | 313            |              |                     |
| Hydrogen                                 | 1333-74-0                    |                          |                          |              |                |              | 10,000              |
| Sodium bifluoride                        | 1333-83-1                    |                          |                          | 100          |                |              |                     |
| Lead subacetate                          | 1335-32-6                    |                          |                          | 10           | 313c           | U146         |                     |
| Hexachloronaphthalene                    | 1335-87-1                    |                          |                          |              | 313            |              |                     |
| Ammonium hydroxide                       | 1336-21-6                    |                          |                          | 1,000        | Х              |              |                     |
| PCBs                                     | 1336-36-3                    |                          |                          | 1            | Х              |              |                     |
| Polychlorinated biphenyls                | 1336-36-3                    |                          |                          | 1            | 313            |              |                     |
| Methyl ethyl ketone peroxide             | 1338-23-4                    |                          |                          | 10           |                | U160         |                     |
| Naphthenic acid                          | 1338-24-5                    |                          |                          | 100          |                |              |                     |
| Ammonium bifluoride                      | 1341-49-7                    |                          | 1                        | 100          |                |              |                     |

| NAME                                                               | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|--------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Aluminum oxide (fibrous forms)                                     | 1344-28-1                    |                          |                          |              | 313            |              |                     |
| Antimycin A                                                        | 1397-94-0                    | 1,000/10,000             | 1,000                    |              |                |              |                     |
| Dinoterb                                                           | 1420-07-1                    | 500/10,000               | 500                      |              |                |              |                     |
| 2,2'-Bioxirane                                                     | 1464-53-5                    | 500                      | 10                       | 10           | Х              | U085         |                     |
| Diepoxybutane                                                      | 1464-53-5                    | 500                      | 10                       | 10           | 313            | U085         |                     |
| Trichloro(chloromethyl)silane                                      | 1558-25-4                    |                          |                          |              |                |              |                     |
| Carbofuran phenol                                                  | 1563-38-8                    |                          |                          | 10           |                | U367         |                     |
| Carbofuran                                                         | 1563-66-2                    | 10/10,000                | 10                       | 10           | 313            | P127         |                     |
| Benezeneamine, 2,6-dinitro-N,N-<br>dipropyl-4-(trifluoromethyl)-   | 1582-09-8                    |                          |                          | 10           | X              |              |                     |
| Trifluralin                                                        | 1582-09-8                    |                          |                          | 10           | 313            |              |                     |
| Mercuric acetate                                                   | 1600-27-7                    | 500/10,000               | 500                      |              | 313c           |              |                     |
| Hydrazine, 1,2-diethyl-                                            | 1615-80-1                    | 000/10,000               | 000                      | 10           | 0100           | U086         |                     |
| Ethanesulfonyl chloride, 2-chloro-                                 | 1622-32-8                    | 500                      | 500                      | 10           |                | 0000         |                     |
| Methyl tert-butyl ether                                            | 1634-04-4                    | 500                      | 000                      | 1,000        | 313            |              |                     |
| Aldicarb sulfone                                                   | 1646-88-4                    |                          |                          | 1,000        | 010            | P203         |                     |
| 1,2-Dichloro-1,1-difluoroethane                                    | 1649-08-7                    |                          |                          | 100          | 313            | 1 200        |                     |
| HCFC-132b                                                          | 1649-08-7                    |                          |                          |              | X              |              |                     |
| Bromoxynil                                                         | 1689-84-5                    |                          |                          |              | 313            |              |                     |
| 3,5-Dibromo-4-hydroxybenzonitrile                                  | 1689-84-5                    |                          |                          |              | X              |              |                     |
| Bromoxynil octanoate                                               | 1689-99-2                    |                          |                          |              | 313            |              |                     |
| Octanoic acid, 2,6-dibromo-4-                                      | 1689-99-2                    |                          |                          |              | X              |              |                     |
| cyanophenyl ester                                                  |                              |                          |                          |              |                |              |                     |
| 1,1-Dichloro-1-fluoroethane                                        | 1717-00-6                    |                          |                          |              | 313            |              |                     |
| HCFC-141b                                                          | 1717-00-6                    |                          |                          |              | Х              |              |                     |
| 2,3,7,8-Tetrachlorodibenzo-p-dioxin<br>(TCDD)                      | 1746-01-6                    |                          |                          | 1            | 313!           |              |                     |
| Acetone thiosemicarbazide                                          |                              | 1,000/10,000             | 1,000                    |              |                |              |                     |
| Ammonium thiocyanate                                               | 1762-95-4                    |                          |                          | 5,000        |                |              |                     |
| Benzene, 2,4-dichloro-1-(4-<br>nitrophenoxy)-                      | 1836-75-5                    |                          |                          |              | Х              |              |                     |
| Nitrofen                                                           | 1836-75-5                    |                          |                          |              | 313            |              |                     |
| Benfluralin                                                        | 1861-40-1                    |                          |                          |              | 313            |              |                     |
| N-Butyl-N-ethyl-2,6-dinitro-4-<br>(trifluoromethyl) benzenamine    | 1861-40-1                    |                          |                          |              | Х              |              |                     |
| Ammonium benzoate                                                  | 1863-63-4                    |                          |                          | 5,000        |                |              |                     |
| Hexachloropropene                                                  | 1888-71-7                    |                          |                          | 1,000        |                | U243         |                     |
| 1,3-Benzenedicarbonitrile, 2,4,5,6-<br>tetrachloro-                | 1897-45-6                    |                          |                          |              | Х              |              |                     |
| Chlorothalonil                                                     | 1897-45-6                    |                          |                          |              | 313            |              | L                   |
| Paraquat dichloride                                                | 1910-42-5                    |                          | 10                       |              | 313            |              |                     |
| Atrazine                                                           | 1912-24-9                    |                          |                          |              | 313            |              |                     |
| 6-Chloro-N-ethyl-N'-(1-methylethyl)-<br>1,3,5-triazine-2,4-diamine | 1912-24-9                    |                          |                          |              | X              |              |                     |
| Dicamba                                                            | 1918-00-9                    |                          |                          | 1,000        | 313            |              |                     |
| 3,6-Dichloro-2-methoxybenzoic acid                                 | 1918-00-9                    |                          |                          | 1,000        | X              |              | ļ                   |
| Picloram                                                           | 1918-02-1                    | <u> </u>                 |                          | .,000        | 313            |              |                     |
| 2-Chloro-N-(1-methylethyl)-N-<br>phenylacetamide                   | 1918-16-7                    |                          |                          |              | X              |              |                     |
| Propachlor                                                         | 1918-16-7                    |                          |                          |              | 313            |              |                     |
|                                                                    | 1910-10-7                    | 25                       | ļ                        |              | 515            |              |                     |

| NAME                                    | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-----------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 2,4-D Esters                            | 1928-38-7                    |                          |                          | 100          |                |              |                     |
| 2,4-D 2-ethylhexyl ester                | 1928-43-4                    |                          |                          |              | 313            |              |                     |
| 2,4,5-T esters                          | 1928-47-8                    |                          |                          | 1,000        | 010            |              |                     |
| 2,4-D Esters                            | 1928-61-6                    |                          |                          | 100          |                |              |                     |
| 2,4-D butoxyethyl ester                 | 1929-73-3                    |                          |                          | 100          | 313            |              |                     |
| 2,4-D Esters                            | 1929-73-3                    |                          |                          | 100          | X              |              |                     |
| 2-Chloro-6-(trichloromethyl)pyridine    | 1929-82-4                    |                          |                          |              | X              |              |                     |
| Nitrapyrin                              | 1929-82-4                    |                          |                          |              | 313            |              |                     |
| C.I. Direct Black 38                    | 1937-37-7                    |                          |                          |              | 313            |              |                     |
| Chloroxuron                             | 1982-47-4                    |                          | 500                      |              | 010            |              |                     |
| 3,6-Dichloro-2-methoxybenzoic acid,     | 1982-69-0                    | ,                        | 000                      |              | Х              |              |                     |
| sodium salt                             | 1002 00 0                    |                          |                          |              | ~              |              |                     |
| Sodium dicamba                          | 1982-69-0                    |                          |                          |              | 313            |              |                     |
| Tributyltin fluoride                    | 1983-10-4                    |                          |                          |              | 313            |              |                     |
| Valinomycin                             | 2001-95-8                    | 1,000/10,000             | 1,000                    |              |                |              |                     |
| 2,4,5-T amines                          | 2008-46-0                    |                          |                          | 5,000        |                |              |                     |
| Mercaptodimethur                        | 2032-65-7                    | 500/10,000               | 10                       | 10           | Х              | P199         |                     |
| Methiocarb                              | 2032-65-7                    |                          | 10                       | 10           | 313            | P199         |                     |
| Paraquat methosulfate                   | 2074-50-2                    | ,                        | 10                       |              |                |              |                     |
| Phenylsilatrane                         | 2097-19-0                    |                          | 100                      |              |                |              |                     |
| EPN                                     | 2104-64-5                    |                          | 100                      |              |                |              |                     |
| Tributyltin methacrylate                | 2155-70-6                    | ,                        |                          |              | 313            |              |                     |
| Dipotassium endothall                   | 2164-07-0                    |                          |                          |              | 313            |              |                     |
| 7-Oxabicyclo(2.2.1)heptane-2,3-         | 2164-07-0                    |                          |                          |              | X              |              |                     |
| dicarboxylic acid, dipotassium salt     |                              |                          |                          |              |                |              |                     |
| Fluometuron                             | 2164-17-2                    |                          |                          |              | 313            |              |                     |
| Urea, N,N-dimethyl-N'-[3-               | 2164-17-2                    |                          |                          |              | Х              |              |                     |
| (trifluoromethyl)phenyl]-               |                              |                          |                          |              |                |              |                     |
| 1H-Azepine-1 carbothioic acid,          | 2212-67-1                    |                          |                          |              | Х              |              |                     |
| hexahydro-S-ethyl ester<br>Molinate     | 2212-67-1                    |                          |                          |              | 313            |              |                     |
| Cadmium stearate                        |                              | 1,000/10,000             | 1,000                    |              | 313c           |              |                     |
| Thiocarbazide                           |                              | 1,000/10,000             | 1,000                    |              | 3130           |              |                     |
| Octachloronaphthalene                   | 2231-57-4                    | · · · ·                  | 1,000                    |              | 313            |              |                     |
|                                         | 2234-13-1                    |                          | 1,000                    |              | 515            |              |                     |
| Diglycidyl ether<br>Prothoate           | 2236-07-5                    |                          | 1,000                    |              |                |              |                     |
| Dimethylamine dicamba                   | 2300-66-5                    |                          | 100                      |              | 313            |              |                     |
| Carbamothioic acid, bis(1-              | 2300-66-5                    |                          |                          | 100          | 313<br>X       | U062         |                     |
| methylethyl)-S-(2,3-dichloro-2-         | 2303-10-4                    |                          |                          | 100          | ^              | 0002         |                     |
| propenyl)ester                          |                              |                          |                          |              |                |              |                     |
| Diallate                                | 2303-16-4                    |                          |                          | 100          | 313            | U062         |                     |
| Triallate                               | 2303-17-5                    |                          |                          | 100          | 313            | U389         |                     |
| Propargite                              | 2312-35-8                    |                          |                          | 10           | 313            |              |                     |
| Chinomethionat                          | 2439-01-2                    |                          |                          |              | 313            |              |                     |
| 6-Methyl-1,3-dithiolo[4,5-b]quinoxalin- | 2439-01-2                    |                          |                          |              | X              |              |                     |
| 2-one                                   |                              |                          |                          |              |                |              |                     |
| Dodecylguanidine monoacetate            | 2439-10-3                    |                          |                          |              | Х              |              |                     |
| Dodine                                  | 2439-10-3                    |                          |                          |              | 313            |              |                     |
| Oxydisulfoton                           | 2497-07-6                    | 500                      | 500                      |              |                |              |                     |

| NAME                                                                      | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|---------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Dimethyl chlorothiophosphate                                              | 2524-03-0                    | 500                      | 500                      |              | 313            |              |                     |
| Dimethyl phosphorochloridothioate                                         | 2524-03-0                    | 500                      | 500                      |              | Х              |              |                     |
| Formothion                                                                | 2540-82-1                    | 100                      | 100                      |              |                |              |                     |
| 2,4,5-T esters                                                            | 2545-59-7                    |                          |                          | 1,000        |                |              |                     |
| 1,4-Cyclohexane diisocyanate                                              | 2556-36-7                    |                          |                          | ,            | 313#           |              |                     |
| Pentadecylamine                                                           | 2570-26-5                    | 100/10,000               | 100                      |              |                |              |                     |
| Phosphorothioic acid, O,O-dimethyl-5-<br>(2-(methylthio)ethyl)ester       | 2587-90-8                    | 500                      | 500                      |              |                |              |                     |
| C.I. Direct Blue 6                                                        | 2602-46-2                    |                          |                          |              | 313            |              |                     |
| Promecarb                                                                 | 2631-37-0                    | 500/10,000               | 1,000                    | 1,000        | 515            | P201         |                     |
| Cyanophos                                                                 | 2636-26-2                    | 1,000                    | 1,000                    | 1,000        |                | F 201        |                     |
| Azinphos-ethyl                                                            | 2642-71-9                    |                          | 1,000                    |              |                |              |                     |
| 2,3,5-Trimethylphenyl                                                     | 2655-15-4                    | 100/10,000               | 100                      |              | 313            |              |                     |
| methylcarbamate                                                           |                              |                          |                          |              | 313            |              |                     |
| Phosphonothioic acid, methyl-, O-(4-<br>nitrophenyl) O-phenyl ester       | 2665-30-7                    | 500                      | 500                      |              |                |              |                     |
| Sulfuryl fluoride                                                         | 2699-79-8                    |                          |                          |              | 313            |              |                     |
| Vikane                                                                    | 2699-79-8                    |                          |                          |              | Х              |              |                     |
| 2,4-D sodium salt                                                         | 2702-72-9                    |                          |                          |              | 313            |              |                     |
| Phosphonothioic acid, methyl-, O-<br>ethyl O-(4-(methylthio)phenyl) ester | 2703-13-1                    | 500                      | 500                      |              |                |              |                     |
| Thallous malonate                                                         | 2757-18-8                    | 100/10,000               | 100                      |              |                |              |                     |
| 5-(Aminomethyl)-3-isoxazolol                                              | 2763-96-4                    |                          | 1,000                    | 1,000        |                | P007         |                     |
| Muscimol                                                                  | 2763-96-4                    | 500/10,000               | 1,000                    | 1,000        |                | P007         |                     |
| Diquat                                                                    | 2764-72-9                    |                          | .,                       | 1,000        |                |              |                     |
| Endothion                                                                 | 2778-04-3                    | 500/10,000               | 500                      | .,           |                |              |                     |
| C.I. Disperse Yellow 3                                                    | 2832-40-8                    | ,                        |                          |              | 313            |              |                     |
| 2-Chloro-1,1,1,2-tetrafluoroethane                                        | 2837-89-0                    |                          |                          |              | 313            |              |                     |
| HCFC-124                                                                  | 2837-89-0                    |                          |                          |              | X              |              |                     |
| Chlorpyrifos                                                              | 2921-88-2                    |                          |                          | 1            | ~              |              |                     |
| Ferric ammonium oxalate                                                   | 2944-67-4                    |                          |                          | 1,000        |                |              |                     |
| 2,4-D chlorocrotyl ester                                                  | 2971-38-2                    |                          |                          | 100          | 313            |              |                     |
| 2,4-D Esters                                                              | 2971-38-2                    |                          |                          | 100          | X              |              |                     |
| Ammonium citrate, dibasic                                                 | 3012-65-5                    |                          |                          | 5,000        | ~              |              |                     |
| Silane, (4-aminobutyl)diethoxymethyl-                                     | 3037-72-7                    | 1,000                    | 1,000                    | 0,000        |                |              |                     |
| C.I. Solvent Orange 7                                                     | 3118-97-6                    |                          | 1,000                    |              | 313            |              |                     |
| Ammonium tartrate                                                         | 3164-29-2                    |                          |                          | 5,000        | 010            |              |                     |
| 4-Chloro-o-toluidine, hydrochloride                                       | 3165-93-3                    |                          |                          | 100          |                | U049         |                     |
| 1,5-Naphthalene diisocyanate                                              | 3173-72-6                    |                          |                          | 100          | 313#           | 0040         |                     |
| Cupric nitrate                                                            | 3251-23-8                    |                          |                          | 100          | 313c           |              |                     |
| Phosphoric acid, dimethyl 4-                                              | 3254-63-5                    |                          | 500                      | 100          | 0100           |              |                     |
| (methylthio) phenyl ester                                                 | 0000 07 5                    |                          |                          |              | 0.401          |              |                     |
| 1,2,3,4,6,7,8,9-octachlorodibenzo-p-<br>dioxin                            | 3268-87-9                    |                          |                          |              | 313!           |              |                     |
| O,O-Diethyl S-methyl dithiophosphate                                      | 3288-58-2                    |                          |                          | 5,000        |                | U087         |                     |
| 2,2-bis(Bromomethyl)-1,3-propanediol                                      | 3296-90-0                    |                          |                          |              | 313            |              |                     |
| Temephos                                                                  | 3383-96-8                    |                          |                          |              | 313            |              |                     |
| Zinc carbonate                                                            | 3486-35-9                    |                          |                          | 1,000        | 313c           |              |                     |
| DDE                                                                       | 3547-04-4                    |                          |                          | 5,000        |                |              |                     |

| NAME                                                                   | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Sulfoxide, 3-chloropropyl octyl                                        | 3569-57-1                    | 500                      | 500                      |              |                |              |                     |
| Benzimidazole, 4,5-dichloro-2-<br>(trifluoromethyl)-                   | 3615-21-2                    | 500/10,000               | 500                      |              |                |              |                     |
| (4-Chloro-2-methylphenoxy) acetate sodium salt                         | 3653-48-3                    |                          |                          |              | Х              |              |                     |
| Methoxone sodium salt                                                  | 3653-48-3                    |                          |                          |              | 313            |              |                     |
| Sulfotep                                                               | 3689-24-5                    | 500                      | 100                      | 100          |                | P109         |                     |
| Tetraethyldithiopyrophosphate                                          | 3689-24-5                    |                          |                          | 100          |                | P109         |                     |
| Chlorophacinone                                                        | 3691-35-8                    |                          |                          |              |                |              |                     |
| 5-Methylchrysene                                                       | 3697-24-3                    |                          |                          |              | 313+           |              |                     |
| Amiton oxalate                                                         | 3734-97-2                    | 100/10,000               | 100                      |              |                |              |                     |
| Methyl phenkapton                                                      | 3735-23-7                    | 500                      | 500                      |              |                |              |                     |
| C.I. Food Red 5                                                        | 3761-53-3                    |                          |                          |              | 313            |              |                     |
| 2,4,5-T amines                                                         | 3813-14-7                    |                          |                          | 5,000        | 0.0            |              |                     |
| Fuberidazole                                                           | 3878-19-1                    | 100/10,000               | 100                      | 0,000        |                |              |                     |
| Bitoscanate                                                            | 4044-65-9                    |                          |                          |              | <u> </u>       |              |                     |
| 1-(3-Chloroallyl)-3,5,7-triaza-1-<br>azoniaadamantane chloride         | 4080-31-3                    | 000,10,000               | 000                      |              | 313            |              |                     |
| Isophorone diisocyanate                                                | 4098-71-9                    | 500                      | 500                      |              | 313#           |              |                     |
| Phosacetim                                                             | 4104-14-7                    | 100/10,000               | 100                      |              |                |              |                     |
| Dichlorosilane                                                         | 4109-96-0                    | ,                        |                          |              |                |              | 10,000              |
| Silane, dichloro-                                                      | 4109-96-0                    |                          |                          |              |                |              | 10,000              |
| 4,4'-Diisocyanatodiphenyl ether                                        | 4128-73-8                    |                          |                          |              | 313#           |              | ,                   |
| 2-Butenal                                                              | 4170-30-3                    | 1,000                    | 100                      | 100          | Х              | U053         | 20,000              |
| Crotonaldehyde                                                         | 4170-30-3                    |                          |                          | 100          | 313            | U053         | 20,000              |
| Fluenetil                                                              | 4301-50-2                    | 100/10,000               |                          |              |                |              | ,                   |
| Phenol, 2,2'-thiobis[4-chloro-6-methyl-                                | 4418-66-0                    | 100/10,000               |                          |              |                |              |                     |
| N-Nitrosomethylvinylamine                                              | 4549-40-0                    |                          |                          | 10           | 313            | P084         |                     |
| C.I. Acid Green 3                                                      | 4680-78-8                    |                          |                          |              | 313            |              |                     |
| Hexamethylenediamine, N,N'-dibutyl-                                    | 4835-11-4                    | 500                      | 500                      |              |                |              |                     |
| 1,1'-Methylene bis(4-<br>isocyanatocyclohexane)                        | 5124-30-1                    |                          |                          |              | 313#           |              |                     |
| Carboxin                                                               | 5234-68-4                    |                          |                          |              | 313            |              |                     |
| 5,6-Dihydro-2-methyl-N-phenyl-1,4-<br>oxathiin-3-carboxamide           | 5234-68-4                    |                          |                          |              | Х              |              |                     |
| Thiourea, (2-chlorophenyl)-                                            | 5344-82-1                    | 100/10,000               | 100                      | 100          |                | P026         |                     |
| Dibenzo(a,e)fluoranthene                                               | 5385-75-1                    |                          |                          |              | 313+           |              |                     |
| 1-Nitropyrene                                                          | 5522-43-0                    |                          |                          |              | 313+           |              |                     |
| Chlorpyrifos methyl                                                    | 5598-13-0                    |                          |                          |              | 313            |              |                     |
| O,O-Dimethyl-O-(3,5,6-trichloro-2-                                     | 5598-13-0                    |                          |                          |              | X              |              |                     |
| pyridyl)phosphorothioate                                               |                              |                          |                          |              |                |              |                     |
| Coumatetralyl                                                          | 5836-29-3                    | 500/10,000               | 500                      |              |                |              |                     |
| Cupric oxalate                                                         | 5893-66-3                    |                          |                          | 100          | 313c           |              |                     |
| 5-Chloro-3-(1,1-dimethylethyl)-6-<br>methyl-2,4(1H,3H)-pyrimidinedione | 5902-51-2                    |                          |                          |              | Х              |              |                     |
| Terbacil                                                               | 5902-51-2                    |                          |                          |              | 313            |              |                     |
| Ethanol, 2,2'-oxybis-, dicarbamate                                     | 5952-26-1                    |                          |                          | 5,000        |                | U395         |                     |
| Ammonium oxalate                                                       | 5972-73-6                    |                          |                          | 5,000        |                |              |                     |
| Ammonium oxalate                                                       | 6009-70-7                    |                          |                          | 5,000        |                |              |                     |

| NAME                                                                | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|---------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 2,4,5-T amines                                                      | 6369-96-6                    |                          |                          | 5,000        |                |              |                     |
| 2,4,5-T amines                                                      | 6369-97-7                    |                          |                          | 5,000        |                |              |                     |
| C.I. Acid Red 114                                                   | 6459-94-5                    |                          |                          | -,           | 313            |              | 1                   |
| Thallium(I) carbonate                                               | 6533-73-9                    | 100/10,000               | 100                      | 100          | 313c           | U215         |                     |
| Thallous carbonate                                                  | 6533-73-9                    | 100/10,000               | 100                      | 100          | 313c           | U215         |                     |
| Monocrotophos                                                       | 6923-22-4                    | 10/10,000                | 10                       |              |                |              |                     |
| 4-Chlorophenyl phenyl ether                                         | 7005-72-3                    | ,                        |                          | 5,000        |                |              |                     |
| N,N'-Bis(1-methylethyl)-6-methylthio-<br>1,3,5-triazine-2,4-diamine | 7287-19-6                    |                          |                          |              | Х              |              |                     |
| Prometryn                                                           | 7287-19-6                    |                          |                          |              | 313            |              |                     |
| Endrin aldehyde                                                     | 7421-93-4                    |                          |                          | 1            |                |              |                     |
| Lead stearate                                                       | 7428-48-0                    |                          |                          | 10           | 313c           |              |                     |
| Aluminum (fume or dust)                                             | 7429-90-5                    |                          |                          |              | 313            |              | 1                   |
| Lead                                                                | 7439-92-1                    |                          |                          | 10           | 313            |              |                     |
| Manganese                                                           | 7439-96-5                    |                          |                          |              | 313            |              | 1                   |
| Mercury                                                             | 7439-97-6                    |                          |                          | 1            | 313            | U151         |                     |
| Nickel                                                              | 7440-02-0                    |                          |                          | 100          | 313            |              |                     |
| Silver                                                              | 7440-22-4                    |                          |                          | 1,000        | 313            |              |                     |
| Sodium                                                              | 7440-23-5                    |                          |                          | 10           |                |              |                     |
| Thallium                                                            | 7440-28-0                    |                          |                          | 1,000        | 313            |              |                     |
| Antimony                                                            | 7440-36-0                    |                          |                          | 5,000        | 313            |              |                     |
| Arsenic                                                             | 7440-38-2                    |                          |                          | 0,000        | 313            |              | ł                   |
| Barium                                                              | 7440-39-3                    |                          |                          |              | 313            |              |                     |
| Beryllium                                                           | 7440-41-7                    |                          |                          | 10           | 313            | P015         |                     |
| Cadmium                                                             | 7440-43-9                    |                          |                          | 10           | 313            |              |                     |
| Chromium                                                            | 7440-47-3                    |                          |                          | 5,000        | 313            |              |                     |
| Cobalt                                                              | 7440-48-4                    |                          |                          | 0,000        | 313            |              |                     |
| Copper                                                              | 7440-50-8                    |                          |                          | 5,000        | 313            |              |                     |
| Vanadium (except when contained in an alloy)                        | 7440-62-2                    |                          |                          |              | 313            |              |                     |
| Zinc (fume or dust)                                                 | 7440-66-6                    |                          |                          | 1,000        | 313            |              |                     |
| Zinc                                                                | 7440-66-6                    |                          |                          | 1,000        |                |              |                     |
| Selenium dioxide                                                    | 7446-08-4                    |                          |                          | 10           | 313c           |              |                     |
| Sulfur dioxide                                                      | 7446-09-5                    | 500                      | 500                      |              |                |              |                     |
| Sulfur dioxide (anhydrous)                                          | 7446-09-5                    | 500                      | 500                      |              |                |              | 5,000               |
| Sulfur trioxide                                                     | 7446-11-9                    | 100                      | 100                      |              |                |              | 10,000              |
| Lead sulfate                                                        | 7446-14-2                    |                          |                          | 10           | 313c           |              |                     |
| Thallium(I) sulfate                                                 | 7446-18-6                    | 100/10,000               | 100                      | 100          | 313c           | P115         |                     |
| Thallous sulfate                                                    | 7446-18-6                    | 100/10,000               | 100                      | 100          | 313c           | P115         |                     |
| Lead phosphate                                                      | 7446-27-7                    |                          |                          | 10           | 313c           | U145         |                     |
| Cupric chloride                                                     | 7447-39-4                    |                          |                          | 10           | 313c           |              |                     |
| Mercuric chloride                                                   | 7487-94-7                    | 500/10,000               | 500                      |              | 313c           |              |                     |
| Selenium sulfide                                                    | 7488-56-4                    |                          |                          | 10           | 313c           | U205         |                     |
| 6-Nitrochrysene                                                     | 7496-02-8                    |                          |                          | -            | 313+           |              |                     |
| Titanium chloride (TiCl4) (T-4)-                                    | 7550-45-0                    | 100                      | 1,000                    | 1,000        | X              |              | 2,500               |
| Titanium tetrachloride                                              | 7550-45-0                    | 100                      | 1,000                    | 1,000        | 313            |              | 2,500               |
| Sodium phosphate, dibasic                                           | 7558-79-4                    |                          | ,                        | 5,000        | _              |              | ,                   |
| Lithium hydride                                                     | 7580-67-8                    | 100                      | 100                      | , -          |                |              | 1                   |

| NAME                                                                                                                                                                                               | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ                 | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|------------------------------|----------------|--------------|---------------------|
| Sodium phosphate, tribasic                                                                                                                                                                         | 7601-54-9                    |                          |                          | 500                          |                |              |                     |
| Sodium arsenate                                                                                                                                                                                    |                              | 1,000/10,000             | 1                        | 1                            | 313c           |              |                     |
| Sodium bisulfite                                                                                                                                                                                   | 7631-90-5                    | .,                       |                          | 5,000                        |                |              |                     |
| Sodium nitrite                                                                                                                                                                                     | 7632-00-0                    |                          |                          | 100                          | 313            |              |                     |
| Borane, trifluoro-                                                                                                                                                                                 | 7637-07-2                    | 500                      | 500                      |                              | X              |              | 5,000               |
| Boron trifluoride                                                                                                                                                                                  | 7637-07-2                    | 500                      | 500                      |                              | 313            |              | 5,000               |
| Lead arsenate                                                                                                                                                                                      | 7645-25-2                    |                          |                          | 1                            | 313c           |              | 0,000               |
| Zinc chloride                                                                                                                                                                                      | 7646-85-7                    |                          |                          | 1,000                        | 313c           |              |                     |
| Hydrochloric acid                                                                                                                                                                                  | 7647-01-0                    |                          |                          | 5,000                        | 0100           |              |                     |
| Hydrochloric acid (conc 37% or                                                                                                                                                                     | 7647-01-0                    |                          |                          | 5,000                        |                |              | 15,000              |
| greater)                                                                                                                                                                                           | 1041-01-0                    |                          |                          | 0,000                        |                |              | 10,000              |
| Hydrochloric acid (aerosol forms only)                                                                                                                                                             | 7647-01-0                    |                          |                          | 5,000                        | 313            |              |                     |
| Hydrogen chloride (anhydrous)                                                                                                                                                                      | 7647-01-0                    | 500                      | 5,000                    |                              | Х              |              | 5,000               |
| Hydrogen chloride (gas only)                                                                                                                                                                       | 7647-01-0                    | 500                      | 5,000                    |                              | Х              |              | 5,000               |
| Antimony pentachloride                                                                                                                                                                             | 7647-18-9                    |                          | -,                       | 1,000                        |                |              | -,                  |
| Phosphoric acid                                                                                                                                                                                    | 7664-38-2                    |                          |                          | 5,000                        |                |              |                     |
| Hydrofluoric acid                                                                                                                                                                                  | 7664-39-3                    | 100                      | 100                      |                              | Х              | U134         |                     |
| Hydrofluoric acid (conc. 50% or greater)                                                                                                                                                           | 7664-39-3                    | 100                      | 100                      |                              | X              | U134         | 1,000               |
| Hydrogen fluoride                                                                                                                                                                                  | 7664-39-3                    | 100                      | 100                      | 100                          | 313            | U134         |                     |
| Hydrogen fluoride (anhydrous)                                                                                                                                                                      | 7664-39-3                    |                          | 100                      | 100                          | X              | U134         | 1,000               |
| Ammonia                                                                                                                                                                                            | 7664-41-7                    | 500                      | 100                      |                              | ~              | 0104         | 1,000               |
| Ammonia (anhydrous)                                                                                                                                                                                | 7664-41-7                    | 500                      | 100                      |                              | Х              |              | 10,000              |
| Ammonia (conc 20% or greater)                                                                                                                                                                      | 7664-41-7                    |                          | 100                      | See<br>ammonium<br>hydroxide | X              |              | 20,000              |
| Ammonia (includes anhydrous ammonia<br>and aqueous ammonia from water<br>dissociable ammonium salts and other<br>sources; 10 percent of total aqueous<br>ammonia is reportable under this listing) | 7664-41-7                    |                          |                          | Ilyuloxide                   | 313            |              |                     |
| Sulfuric acid (aerosol forms only)                                                                                                                                                                 | 7664-93-9                    | 1,000                    | 1,000                    | 1,000                        | 313            |              |                     |
| Sulfuric acid                                                                                                                                                                                      | 7664-93-9                    | 1,000                    | 1,000                    | 1,000                        |                |              |                     |
| Sodium fluoride                                                                                                                                                                                    | 7681-49-4                    |                          |                          | 1,000                        |                |              |                     |
| Sodium hypochlorite                                                                                                                                                                                | 7681-52-9                    |                          |                          | 100                          |                |              |                     |
| 2,2-Dimethyl-3-(2-methyl-1-<br>propenyl)cyclopropanecarboxylic acid<br>(1,3,4,5,6,7-hexahydro-1,3-dioxo-2H-<br>isoindol-2-yl)methyl ester                                                          | 7696-12-0                    |                          |                          |                              | Х              |              |                     |
| Tetramethrin                                                                                                                                                                                       | 7696-12-0                    |                          |                          |                              | 313            |              |                     |
| Nitric acid                                                                                                                                                                                        | 7697-37-2                    | 1,000                    | 1,000                    |                              | 313            |              |                     |
| Nitric acid (conc 80% or greater)                                                                                                                                                                  | 7697-37-2                    | 1,000                    | 1,000                    | 1,000                        | Х              |              | 15,000              |
| Zinc bromide                                                                                                                                                                                       | 7699-45-8                    |                          |                          | 1,000                        | 313c           |              |                     |
| Ferric chloride                                                                                                                                                                                    | 7705-08-0                    |                          |                          | 1,000                        |                |              |                     |
| Nickel chloride                                                                                                                                                                                    | 7718-54-9                    |                          |                          | 100                          | 313c           |              |                     |
| Phosphorous trichloride                                                                                                                                                                            | 7719-12-2                    | 1,000                    | 1,000                    | 1,000                        |                |              | 15,000              |
| Phosphorus trichloride                                                                                                                                                                             | 7719-12-2                    |                          | 1,000                    |                              |                |              | 15,000              |
| Ferrous sulfate                                                                                                                                                                                    | 7720-78-7                    | -                        |                          | 1,000                        |                | ĺ            | ĺ                   |
| Potassium permanganate                                                                                                                                                                             | 7722-64-7                    |                          |                          | 100                          | 313c           |              |                     |
| Hydrogen peroxide (Conc.> 52%)                                                                                                                                                                     | 7722-84-1                    | 1,000                    | 1,000                    |                              |                |              |                     |
| Phosphorus (yellow or white)                                                                                                                                                                       | 7723-14-0                    | -                        | -                        | 1                            | 313            |              |                     |

| NAME                          | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Phosphorus                    | 7723-14-0                    | 100                      | 1                        | 1            |                |              |                     |
| Bromine                       | 7726-95-6                    | 500                      | 500                      |              | 313            |              | 10,000              |
| Zinc sulfate                  | 7733-02-0                    |                          |                          | 1,000        | 313c           |              |                     |
| Chromic acid                  | 7738-94-5                    |                          |                          | 10           | 313c           |              |                     |
| Potassium bromate             | 7758-01-2                    |                          |                          |              | 313            |              |                     |
| Ferrous chloride              | 7758-94-3                    |                          |                          | 100          |                |              |                     |
| Lead chloride                 | 7758-95-4                    |                          |                          | 10           | 313c           |              |                     |
| Cupric sulfate                | 7758-98-7                    |                          |                          | 10           | 313c           |              |                     |
| Silver nitrate                | 7761-88-8                    |                          |                          | 1            | 313c           |              |                     |
| Ammonium sulfamate            | 7773-06-0                    |                          |                          | 5,000        |                |              |                     |
| Sodium chromate               | 7775-11-3                    |                          |                          | 10           | 313c           |              |                     |
| Arsenic acid                  | 7778-39-4                    |                          |                          | 1            | 313c           | P010         |                     |
| Calcium arsenate              | 7778-44-1                    |                          | 1                        | 1            | 313c           |              |                     |
| Potassium bichromate          | 7778-50-9                    | ,                        |                          | 10           | 313c           |              |                     |
| Calcium hypochlorite          | 7778-54-3                    |                          |                          | 10           |                |              |                     |
| Zinc hydrosulfite             | 7779-86-4                    |                          |                          | 1,000        | 313c           |              |                     |
| Zinc nitrate                  | 7779-88-6                    |                          |                          | 1,000        |                |              |                     |
| Fluorine                      | 7782-41-4                    |                          | 10                       | 10           | 313            | P056         | 1,000               |
| Selenium                      | 7782-49-2                    | 000                      | 10                       | 100          | 313            |              | 1,000               |
| Chlorine                      | 7782-50-5                    | 100                      | 10                       |              | 313            |              | 2,500               |
| Ferrous sulfate               | 7782-63-0                    | 100                      | 10                       | 1,000        | 010            |              | 2,000               |
| Sodium selenite               | 7782-82-3                    |                          |                          | 1,000        | 313c           |              |                     |
| Mercurous nitrate             | 7782-86-7                    |                          |                          | 100          | 313c           |              |                     |
| Selenious acid                |                              | 1,000/10,000             | 10                       |              |                | U204         |                     |
| Hydrogen sulfide              | 7783-06-4                    |                          |                          | 100          | 313            | U135         | 10,000              |
| Hydrogen selenide             | 7783-07-5                    |                          | 100                      | 100          | 313c           | 0100         | 500                 |
| Mercuric sulfate              | 7783-35-9                    |                          | 10                       | 10           |                |              | 500                 |
| Lead fluoride                 | 7783-46-2                    |                          |                          | 10           |                |              |                     |
| Zinc fluoride                 | 7783-49-5                    |                          |                          | 1,000        | 313c           |              |                     |
| Ferric fluoride               | 7783-50-8                    |                          |                          | 1,000        | 0100           |              |                     |
| Antimony trifluoride          | 7783-56-4                    |                          |                          | 1,000        | 313c           |              |                     |
| Sulfur fluoride (SF4), (T-4)- | 7783-60-0                    |                          | 100                      | 1,000        | 5150           |              | 2,500               |
| Sulfur tetrafluoride          | 7783-60-0                    |                          |                          |              |                |              | 2,500               |
| Antimony pentafluoride        | 7783-70-2                    |                          |                          |              | 313c           |              | 2,300               |
| Tellurium hexafluoride        | 7783-80-4                    |                          | 100                      |              | 0100           |              |                     |
| Arsenous trichloride          | 7784-34-1                    |                          |                          | 1            | 313c           |              | 15,000              |
| Lead arsenate                 | 7784-40-9                    |                          | 1                        | 1            | 313c           |              | 13,000              |
| Potassium arsenate            | 7784-41-0                    |                          |                          | 1            | 313c           |              |                     |
| Arsine                        | 7784-41-0                    |                          | 100                      | 1            | 3130           |              | 1,000               |
| Sodium arsenite               | 7784-42-1                    |                          |                          | 1            | 313c           |              | 1,000               |
|                               |                              |                          | 10                       |              |                |              |                     |
| Mevinphos                     | 7786-34-7                    |                          | 10                       |              |                |              |                     |
| Nickel sulfate                | 7786-81-4                    |                          |                          | 100          |                |              |                     |
| Beryllium chloride            | 7787-47-5                    |                          |                          | 1            |                |              |                     |
| Beryllium fluoride            | 7787-49-7                    |                          |                          | 1            | 313c           |              |                     |
| Beryllium nitrate             | 7787-55-5                    |                          |                          | 1            | 313c           |              |                     |
| Ammonium chromate             | 7788-98-9                    |                          |                          | 10           |                |              |                     |
| Potassium chromate            | 7789-00-6                    |                          |                          | 10           |                |              |                     |
| Strontium chromate            | 7789-06-2                    |                          |                          | 10           | 313c           |              |                     |

| NAME                                           | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Ammonium bichromate                            | 7789-09-5                    |                          |                          | 10           | 313c           |              |                     |
| Cadmium bromide                                | 7789-42-6                    |                          |                          | 10           | 313c           |              |                     |
| Cobaltous bromide                              | 7789-43-7                    |                          |                          | 1,000        | 313c           |              |                     |
| Antimony tribromide                            | 7789-61-9                    |                          |                          | 1,000        | 313c           |              |                     |
| Chlorosulfonic acid                            | 7790-94-5                    |                          |                          | 1,000        |                |              |                     |
| Thallium chloride TICI                         | 7791-12-0                    | 100/10,000               | 100                      | 100          | 313c           | U216         |                     |
| Thallous chloride                              | 7791-12-0                    |                          | 100                      | 100          | 313c           | U216         |                     |
| Chlorine monoxide                              | 7791-21-1                    |                          |                          |              |                |              | 10,000              |
| Chlorine oxide                                 | 7791-21-1                    |                          |                          |              |                |              | 10,000              |
| Selenium oxychloride                           | 7791-23-3                    | 500                      | 500                      |              | 313c           |              | ,                   |
| Phosphine                                      | 7803-51-2                    | 500                      | 100                      |              |                | P096         | 5,000               |
| Ammonium vanadate                              | 7803-55-6                    |                          |                          | 1,000        |                | P119         | -,                  |
| Silane                                         | 7803-62-5                    |                          |                          | .,           |                |              | 10,000              |
| Camphechlor                                    | 8001-35-2                    |                          | 1                        | 1            | Х              | P123         | .,                  |
| Camphene, octachloro-                          | 8001-35-2                    | ,                        |                          |              | X              | P123         |                     |
| Toxaphene                                      | 8001-35-2                    | ,                        |                          |              |                | P123         |                     |
| Creosote                                       | 8001-58-9                    |                          |                          |              | 313            |              |                     |
| Dichloropropane - Dichloropropene<br>(mixture) | 8003-19-8                    |                          |                          | 100          |                |              |                     |
| Pyrethrins                                     | 8003-34-7                    |                          |                          | 1            |                |              |                     |
| Oleum (fuming sulfuric acid)                   | 8014-95-7                    |                          |                          | 1,000        |                |              | 10,000              |
| Sulfuric acid (fuming)                         | 8014-95-7                    |                          |                          | 1,000        |                |              | 10,000              |
| Sulfuric acid, mixture with sulfur trioxide    | 8014-95-7                    |                          |                          | 1,000        |                |              | 10,000              |
| Demeton                                        | 8065-48-3                    | 500                      | 500                      |              |                |              |                     |
| Metiram                                        | 9006-42-2                    |                          |                          |              | 313            |              |                     |
| Polymeric diphenylmethane<br>diisocyanate      | 9016-87-9                    |                          |                          |              | 313#           |              |                     |
| Sodium hypochlorite                            | 10022-70-5                   |                          |                          | 100          |                |              |                     |
| Sulfur monochloride                            | <sup>1</sup> 10025-67-9      |                          |                          | 1,000        |                |              |                     |
| Chromic chloride                               | 10025-73-7                   | 1/10,000                 | 1                        |              | 313c           |              |                     |
| Silane, trichloro-                             | 10025-78-2                   |                          |                          |              |                |              | 10,000              |
| Trichlorosilane                                | 10025-78-2                   |                          |                          |              |                |              | 10,000              |
| Phosphorus oxychloride                         | 10025-87-3                   | 500                      | 1,000                    | 1,000        |                |              | 5,000               |
| Phosphoryl chloride                            | 10025-87-3                   | 500                      | 1,000                    | 1,000        |                |              | 5,000               |
| Antimony trichloride                           | 10025-91-9                   |                          |                          | 1,000        | 313c           |              |                     |
| Zirconium tetrachloride                        | 10026-11-6                   |                          |                          | 5,000        |                |              |                     |
| Phosphorus pentachloride                       | 10026-13-8                   | 500                      | 500                      |              |                |              |                     |
| Ozone                                          | 10028-15-6                   | 100                      | 100                      |              | 313            |              |                     |
| Ferric sulfate                                 | 10028-22-5                   |                          |                          | 1,000        |                |              |                     |
| Thallium sulfate                               | 10031-59-1                   | 100/10,000               | 100                      | 100          | 313c           |              |                     |
| Hydrazine sulfate                              | 10034-93-2                   |                          |                          |              | 313            |              |                     |
| Sodium phosphate, dibasic                      | 10039-32-4                   |                          |                          | 5,000        |                |              |                     |
| Aluminum sulfate                               | 10043-01-3                   |                          |                          | 5,000        |                |              |                     |
| Ferrous ammonium sulfate                       | 10045-89-3                   |                          |                          | 1,000        |                |              |                     |
| Mercuric nitrate                               | 10045-94-0                   |                          |                          | 10           |                | ĺ            |                     |

<sup>&</sup>lt;sup>1</sup> This is correct CAS number but not the same CAS number used on the CERCLA list. See Introduction for further explanation.

| NAME                                                             | CAS/313<br>Category | Section 302<br>(EHS) TPQ | Section<br>304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r) |
|------------------------------------------------------------------|---------------------|--------------------------|--------------------|--------------|----------------|--------------|---------------|
|                                                                  | Codes               | (                        | RQ                 |              |                |              | ΤQ            |
| Chlorine dioxide                                                 | 10049-04-4          |                          |                    |              | 313            |              | 1,000         |
| Chlorine oxide (CIO2)                                            | 10049-04-4          |                          |                    |              | Х              |              | 1,000         |
| Chromous chloride                                                | 10049-05-5          |                          |                    | 1,000        | 313c           |              |               |
| trans-1,3-Dichloropropene                                        | 10061-02-6          |                          |                    | -            | 313            |              |               |
| Lead nitrate                                                     | 10099-74-8          |                          |                    | 10           | 313c           |              |               |
| Chromic sulfate                                                  | 10101-53-8          |                          |                    | 1,000        | 313c           |              |               |
| Lead iodide                                                      | 10101-63-0          |                          |                    | 10           | 313c           |              |               |
| Sodium phosphate, tribasic                                       | 10101-89-0          |                          |                    | 5,000        |                |              |               |
| Uranyl nitrate                                                   | 10102-06-4          |                          |                    | 100          |                |              |               |
| Sodium selenite                                                  | 10102-18-8          |                          | 100                | 100          | 313c           |              |               |
| Sodium tellurite                                                 | 10102-20-2          | ,                        | 500                |              |                |              |               |
| Nitric oxide                                                     | 10102-43-9          |                          | 10                 | 10 @         |                | P076         | 10,000        |
| Nitrogen oxide (NO)                                              | 10102-43-9          |                          | 10                 | 10 @         |                | P076         | 10,000        |
| Nitrogen dioxide                                                 | 10102-44-0          |                          | 10                 | 10 @         |                | P078         | 3,200         |
| Thallium(I) nitrate                                              | 10102-45-1          |                          |                    | 100          | 313c           | U217         |               |
| Lead arsenate                                                    | 10102-48-4          |                          |                    | 1            | 313c           | •=           |               |
| Cadmium chloride                                                 | 10108-64-2          |                          |                    | 10           | 313c           |              |               |
| Potassium arsenite                                               | 10124-50-2          |                          | 1                  | 1            | 313c           |              |               |
| Sodium phosphate, dibasic                                        | 10140-65-5          |                          |                    | 5,000        | 0100           |              |               |
| Ethanol, 1,2-dichloro-, acetate                                  | 10140-87-1          |                          | 1,000              | 0,000        |                |              |               |
| Ammonium bisulfite                                               | 10192-30-0          | 1,000                    | 1,000              | 5,000        |                |              |               |
| Ammonium sulfite                                                 | 10196-04-0          |                          |                    | 5,000        |                |              |               |
| Cobalt carbonyl                                                  | 10210-68-1          |                          | 10                 | 0,000        | 313c           |              |               |
| 2,2-Dibromo-3-nitrilopropionamide                                | 10222-01-2          |                          | 10                 |              | 313s           |              |               |
| Methamidophos                                                    | 10265-92-6          |                          | 100                |              | 0100           |              |               |
| Borane, trichloro-                                               | 10294-34-5          |                          | 500                |              | Х              |              | 5,000         |
| Boron trichloride                                                | 10294-34-5          |                          | 500                |              | 313            |              | 5,000         |
| Dialifor                                                         | 10204-04-0          |                          | 100                |              | 010            |              | 0,000         |
| 1,4-                                                             | 10347-54-3          | ,                        | 100                |              | 313#           |              |               |
| Bis(methylisocyanate)cyclohexane                                 |                     |                          |                    |              | 010//          |              |               |
| Sodium phosphate, tribasic                                       | 10361-89-4          |                          |                    | 5,000        |                |              |               |
| Cupric sulfate, ammoniated                                       | 10380-29-7          |                          |                    | 100          | 313c           |              |               |
| Mercurous nitrate                                                | 10415-75-5          |                          |                    | 10           | 313c           |              |               |
| Ferric nitrate                                                   | 10421-48-4          |                          |                    | 1,000        |                |              |               |
| 5-(Phenylmethyl)-3-furanyl)methyl<br>2,2-dimethyl-3-(2-methyl-1- | 10453-86-8          |                          |                    |              | Х              |              |               |
| propenyl)cyclopropanecarboxylate                                 | ļ                   |                          |                    |              |                |              |               |
| Resmethrin                                                       | 10453-86-8          |                          |                    |              | 313            |              |               |
| Methacrolein diacetate                                           | 10476-95-6          | ,                        | 1,000              |              |                |              |               |
| Nitrogen dioxide                                                 | 10544-72-6          |                          |                    | 10 @         |                |              |               |
| Sodium bichromate                                                | 10588-01-9          |                          |                    | 10           | 313c           |              |               |
| Carbendazim                                                      | 10605-21-7          |                          |                    | 10           |                | U372         |               |
| Isononylphenol                                                   | 11066-49-2          |                          |                    |              | 313\$          |              |               |
| Aroclor 1260                                                     | 11096-82-5          |                          |                    | 1            |                |              |               |
| Aroclor 1254                                                     | 11097-69-1          |                          |                    | 1            |                |              |               |
| Aroclor 1221                                                     | 11104-28-2          |                          |                    | 1            |                |              |               |
| Chromic acid                                                     | 11115-74-5          |                          |                    | 10           | 313c           |              |               |
| Aroclor 1232                                                     | 11141-16-5          |                          |                    | 1            |                |              |               |
| Cupric acetoarsenite                                             | 12002-03-8          | 500/10,000               | 1                  | 1            | 313c           |              |               |

| Paris greenSelenious acid, dithallium(1+) saltNickel hydroxideManganese, tricarbonyl<br>methylcyclopentadienylCarbamodithioic acid, 1,2-<br>ethanediylbis-, zinc complexZinebAmmonium fluorideAmmonium chlorideCarbamodithioic acid, 1,2-<br>ethanediylbis-, zinc complexZinebAmmonium sulfideCarbamodithioic acid, 1,2-<br>ethanediylbis-, manganese complexManebAroclor 1248Aroclor 1016Sulfur monochloridePhosphamidon | 12002-03-8<br>12039-52-0<br>12054-48-7<br>12108-13-3<br>12122-67-7<br>12122-67-7<br>12125-01-8<br>12125-02-9<br>12135-76-1<br>12427-38-2<br>12672-29-6<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9 | 500/10,000 | 100   | 1<br>1,000<br>10<br>10<br>5,000<br>100<br>100 | 313c<br>313c<br>313c<br>X<br>313<br>313<br>X<br>313 | P114 |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-----------------------------------------------|-----------------------------------------------------|------|-------|
| Nickel hydroxide         Manganese, tricarbonyl         methylcyclopentadienyl         Carbamodithioic acid, 1,2-         ethanediylbis-, zinc complex         Zineb         Ammonium fluoride         Ammonium chloride         Ammonium sulfide         Carbamodithioic acid, 1,2-         ethanediylbis-, manganese complex         Maneb         Aroclor 1248         Aroclor 1016         Sulfur monochloride        | 12054-48-7<br>12108-13-3<br>12122-67-7<br>12125-01-8<br>12125-02-9<br>12135-76-1<br>12427-38-2<br>12427-38-2<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                           | 100        | 100   | 10<br>100<br>5,000                            | 313c<br>313c<br>X<br>313<br>313<br>X                | P114 |       |
| Manganese, tricarbonyl<br>methylcyclopentadienylCarbamodithioic acid, 1,2-<br>ethanediylbis-, zinc complexZinebAmmonium fluorideAmmonium chlorideAmmonium sulfideCarbamodithioic acid, 1,2-<br>ethanediylbis-, manganese complexManebAroclor 1248Aroclor 1016Sulfur monochloride2                                                                                                                                         | 12108-13-3<br>12122-67-7<br>12125-01-8<br>12125-02-9<br>12135-76-1<br>12427-38-2<br>12427-38-2<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                         | 100        | 100   |                                               | 313c<br>X<br>313<br>X                               |      |       |
| methylcyclopentadienylCarbamodithioic acid, 1,2-<br>ethanediylbis-, zinc complexZinebAmmonium fluorideAmmonium chlorideAmmonium sulfideCarbamodithioic acid, 1,2-<br>ethanediylbis-, manganese complexManebAroclor 1248Aroclor 1016Sulfur monochloride2Terbufos                                                                                                                                                           | 12122-67-7<br>12125-01-8<br>12125-02-9<br>12135-76-1<br>12427-38-2<br>12427-38-2<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                       | 100        | 100   | 5,000                                         | X<br>313<br>X                                       |      |       |
| Carbamodithioic acid, 1,2-<br>ethanediylbis-, zinc complex<br>Zineb<br>Ammonium fluoride<br>Ammonium chloride<br>Ammonium sulfide<br>Carbamodithioic acid, 1,2-<br>ethanediylbis-, manganese complex<br>Maneb<br>Aroclor 1248<br>Aroclor 1248<br>Aroclor 1016<br>Sulfur monochloride                                                                                                                                      | 12122-67-7<br>12125-01-8<br>12125-02-9<br>12135-76-1<br>12427-38-2<br>12427-38-2<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                       |            |       | 5,000                                         | 313<br>                                             |      |       |
| ethanediylbis-, zinc complexZinebAmmonium fluorideAmmonium chlorideAmmonium sulfideCarbamodithioic acid, 1,2-<br>ethanediylbis-, manganese complexManebAroclor 1248Aroclor 1016Sulfur monochloride4                                                                                                                                                                                                                       | 12122-67-7<br>12125-01-8<br>12125-02-9<br>12135-76-1<br>12427-38-2<br>12427-38-2<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                       |            |       | 5,000                                         | 313<br>                                             |      |       |
| Zineb<br>Ammonium fluoride<br>Ammonium chloride<br>Ammonium sulfide<br>Carbamodithioic acid, 1,2-<br>ethanediylbis-, manganese complex<br>Maneb<br>Aroclor 1248<br>Aroclor 1248<br>Aroclor 1016<br>Sulfur monochloride                                                                                                                                                                                                    | 12125-01-8<br>12125-02-9<br>12135-76-1<br>12427-38-2<br>12427-38-2<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                                     |            |       | 5,000                                         | X                                                   |      |       |
| Ammonium chlorideAmmonium sulfideCarbamodithioic acid, 1,2-<br>ethanediylbis-, manganese complexManebAroclor 1248Aroclor 1016Sulfur monochloride2Terbufos                                                                                                                                                                                                                                                                 | 12125-02-9<br>12135-76-1<br>12427-38-2<br>12427-38-2<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                                                   |            |       | 5,000                                         |                                                     |      |       |
| Ammonium sulfideCarbamodithioic acid, 1,2-<br>ethanediylbis-, manganese complexManebAroclor 1248Aroclor 1016Sulfur monochlorideZerbufos                                                                                                                                                                                                                                                                                   | 12135-76-1<br>12427-38-2<br>12427-38-2<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                                                                 |            |       | -                                             |                                                     |      |       |
| Carbamodithioic acid, 1,2-<br>ethanediylbis-, manganese complex<br>Maneb<br>Aroclor 1248<br>Aroclor 1016<br>Sulfur monochloride<br>Terbufos                                                                                                                                                                                                                                                                               | 12427-38-2<br>12427-38-2<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                                                                               |            |       | 100                                           |                                                     |      |       |
| ethanediylbis-, manganese complexManebAroclor 1248Aroclor 1016Sulfur monochloride2Terbufos                                                                                                                                                                                                                                                                                                                                | 12427-38-2<br>12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                                                                                             |            |       | 1                                             |                                                     |      |       |
| ethanediylbis-, manganese complexManebAroclor 1248Aroclor 1016Sulfur monochloride2Terbufos                                                                                                                                                                                                                                                                                                                                | 12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                                                                                                           |            |       | 1                                             | 313                                                 |      |       |
| Aroclor 1248<br>Aroclor 1016<br>Sulfur monochloride                                                                                                                                                                                                                                                                                                                                                                       | 12672-29-6<br>12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                                                                                                           |            |       | 1                                             | 313                                                 |      |       |
| Aroclor 1016<br>Sulfur monochloride                                                                                                                                                                                                                                                                                                                                                                                       | 12674-11-2<br><sup>2</sup> 12771-08-3<br>13071-79-9                                                                                                                                                                         |            |       | 1                                             |                                                     |      |       |
| Sulfur monochloride <sup>2</sup><br>Terbufos                                                                                                                                                                                                                                                                                                                                                                              | <sup>2</sup> 12771-08-3<br>13071-79-9                                                                                                                                                                                       |            |       |                                               |                                                     |      |       |
| Terbufos                                                                                                                                                                                                                                                                                                                                                                                                                  | 13071-79-9                                                                                                                                                                                                                  |            |       | 1                                             |                                                     |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             |            |       | 1,000                                         |                                                     |      |       |
| Phosphamidon                                                                                                                                                                                                                                                                                                                                                                                                              | 40474 04 0                                                                                                                                                                                                                  | 100        | 100   |                                               |                                                     |      |       |
| noophannuon                                                                                                                                                                                                                                                                                                                                                                                                               | 13171-21-6                                                                                                                                                                                                                  | 100        | 100   |                                               |                                                     |      |       |
| Ethoprop                                                                                                                                                                                                                                                                                                                                                                                                                  | 13194-48-4                                                                                                                                                                                                                  | 1,000      | 1,000 |                                               | 313                                                 |      |       |
| Ethoprophos                                                                                                                                                                                                                                                                                                                                                                                                               | 13194-48-4                                                                                                                                                                                                                  | 1,000      | 1,000 |                                               | Х                                                   |      |       |
| Phosphorodithioic acid O-ethyl S,S-                                                                                                                                                                                                                                                                                                                                                                                       | 13194-48-4                                                                                                                                                                                                                  | 1,000      | 1,000 |                                               | Х                                                   |      |       |
| dipropyl ester                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                             | ,          | ,     |                                               |                                                     |      |       |
| Fenbutatin oxide                                                                                                                                                                                                                                                                                                                                                                                                          | 13356-08-6                                                                                                                                                                                                                  |            |       |                                               | 313                                                 |      |       |
| Hexakis(2-methyl-2-                                                                                                                                                                                                                                                                                                                                                                                                       | 13356-08-6                                                                                                                                                                                                                  |            |       |                                               | Х                                                   |      |       |
| phenylpropyl)distannoxane                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                             |            |       |                                               |                                                     |      |       |
| Sodium selenate                                                                                                                                                                                                                                                                                                                                                                                                           | 13410-01-0                                                                                                                                                                                                                  | 100/10,000 | 100   |                                               | 313c                                                |      |       |
| Gallium trichloride                                                                                                                                                                                                                                                                                                                                                                                                       | 13450-90-3                                                                                                                                                                                                                  | 500/10,000 | 500   |                                               |                                                     |      |       |
| Nickel carbonyl                                                                                                                                                                                                                                                                                                                                                                                                           | 13463-39-3                                                                                                                                                                                                                  | 1          | 10    | 10                                            | 313c                                                | P073 | 1,000 |
| Iron carbonyl (Fe(CO)5), (TB-5-11)-                                                                                                                                                                                                                                                                                                                                                                                       | 13463-40-6                                                                                                                                                                                                                  | 100        | 100   |                                               | Х                                                   |      | 2,500 |
| Iron, pentacarbonyl-                                                                                                                                                                                                                                                                                                                                                                                                      | 13463-40-6                                                                                                                                                                                                                  | 100        | 100   |                                               | 313                                                 |      | 2,500 |
| 1,1-Dichloro-1,2,2,3,3-<br>pentafluoropropane                                                                                                                                                                                                                                                                                                                                                                             | 13474-88-9                                                                                                                                                                                                                  |            |       |                                               | 313                                                 |      |       |
| HCFC-225cc                                                                                                                                                                                                                                                                                                                                                                                                                | 13474-88-9                                                                                                                                                                                                                  |            |       |                                               | Х                                                   |      |       |
| 2,4,5-T salts                                                                                                                                                                                                                                                                                                                                                                                                             | 13560-99-1                                                                                                                                                                                                                  |            |       | 1,000                                         |                                                     |      |       |
| Beryllium nitrate                                                                                                                                                                                                                                                                                                                                                                                                         | 13597-99-4                                                                                                                                                                                                                  |            |       | ,<br>1                                        | 313c                                                |      |       |
| Desmedipham                                                                                                                                                                                                                                                                                                                                                                                                               | 13684-56-5                                                                                                                                                                                                                  |            |       |                                               | 313                                                 |      |       |
| Zirconium nitrate                                                                                                                                                                                                                                                                                                                                                                                                         | 13746-89-9                                                                                                                                                                                                                  |            |       | 5,000                                         | -                                                   |      |       |
| Calcium chromate                                                                                                                                                                                                                                                                                                                                                                                                          | 13765-19-0                                                                                                                                                                                                                  |            |       | 10                                            | 313c                                                | U032 |       |
| Lead fluoborate                                                                                                                                                                                                                                                                                                                                                                                                           | 13814-96-5                                                                                                                                                                                                                  |            |       | 10                                            | 313c                                                |      |       |
| Ammonium fluoborate                                                                                                                                                                                                                                                                                                                                                                                                       | 13826-83-0                                                                                                                                                                                                                  |            |       | 5,000                                         |                                                     |      |       |
| sec-Butylamine                                                                                                                                                                                                                                                                                                                                                                                                            | 13952-84-6                                                                                                                                                                                                                  |            |       | 1,000                                         |                                                     |      |       |
| Cobaltous sulfamate                                                                                                                                                                                                                                                                                                                                                                                                       | 14017-41-5                                                                                                                                                                                                                  |            |       | 1,000                                         | 313c                                                |      |       |
| Salcomine                                                                                                                                                                                                                                                                                                                                                                                                                 | 14167-18-1                                                                                                                                                                                                                  | 500/10,000 | 500   | .,000                                         | 0.00                                                |      |       |
| Nickel nitrate                                                                                                                                                                                                                                                                                                                                                                                                            | 14216-75-2                                                                                                                                                                                                                  |            |       | 100                                           | 313c                                                |      |       |
| Ammonium oxalate                                                                                                                                                                                                                                                                                                                                                                                                          | 14258-49-2                                                                                                                                                                                                                  |            |       | 5,000                                         | 0.00                                                |      |       |
| Lithium chromate                                                                                                                                                                                                                                                                                                                                                                                                          | 14307-35-8                                                                                                                                                                                                                  |            |       | 10                                            | 313c                                                |      |       |

 $<sup>^{\</sup>rm 2}$  CAS Number should be 10025-67-9. See Introduction for further explanation.

| NAME                                                                                                  | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Ammonium tartrate                                                                                     | 14307-43-8                   |                          |                          | 5,000        |                |              |                     |
| Ferbam                                                                                                | 14484-64-1                   |                          |                          |              | 313            |              |                     |
| Tris(dimethylcarbamodithioato-<br>S,S')iron                                                           | 14484-64-1                   |                          |                          |              | Х              |              |                     |
| Zinc ammonium chloride                                                                                | 14639-97-5                   |                          |                          | 1,000        | 313c           |              |                     |
| Zinc ammonium chloride                                                                                | 14639-98-6                   |                          |                          | 1,000        |                |              |                     |
| Zirconium sulfate                                                                                     | 14644-61-2                   |                          |                          | 5,000        |                |              |                     |
| Bicyclo[2.2.1]heptane-2-carbonitrile,<br>5-chloro-6-<br>((((methylamino)carbonyl)oxy)imino)-          | 15271-41-7                   | 500/10,000               | 500                      |              |                |              |                     |
| ,(1-alpha,2-beta,4-alpha,5-alpha,6E))-                                                                | 15339-36-3                   |                          |                          | 10           | 313c           | P196         |                     |
| Manganese,<br>bis(dimethylcarbamodithioato-S,S')-                                                     |                              |                          |                          | 10           |                | P 190        |                     |
| 2,4,4-Trimethylhexamethylene<br>diisocyanate                                                          | 15646-96-5                   |                          |                          |              | 313#           |              |                     |
| Nickel ammonium sulfate                                                                               | 15699-18-0                   |                          |                          | 100          |                |              |                     |
| Lead sulfate                                                                                          | 15739-80-7                   |                          |                          | 10           | 313c           |              |                     |
| 2,3,4-Trichlorophenol                                                                                 | 15950-66-0                   |                          |                          | 10           | 313c           |              |                     |
| Alachlor                                                                                              | 15972-60-8                   |                          |                          |              | 313            |              |                     |
| C.I. Direct Brown 95                                                                                  | 16071-86-6                   |                          |                          |              | 313            |              |                     |
| N-Nitrosonornicotine                                                                                  | 16543-55-8                   |                          |                          |              | 313            |              |                     |
| Sodium hydrosulfide                                                                                   | 16721-80-5                   |                          |                          | 5,000        |                |              |                     |
| Ethanimidothioic acid, N-                                                                             | 16752-77-5                   | 500/10,000               | 100                      | 100          |                | P066         |                     |
| [[methylamino)carbonyl]                                                                               |                              |                          |                          |              |                |              |                     |
| Methomyl                                                                                              | 16752-77-5                   | 500/10,000               | 100                      | 100          |                | P066         |                     |
| Zinc silicofluoride                                                                                   | 16871-71-9                   |                          |                          | 5,000        | 313c           |              |                     |
| Ammonium silicofluoride                                                                               | 16919-19-0                   |                          |                          | 1,000        |                |              |                     |
| Zirconium potassium fluoride                                                                          | 16923-95-8                   |                          |                          | 1,000        |                |              |                     |
| 2,2,4-Trimethylhexamethylene<br>diisocyanate                                                          | 16938-22-0                   |                          |                          |              | 313#           |              |                     |
| Decaborane(14)                                                                                        | 17702-41-9                   | 500/10,000               | 500                      |              |                |              |                     |
| Formparanate                                                                                          | 17702-57-7                   | 100/10,000               | 100                      | 100          |                | P197         |                     |
| Benomyl                                                                                               | 17804-35-2                   | -                        |                          | 10           | 313            | U271         |                     |
| Streptozotocin                                                                                        | 18883-66-4                   |                          |                          | 1            |                | U206         |                     |
| 4-(Dipropylamino)-3,5-<br>dinitrobenzenesulfonamide                                                   | 19044-88-3                   |                          |                          |              | Х              |              |                     |
| Oryzalin                                                                                              | 19044-88-3                   |                          |                          |              | 313            |              |                     |
| Diborane                                                                                              | 19287-45-7                   | 100                      | 100                      |              |                |              | 2,500               |
| Diborane(6)                                                                                           | 19287-45-7                   | 100                      | 100                      |              |                |              | 2,500               |
| 1,2,3,7,8,9-hexachlorodibenzo-p-<br>dioxin                                                            | 19408-74-3                   |                          |                          |              | 313!           |              |                     |
| Pentaborane                                                                                           | 19624-22-7                   | 500                      | 500                      |              |                |              |                     |
| 3-(2,4-Dichloro-5-(1-<br>methylethoxy)phenyl)-5-(1,1-<br>dimethylethyl)-1,3,4-oxadiazol-2(3H)-<br>one | 19666-30-9                   |                          |                          |              | Х              |              |                     |
| Oxydiazon                                                                                             | 19666-30-9                   |                          |                          |              | 313            |              |                     |
| o-Dianisidine dihydrochloride                                                                         | 20325-40-0                   |                          |                          |              | X              |              |                     |
| 3,3'-Dimethoxybenzidine<br>dihydrochloride                                                            | 20325-40-0                   |                          |                          |              | 313            |              |                     |

| NAME                                                                                           | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 2-(3,4-Dichlorophenyl)-4-methyl-1,2,4-<br>oxadiazolidine-3,5-dione                             | 20354-26-1                   |                          |                          |              | Х              |              |                     |
| Methazole                                                                                      | 20354-26-1                   |                          |                          |              | 313            |              |                     |
| Osmium oxide OsO4 (T-4)-                                                                       | 20816-12-0                   |                          |                          | 1,000        | Х              | P087         |                     |
| Osmium tetroxide                                                                               | 20816-12-0                   |                          |                          | 1,000        | 313            | P087         |                     |
| Digoxin                                                                                        | 20830-75-5                   | 10/10,000                | 10                       |              |                |              |                     |
| Daunomycin                                                                                     | 20830-81-3                   | · · · ·                  |                          | 10           |                | U059         |                     |
| Aluminum phosphide                                                                             | 20859-73-8                   | 500                      | 100                      | 100          | 313            | P006         |                     |
| Metribuzin                                                                                     | 21087-64-9                   |                          |                          |              | 313            |              |                     |
| Fosthietan                                                                                     | 21548-32-3                   | 500                      | 500                      |              |                |              |                     |
| Leptophos                                                                                      | 21609-90-5                   | 500/10,000               | 500                      |              |                |              |                     |
| Cyanazine                                                                                      | 21725-46-2                   |                          |                          |              | 313            |              |                     |
| Mercuric oxide                                                                                 | 21908-53-2                   | 500/10,000               | 500                      |              | 313c           |              |                     |
| Chlorthiophos                                                                                  | 21923-23-9                   | 500                      |                          |              |                |              |                     |
| Fenamiphos                                                                                     | 22224-92-6                   |                          | 10                       |              | 1              |              |                     |
| Bendiocarb                                                                                     | 22781-23-3                   | ,                        |                          | 100          | 313            | U278         |                     |
| 2,2-Dimethyl-1,3-benzodioxol-4-ol<br>methylcarbamate                                           | 22781-23-3                   |                          |                          | 100          |                | U278         |                     |
| Bendiocarb phenol                                                                              | 22961-82-6                   |                          |                          | 1,000        |                | U364         |                     |
| Oxamyl                                                                                         | 23135-22-0                   | 100/10,000               | 100                      | 100          |                | P194         |                     |
| Formetanate hydrochloride                                                                      | 23422-53-9                   | 500/10,000               | 100                      | 100          |                | P198         |                     |
| Pirimifos-ethyl                                                                                | 23505-41-1                   | 1,000                    | 1,000                    |              |                |              |                     |
| Thiophanate-methyl                                                                             | 23564-05-8                   | · · ·                    |                          | 10           | 313            | U409         |                     |
| (1,2-<br>Phenylenebis(iminocarbonothioyl))<br>biscarbamic acid diethyl ester                   | 23564-06-9                   |                          |                          |              | X              |              |                     |
| Thiophanate ethyl                                                                              | 23564-06-9                   |                          |                          |              | 313            |              |                     |
| Benzamide, 3,5-dichloro-N-(1,1-<br>dimethyl-2-propynyl                                         | 23950-58-5                   |                          |                          | 5,000        |                | U192         |                     |
| Pronamide                                                                                      | 23950-58-5                   |                          |                          | 5,000        | 313            | U192         |                     |
| Triazofos                                                                                      | 24017-47-8                   | 500                      | 500                      |              |                |              |                     |
| Chlormephos                                                                                    | 24934-91-6                   | 500                      | 500                      |              |                |              |                     |
| Nonylphenol                                                                                    | 25154-52-3                   |                          |                          |              | 313\$          |              |                     |
| Dinitrobenzene (mixed isomers)                                                                 | 25154-54-5                   |                          |                          | 100          |                |              |                     |
| Nitrophenol (mixed isomers)                                                                    | 25154-55-6                   |                          |                          | 100          |                |              |                     |
| Sodium dodecylbenzenesulfonate                                                                 | 25155-30-0                   |                          |                          | 1,000        |                |              |                     |
| Butene                                                                                         | 25167-67-3                   |                          |                          |              |                |              | 10,000              |
| Trichlorophenol                                                                                | 25167-82-2                   |                          |                          | 10           | 313c           |              |                     |
| 2,4,5-T esters                                                                                 | 25168-15-4                   |                          |                          | 1,000        |                |              |                     |
| 2,4-D Esters                                                                                   | 25168-26-7                   |                          |                          | 100          |                |              |                     |
| 2-((Ethoxyl((1-<br>methylethyl)amino]phosphinothioyl]ox<br>y) benzoic acid 1-methylethyl ester | 25311-71-1                   |                          |                          |              | Х              |              |                     |
| Isofenphos                                                                                     | 25311-71-1                   |                          |                          |              | 313            |              |                     |
| Dinitrotoluene (mixed isomers)                                                                 | 25321-14-6                   |                          |                          | 10           | 313            |              |                     |
| Dichlorobenzene                                                                                | 25321-22-6                   |                          |                          | 100          |                |              |                     |
| Dichlorobenzene (mixed isomers)                                                                | 25321-22-6                   |                          |                          | 100          |                |              |                     |
| Diaminotoluene (mixed isomers)                                                                 | 25376-45-8                   |                          |                          | 10           |                | U221         |                     |
| Toluenediamine                                                                                 | 25376-45-8                   |                          | <u> </u>                 | 10           | Х              | U221         |                     |

| NAME                                                                                                 | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Dinitrophenol                                                                                        | 25550-58-7                   |                          |                          | 10           |                |              |                     |
| 2,2-Dimethyl-3-(2-methyl-1-<br>propenyl)cyclopropanecarboxylic acid<br>(3-phenoxyphenyl)methyl ester | 26002-80-2                   |                          |                          |              | Х              |              |                     |
| Phenothrin                                                                                           | 26002-80-2                   |                          |                          |              | 313            |              |                     |
| Calcium dodecylbenzenesulfonate                                                                      | 26264-06-2                   |                          |                          | 1,000        |                |              |                     |
| Carbamic acid, methyl-, O-(((2,4-<br>dimethyl-1,3-dithiolan-2-<br>yl)methylene)amino)-               | 26419-73-8                   | 100/10,000               | 100                      | 100          |                | P185         |                     |
| Benzene, 1,3-diisocyanatomethyl-                                                                     | 26471-62-5                   |                          |                          | 100          | Х              | U223         | 10,000              |
| Toluenediisocyanate (mixed isomers)                                                                  | 26471-62-5                   |                          |                          | 100          | 313            | U223         | 10,000              |
| Toluene diisocyanate (unspecified isomer)                                                            | 26471-62-5                   |                          |                          | 100          | Х              | U223         | 10,000              |
| 4-Isononylphenol                                                                                     | 26543-97-5                   |                          |                          |              | 313\$          |              |                     |
| Sodium azide (Na(N3))                                                                                | 26628-22-8                   | 500                      | 1,000                    | 1,000        | 313            | P105         |                     |
| Dichloropropane                                                                                      | 26638-19-7                   |                          |                          | 1,000        |                | İ            |                     |
| N,N'-(1,4-Piperazinediylbis(2,2,2-<br>trichloroethylidene)) bisformamide                             | 26644-46-2                   |                          |                          |              | Х              |              |                     |
| Triforine                                                                                            | 26644-46-2                   |                          |                          |              | 313            |              |                     |
| Dichloropropene                                                                                      | 26952-23-8                   |                          |                          | 100          |                |              |                     |
| Trichloro(dichlorophenyl)silane                                                                      | 27137-85-5                   | 500                      | 500                      |              |                |              |                     |
| Dodecylbenzenesulfonic acid                                                                          | 27176-87-0                   |                          |                          | 1,000        |                |              |                     |
| 4-Chloro-5-(methylamino)-2-[3-<br>(trifluoromethyl)phenyl]-3(2H)-<br>pyridazinone                    | 27314-13-2                   |                          |                          | .,           | Х              |              |                     |
| Norflurazon                                                                                          | 27314-13-2                   |                          |                          |              | 313            |              |                     |
| Triethanolamine dodecylbenzene sulfonate                                                             | 27323-41-7                   |                          |                          | 1,000        |                |              |                     |
| Vanadyl sulfate                                                                                      | 27774-13-6                   |                          |                          | 1,000        | 313c           |              |                     |
| d-trans-Allethrin                                                                                    | 28057-48-9                   |                          |                          |              | 313            |              |                     |
| d-trans-Chrysanthemic acid of d-<br>allethrone                                                       | 28057-48-9                   |                          |                          |              | Х              |              |                     |
| Carbamic acid, diethylthio-, S-(p-<br>chlorobenzyl)                                                  | 28249-77-6                   |                          |                          |              | Х              |              |                     |
| Thiobencarb                                                                                          | 28249-77-6                   |                          |                          |              | 313            |              |                     |
| Antimony potassium tartrate                                                                          | 28300-74-5                   |                          |                          | 100          | 313c           |              |                     |
| Xylylene dichloride                                                                                  | 28347-13-9                   | 100/10,000               | 100                      |              |                |              |                     |
| C.I. Direct Blue 218                                                                                 | 28407-37-6                   |                          |                          |              | 313            |              |                     |
| Bromadiolone                                                                                         | 28772-56-7                   | 100/10,000               | 100                      |              |                |              |                     |
| Octachlorostyrene                                                                                    | 29082-74-4                   | ,                        |                          |              | 313            |              |                     |
| O-(2-(Diethylamino)-6-methyl-4-<br>pyrimidinyl)-O,O-dimethyl<br>phosphorothioate                     | 29232-93-7                   |                          |                          |              | X              |              |                     |
| Pirimiphos methyl                                                                                    | 29232-93-7                   |                          |                          |              | 313            |              |                     |
| Paraformaldehyde                                                                                     | 30525-89-4                   |                          |                          | 1,000        |                |              |                     |
| Ethanimidothioic acid, 2-<br>(dimethylamino)-N-hydroxy-2-oxo-,<br>methyl ester                       | 30558-43-1                   |                          |                          | 5,000        |                | U394         |                     |
| Acephate                                                                                             | 30560-19-1                   |                          |                          |              | 313            |              |                     |
| Acetylphosphoramidothioic acid O,S-<br>dimethyl ester                                                | 30560-19-1                   |                          |                          |              | X              |              |                     |

| NAME                                                                                       | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|--------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Methacryloyloxyethyl isocyanate                                                            | 30674-80-7                   | 100                      | 100                      |              |                |              |                     |
| 3-<br>((Ethylamino)methoxyphosphinothioyl)<br>oxy)-2-butenoic acid, 1-methylethyl<br>ester | 31218-83-4                   |                          |                          |              | Х              |              |                     |
| Propetamphos                                                                               | 31218-83-4                   |                          |                          |              | 313            |              |                     |
| 2,4,5-TP esters                                                                            | 32534-95-5                   |                          |                          | 100          |                |              |                     |
| Amitraz                                                                                    | 33089-61-1                   |                          |                          |              | 313            |              |                     |
| beta - Endosulfan                                                                          | 33213-65-9                   |                          |                          | 1            |                |              |                     |
| N-(5-(1,1-Dimethylethyl)-1,3,4-<br>thiadiazol-2-yl)-N,N'-dimethylurea                      | 34014-18-1                   |                          |                          |              | Х              |              |                     |
| Tebuthiuron                                                                                | 34014-18-1                   |                          |                          |              | 313            |              |                     |
| Dichlorotrifluoroethane                                                                    | 34077-87-7                   |                          |                          |              | 313            |              |                     |
| Diflubenzuron                                                                              | 35367-38-5                   |                          |                          |              | 313            |              |                     |
| O-Ethyl O-(4-<br>(methylthio)phenyl)phosphorodithioic<br>acid S-propyl ester               | 35400-43-2                   |                          |                          |              | Х              |              |                     |
| Sulprofos                                                                                  | 35400-43-2                   |                          |                          |              | 313            |              |                     |
| 1-(2-(2,4-Dichlorophenyl)-2-(2-<br>propenyloxy)ethyl)-1H-imidazole                         | 35554-44-0                   |                          |                          |              | Х              |              |                     |
| Imazalil                                                                                   | 35554-44-0                   |                          |                          |              | 313            |              |                     |
| 1-Bromo-1-(bromomethyl)-1,3-<br>propanedicarbonitrile                                      | 35691-65-7                   |                          |                          |              | 313            |              |                     |
| 1,2,3,4,6,7,8-heptachlorodibenzo-p-<br>dioxin                                              | 35822-46-9                   |                          |                          |              | 313!           |              |                     |
| Uranyl nitrate                                                                             | 36478-76-9                   |                          |                          | 100          |                |              |                     |
| Nickel chloride                                                                            | 37211-05-5                   |                          |                          | 100          | 313c           |              |                     |
| 1,3-<br>Bis(methylisocyanate)cyclohexane                                                   | 38661-72-2                   |                          |                          |              | 313#           |              |                     |
| Diethatyl ethyl                                                                            | 38727-55-8                   |                          |                          |              | 313            |              |                     |
| 1,2,3,4,6,7,8,9-<br>octachlorodibenzofuran                                                 | 39001-02-0                   |                          |                          |              | 313!           |              |                     |
| 2,4-Diaminoanisole sulfate                                                                 | 39156-41-7                   |                          |                          |              | 313            |              |                     |
| Thiofanox                                                                                  | 39196-18-4                   | 100/10,000               | 100                      | 100          |                | P045         |                     |
| 1,2,3,4,7,8-hexachlorodibenzo-p-<br>dioxin                                                 | 39227-28-6                   |                          |                          |              | 313!           |              |                     |
| Dinocap                                                                                    | 39300-45-3                   |                          |                          |              | 313            |              |                     |
| Fenpropathrin                                                                              | 39515-41-8                   |                          |                          |              | 313            |              |                     |
| 2,2,3,3-Tetramethylcyclopropane<br>carboxylic acid cyano(3-<br>phenoxyphenyl)methyl ester  | 39515-41-8                   |                          |                          |              | Х              |              |                     |
| 1,2,3,7,8-pentachlorodibenzo-p-dioxin                                                      | 40321-76-4                   |                          |                          |              | 313!           |              |                     |
| N-(1-Ethylpropyl)-3,4-dimethyl-2,6-<br>dinitrobenzenamine                                  | 40487-42-1                   |                          |                          |              | Х              |              |                     |
| Pendimethalin                                                                              | 40487-42-1                   |                          |                          |              | 313            |              |                     |
| O-(4-Bromo-2-chlorophenyl)-O-ethyl-<br>S-propylphosphorothioate                            | 41198-08-7                   |                          |                          |              | Х              |              |                     |
| Profenofos                                                                                 | 41198-08-7                   |                          |                          |              | 313            |              |                     |
| 3,3'-Dimethylbenzidine dihydrofluoride                                                     | 41766-75-0                   |                          |                          |              | 313            |              |                     |
| o-Tolidine dihydrofluoride                                                                 | 41766-75-0                   |                          |                          |              | X              |              |                     |
| 1,6-Dinitropyrene                                                                          | 42397-64-8                   |                          |                          |              | 313+           |              |                     |

| NAME                                                                                                    | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|---------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 1,8-Dinitropyrene                                                                                       | 42397-65-9                   |                          |                          |              | 313+           |              |                     |
| Isopropanolamine dodecylbenzene sulfonate                                                               | 42504-46-1                   |                          |                          | 1,000        |                |              |                     |
| Oxyfluorfen                                                                                             | 42874-03-3                   |                          |                          |              | 313            |              |                     |
| 1-(4-Chlorophenoxy)-3,3-dimethyl-1-<br>(1H-1,2,4-triazol-1-yl)-2-butanone                               | 43121-43-3                   |                          |                          |              | X              |              |                     |
| Triadimefon                                                                                             | 43121-43-3                   |                          |                          |              | 313            |              |                     |
| 3-(3,5-Dichlorophenyl)-5-ethenyl-5-<br>methyl-2,4-oxazolidinedione                                      | 50471-44-8                   |                          |                          |              | Х              |              |                     |
| Vinclozolin                                                                                             | 50471-44-8                   |                          |                          |              | 313            |              |                     |
| Phosphonothioic acid, methyl-, S-(2-<br>(bis(1-methylethyl)amino)ethyl) O-<br>ethyl ester               | 50782-69-9                   | 100                      | 100                      |              |                |              |                     |
| 2,3,7,8-tetrachlorodibenzofuran                                                                         | 51207-31-9                   |                          |                          |              | 313!           |              |                     |
| Hexazinone                                                                                              | 51235-04-2                   |                          |                          |              | 313            |              |                     |
| 2-(4-(2,4-<br>Dichlorophenoxy)phenoxy)propanoic<br>acid, methyl ester                                   | 51338-27-3                   |                          |                          |              | Х              |              |                     |
| Diclofop methyl                                                                                         | 51338-27-3                   |                          |                          |              | 313            |              |                     |
| 4-Chloro-alpha-(1-<br>methylethyl)benzeneacetic acid<br>cyano(3-phenoxyphenyl)methyl ester              | 51630-58-1                   |                          |                          |              | Х              |              |                     |
| Fenvalerate                                                                                             | 51630-58-1                   |                          |                          |              | 313            |              |                     |
| Zinc ammonium chloride                                                                                  | 52628-25-8                   |                          |                          | 1,000        | 313c           |              |                     |
| 3-(2,2-Dichloroethenyl)-2,2-<br>dimethylcyclopropane carboxylic acid,<br>(3-phenoxy-phenyl)methyl ester | 52645-53-1                   |                          |                          |              | Х              |              |                     |
| Permethrin                                                                                              | 52645-53-1                   |                          |                          |              | 313            |              |                     |
| Lead stearate                                                                                           | 52652-59-2                   |                          |                          | 10           | 313c           |              |                     |
| Calcium arsenite                                                                                        | 52740-16-6                   |                          |                          | 1            | 313c           |              |                     |
| Carbamothioic acid, dipropyl-, S-<br>(phenylmethyl) ester                                               | 52888-80-9                   |                          |                          | 5,000        |                | U387         |                     |
| Bromacil, lithium salt                                                                                  | 53404-19-6                   |                          |                          |              | 313            |              |                     |
| 2,4-(1H,3H)-Pyrimidinedione, 5-<br>bromo-6-methyl-3-(1-methylpropyl),<br>lithium salt                   | 53404-19-6                   |                          |                          |              | Х              |              |                     |
| 2,4-D 2-ethyl-4-methylpentyl ester                                                                      | 53404-37-8                   |                          |                          |              | 313            |              |                     |
| Dazomet, sodium salt                                                                                    | 53404-60-7                   |                          |                          |              | 313            |              |                     |
| Tetrahydro-3,5-dimethyl-2H-1,3,5-<br>thiadiazine-2-thione, ion(1-), sodium                              | 53404-60-7                   |                          |                          |              | Х              |              |                     |
| 2,4-D Esters                                                                                            | 53467-11-1                   |                          |                          | 100          |                |              |                     |
| Aroclor 1242                                                                                            | 53469-21-9                   |                          |                          | 1            |                |              |                     |
| Pyriminil                                                                                               | 53558-25-1                   | 100/10,000               | 100                      |              |                |              |                     |
| Carbosulfan                                                                                             | 55285-14-8                   |                          |                          | 1,000        |                | P189         |                     |
| 2,3,-Dihydro-5,6-dimethyl-1,4-dithiin<br>1,1,4,4-tetraoxide                                             | 55290-64-7                   |                          |                          |              | Х              |              |                     |
| Dimethipin                                                                                              | 55290-64-7                   |                          |                          |              | 313            |              |                     |
| 3-lodo-2-propynyl butylcarbamate                                                                        | 55406-53-6                   |                          |                          |              | 313            |              |                     |
| Ferric ammonium oxalate                                                                                 | 55488-87-4                   |                          |                          | 1,000        |                |              |                     |
| 1,2,3,4,7,8,9-heptachlorodibenzofuran                                                                   | 55673-89-7                   |                          |                          |              | 313!           |              |                     |
| Lead stearate                                                                                           | 56189-09-4                   |                          |                          | 10           | 313c           |              |                     |

| NAME                                                                                                                                                        | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 2,3,4,7,8-pentachlorodibenzofuran                                                                                                                           | 57117-31-4                   |                          |                          |              | 313!           |              |                     |
| 1,2,3,7,8-pentachlorodibenzofuran                                                                                                                           | 57117-41-6                   |                          |                          |              | 313!           |              |                     |
| 1,2,3,6,7,8-hexachlorodibenzofuran                                                                                                                          | 57117-44-9                   |                          |                          |              | 313!           |              |                     |
| Triclopyr triethylammonium salt                                                                                                                             | 57213-69-1                   |                          |                          |              | 313            |              |                     |
| 1,2,3,6,7,8-hexachlorodibenzo-p-                                                                                                                            | 57653-85-7                   |                          |                          |              | 313!           |              |                     |
| dioxin                                                                                                                                                      |                              |                          |                          |              |                |              |                     |
| 4–Nitropyrene                                                                                                                                               | 57835-92-4                   |                          |                          |              | 313+           |              |                     |
| Zinc, dichloro(4,4-dimethyl-                                                                                                                                | 58270-08-9                   | 100/10,000               | 100                      |              | 313c           |              |                     |
| 5((((methylamino)carbonyl)oxy)imino)<br>pentanenitrile)-, (T-4)-                                                                                            |                              |                          |                          |              |                |              |                     |
| Thiodicarb                                                                                                                                                  | 59669-26-0                   |                          |                          | 100          | 313            | U410         |                     |
| .alpha(2-Chlorophenyl)alpha4-<br>chlorophenyl)-5-pyrimidinemethanol                                                                                         | 60168-88-9                   |                          |                          |              | Х              |              |                     |
| Fenarimol                                                                                                                                                   | 60168-88-9                   |                          |                          |              | 313            |              |                     |
| 1-(2-(2,4-Dichlorophenyl)-4-propyl-<br>1,3-dioxolan-2-yl)-methyl-1H-1,2,4,-<br>triazole                                                                     | 60207-90-1                   |                          |                          |              | Х              |              |                     |
| Propiconazole                                                                                                                                               | 60207-90-1                   |                          |                          |              | 313            |              |                     |
| 2,3,4,6,7,8-hexachlorodibenzofuran                                                                                                                          | 60851-34-5                   |                          |                          |              | 313!           |              |                     |
| 2,4,5-T esters                                                                                                                                              | 61792-07-2                   |                          |                          | 1,000        |                |              |                     |
| Cobalt, ((2,2'-(1,2-<br>ethanediylbis(nitrilomethylidyne))bis(6<br>-fluorophenylato))(2-)-N,N',O,O')-                                                       | 62207-76-5                   |                          | 100                      |              | 313c           |              |                     |
| Acifluorfen, sodium salt                                                                                                                                    | 62476-59-9                   |                          |                          |              | 313            |              |                     |
| 5-(2-Chloro-4-<br>(trifluoromethyl)phenoxy)-2-<br>nitrobenzoic acid, sodium salt                                                                            | 62476-59-9                   |                          |                          |              | X              |              |                     |
| Chlorotetrafluoroethane                                                                                                                                     | 63938-10-3                   |                          |                          |              | 313            |              |                     |
| 2-Chloro-N-(((4-methoxy-6-methyl-<br>1,3,5-triazin-2-<br>yl)amino]carbonyl)benzenesulfonamid<br>e                                                           | 64902-72-3                   |                          |                          |              | Х              |              |                     |
| -<br>Chlorsulfuron                                                                                                                                          | 64902-72-3                   |                          |                          |              | 313            |              |                     |
| 3,3'-Dichlorobenzidine sulfate                                                                                                                              | 64969-34-2                   |                          |                          |              | 313            |              |                     |
| 2-(4-((6-Chloro-2-<br>benzoxazolylen)oxy)phenoxy)propano<br>ic acid, ethyl ester                                                                            | 66441-23-4                   |                          |                          |              | X              |              |                     |
| Fenoxaprop ethyl                                                                                                                                            | 66441-23-4                   |                          |                          |              | 313            |              |                     |
| Hydramethylnon                                                                                                                                              | 67485-29-4                   |                          |                          |              | 313            |              |                     |
| Tetrahydro-5,5-dimethyl-2(1H)-<br>pyrimidinone(3-(4-<br>(trifluoromethyl)phenyl)-1-(2-(4-<br>(trifluoromethyl)phenyl)ethenyl)-2-<br>propenylidene)hydrazone | 67485-29-4                   |                          |                          |              | X              |              |                     |
| 1,2,3,4,6,7,8-heptachlorodibenzofuran                                                                                                                       | 67562-39-4                   |                          |                          |              | 313!           |              |                     |
| 3-(2-Chloro-3,3,3-trifluoro-1-propenyl)-<br>2,2-dimethylcyclopropanecarboxylic<br>acid cyano(3-phenoxyphenyl) methyl<br>ester                               | 68085-85-8                   |                          |                          |              | Х              |              |                     |
| Cyhalothrin                                                                                                                                                 | 68085-85-8                   |                          |                          |              | 313            |              |                     |
| Cyfluthrin                                                                                                                                                  | 68359-37-5                   |                          |                          |              | 313            |              |                     |

| NAME                                                                                                                    | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 3-(2,2-Dichloroethenyl)-2,2-<br>dimethylcyclopropanecarboxylic acid,<br>cyano(4-fluoro-3-<br>phenoxyphenyl)methyl ester | 68359-37-5                   |                          |                          |              | Х              |              |                     |
| N-(2-Chloro-4-(trifluoromethyl)phenyl)-<br>DL-valine(+)-cyano(3-<br>phenoxyphenyl)methyl ester                          | 69409-94-5                   |                          |                          |              | Х              |              |                     |
| Fluvalinate                                                                                                             | 69409-94-5                   |                          |                          |              | 313            |              |                     |
| Fluazifop butyl                                                                                                         | 69806-50-4                   |                          |                          |              | 313            |              |                     |
| 2-(4-((5-(Trifluoromethyl)-2-<br>pyridinyl)oxy)-phenoxy)propanoic<br>acid, butyl ester                                  | 69806-50-4                   |                          |                          |              | X              |              |                     |
| 1,2,3,4,7,8-hexachlorodibenzofuran                                                                                      | 70648-26-9                   |                          |                          |              | 313!           |              |                     |
| Abamectin                                                                                                               | 71751-41-2                   |                          |                          |              | 313            |              |                     |
| Avermectin B1                                                                                                           | 71751-41-2                   |                          |                          |              | Х              |              |                     |
| 5-(2-Chloro-4-<br>(trifluoromethyl)phenoxy)-N-<br>methylsulfonyl)-2-nitrobenzamide                                      | 72178-02-0                   |                          |                          |              | Х              |              |                     |
| Fomesafen                                                                                                               | 72178-02-0                   |                          |                          |              | 313            |              |                     |
| Fenoxycarb                                                                                                              | 72490-01-8                   |                          |                          |              | 313            |              |                     |
| (2-(4-Phenoxyphenoxy)ethyl carbamic acid ethyl ester                                                                    | 72490-01-8                   |                          |                          |              | Х              |              |                     |
| 1,2,3,7,8,9-hexachlorodibenzofuran                                                                                      | 72918-21-9                   |                          |                          |              | 313!           |              |                     |
| 2-(1-(Ethoxyimino) butyl)-5-(2-<br>(ethylthio)propyl)-3-hydroxyl-2-<br>cyclohexen-1-one                                 | 74051-80-2                   |                          |                          |              | X              |              |                     |
| Sethoxydim                                                                                                              | 74051-80-2                   |                          |                          |              | 313            |              |                     |
| 4-Methyldiphenylmethane-3,4-<br>diisocyanate                                                                            | 75790-84-0                   |                          |                          |              | 313#           |              |                     |
| 2,4'-Diisocyanatodiphenyl sulfide                                                                                       | 75790-87-3                   |                          |                          |              | 313#           |              |                     |
| 2-(4-((6-Chloro-2-<br>quinoxalinyl)oxy]phenoxy) propanoic<br>acid ethyl ester                                           | 76578-14-8                   |                          |                          |              | X              |              |                     |
| Quizalofop-ethyl                                                                                                        | 76578-14-8                   |                          |                          |              | 313            |              |                     |
| Benzoic acid, 5-(2-chloro-4-<br>(trifluoromethyl)phenoxy)-2-nitro-, 2-<br>ethoxy-1-methyl-2-oxethyl ester               | 77501-63-4                   |                          |                          |              | 313            |              |                     |
| 5-(2-Chloro-4-<br>(trifluoromethyl)phenoxy)-2-nitro-2-<br>ethoxy-1-methyl-2-oxoethyl ester                              | 77501-63-4                   |                          |                          |              | Х              |              |                     |
| Lactofen                                                                                                                | 77501-63-4                   |                          |                          |              | 313            |              |                     |
| Bifenthrin                                                                                                              | 82657-04-3                   |                          |                          |              | 313            |              |                     |
| 4-Nonylphenol, branched                                                                                                 | 84852-15-3                   |                          |                          |              | 313\$          |              |                     |
| .alphaButylalpha(4-chlorophenyl)-<br>1H-1,2,4-triazole-1-propanenitrile                                                 | 88671-89-0                   |                          |                          |              | Х              |              |                     |
| Myclobutanil                                                                                                            | 88671-89-0                   |                          |                          |              | 313            |              |                     |
| Dichloro-1,1,2-trifluoroethane                                                                                          | 90454-18-5                   |                          |                          |              | 313            |              |                     |
| Nonylphenol, branched                                                                                                   | 90481-04-2                   |                          |                          |              | 313\$          |              |                     |
| Chlorimuron ethyl                                                                                                       | 90982-32-4                   |                          |                          |              | 313            |              |                     |
| Ethyl-2-(((((4-chloro-6-<br>methoxyprimidin-2-<br>yl)amino)carbonyl)amino)sulfonyl)ben                                  | 90982-32-4                   |                          |                          |              | X              |              |                     |

## ATTACHMENT 2

| NAME                                                                                                                 | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| zoate                                                                                                                |                              |                          |                          |              |                |              |                     |
| 2-(4-Methoxy-6-methyl-1,3,5-triazin-2-<br>yl)-<br>methylamino)carbonyl)amino)sulfonyl)<br>benzoic acid, methyl ester | 101200-48-0                  |                          |                          |              | Х              |              |                     |
| Tribenuron methyl                                                                                                    | 101200-48-0                  |                          |                          |              | 313            |              |                     |
| 1,1-Dichloro-1,2,3,3,3-<br>pentafluoropropane                                                                        | 111512-56-2                  |                          |                          |              | 313            |              |                     |
| HCFC-225eb                                                                                                           | 111512-56-2                  |                          |                          |              | Х              |              |                     |
| o-Dianisidine hydrochloride                                                                                          | 111984-09-9                  |                          |                          |              | Х              |              |                     |
| 3,3'-Dimethoxybenzidine<br>hydrochloride                                                                             | 111984-09-9                  |                          |                          |              | 313            |              |                     |
| Dichloropentafluoropropane                                                                                           | 127564-92-5                  |                          |                          |              | 313            |              |                     |
| 2,2-Dichloro-1,1,1,3,3-<br>pentafluoropropane                                                                        | 128903-21-9                  |                          |                          |              | 313            |              |                     |
| HCFC-225aa                                                                                                           | 128903-21-9                  |                          |                          |              | Х              |              |                     |
| Diethyldiisocyanatobenzene                                                                                           | 134190-37-7                  |                          |                          |              | 313#           |              |                     |
| 1,3-Dichloro-1,1,2,3,3-<br>pentafluoropropane                                                                        | 136013-79-1                  |                          |                          |              | 313            |              |                     |
| HCFC-225ea                                                                                                           | 136013-79-1                  |                          |                          |              | Х              |              |                     |

## ATTACHMENT 2

## **APPENDIX A**

## LIST OF LISTS CONSOLIDATED LIST OF CHEMICALS (BY ALPHBETICAL NAME) SUBJECT TO EPCRA, CERCLA AND CAA SECTION 112(r)

| NAME                                | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Abamectin                           | 71751-41-2                   |                          |                          |              | 313            |              |                     |
| Acenaphthene                        | 83-32-9                      |                          |                          | 100          |                |              |                     |
| Acenaphthylene                      | 208-96-8                     |                          |                          | 5,000        |                |              |                     |
| Acephate                            | 30560-19-1                   |                          |                          |              | 313            |              |                     |
| Acetaldehyde                        | 75-07-0                      |                          |                          | 1,000        | 313            | U001         | 10,000              |
| Acetaldehyde, trichloro-            | 75-87-6                      |                          |                          | 5,000        |                | U034         |                     |
| Acetamide                           | 60-35-5                      |                          |                          | 100          | 313            |              |                     |
| Acetic acid                         | 64-19-7                      |                          |                          | 5,000        |                |              |                     |
| Acetic acid, (2,4-dichlorophenoxy)- | 94-75-7                      |                          |                          | 100          | Х              | U240         |                     |
| Acetic acid ethenyl ester           | 108-05-4                     | 1,000                    | 5,000                    | 5,000        | Х              |              | 15,000              |
| Acetic anhydride                    | 108-24-7                     |                          |                          | 5,000        |                |              |                     |
| Acetone                             | 67-64-1                      |                          |                          | 5,000        |                | U002         |                     |
| Acetone cyanohydrin                 | 75-86-5                      | 1,000                    | 10                       | 10           | Х              | P069         |                     |
| Acetone thiosemicarbazide           | 1752-30-3                    | 1,000/10,000             | 1,000                    |              |                |              |                     |
| Acetonitrile                        | 75-05-8                      |                          |                          | 5,000        | 313            | U003         |                     |
| Acetophenone                        | 98-86-2                      |                          |                          | 5,000        | 313            | U004         |                     |
| 2-Acetylaminofluorene               | 53-96-3                      |                          |                          | 1            | 313            | U005         |                     |
| Acetyl bromide                      | 506-96-7                     |                          |                          | 5,000        |                |              |                     |
| Acetyl chloride                     | 75-36-5                      |                          |                          | 5,000        |                | U006         |                     |
| Acetylene                           | 74-86-2                      |                          |                          |              |                |              | 10,000              |
| Acetylphosphoramidothioic acid O,S- | 30560-19-1                   |                          |                          |              | Х              |              |                     |
| dimethyl ester                      |                              |                          |                          |              |                |              |                     |
| 1-Acetyl-2-thiourea                 | 591-08-2                     |                          |                          | 1,000        |                | P002         |                     |
| Acifluorfen, sodium salt            | 62476-59-9                   |                          |                          |              | 313            |              |                     |
| Acrolein                            | 107-02-8                     |                          |                          | 1            | 313            | P003         | 5,000               |
| Acrylamide                          | 79-06-1                      | 1,000/10,000             | 5,000                    | 5,000        | 313            | U007         |                     |
| Acrylic acid                        | 79-10-7                      |                          |                          | 5,000        | 313            | U008         |                     |
| Acrylonitrile                       | 107-13-1                     | 10,000                   | 100                      | 100          | 313            | U009         | 20,000              |
| Acrylyl chloride                    | 814-68-6                     | 100                      | 100                      |              |                |              | 5,000               |
| Adipic acid                         | 124-04-9                     |                          |                          | 5,000        |                |              |                     |
| Adiponitrile                        | 111-69-3                     | 1,000                    | 1,000                    |              |                |              |                     |
| Alachlor                            | 15972-60-8                   |                          |                          |              | 313            |              |                     |
| Aldicarb                            | 116-06-3                     | 100/10,000               | 1                        | 1            | 313            | P070         |                     |
| Aldicarb sulfone                    | 1646-88-4                    |                          |                          | 100          |                | P203         |                     |
| Aldrin                              | 309-00-2                     | 500/10,000               | 1                        | 1            | 313            | P004         |                     |
| d-trans-Allethrin                   | 28057-48-9                   |                          |                          |              | 313            |              |                     |
| Allyl alcohol                       | 107-18-6                     | 1,000                    | 100                      | 100          | 313            | P005         | 15,000              |
| Allylamine                          | 107-11-9                     | 500                      | 500                      |              | 313            |              | 10,000              |
| Allyl chloride                      | 107-05-1                     |                          |                          | 1,000        | 313            |              |                     |
| Aluminum (fume or dust)             | 7429-90-5                    |                          |                          |              | 313            |              |                     |
| Aluminum oxide (fibrous forms)      | 1344-28-1                    |                          |                          |              | 313            |              |                     |
| Aluminum phosphide                  | 20859-73-8                   | 500                      | 100                      | 100          | 313            | P006         |                     |
| Aluminum sulfate                    | 10043-01-3                   |                          |                          | 5,000        |                |              |                     |
| Ametryn                             | 834-12-8                     |                          |                          |              | 313            |              |                     |

| NAME                                                                                                                                                                                               | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ                 | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|------------------------------|----------------|--------------|---------------------|
| 2-Aminoanthraquinone                                                                                                                                                                               | 117-79-3                     |                          |                          |                              | 313            |              |                     |
| 4-Aminoazobenzene                                                                                                                                                                                  | 60-09-3                      |                          |                          |                              | 313            |              |                     |
| 4-Aminobiphenyl                                                                                                                                                                                    | 92-67-1                      |                          |                          | 1                            | 313            |              |                     |
| 1-Amino-2,4-dibromoanthraquinone                                                                                                                                                                   | 81-49-2                      |                          |                          |                              | 313            |              |                     |
| 1-Amino-2-methylanthraquinone                                                                                                                                                                      | 82-28-0                      |                          |                          |                              | 313            |              |                     |
| 5-(Aminomethyl)-3-isoxazolol                                                                                                                                                                       | 2763-96-4                    |                          | 1,000                    | 1,000                        |                | P007         |                     |
| Aminopterin                                                                                                                                                                                        | 54-62-6                      | ,                        | 500                      |                              |                |              |                     |
| 4-Aminopyridine                                                                                                                                                                                    | 504-24-5                     | ,                        | 1,000                    | 1,000                        |                | P008         |                     |
| Amiton                                                                                                                                                                                             | 78-53-5                      |                          | 500                      | ,                            |                |              |                     |
| Amiton oxalate                                                                                                                                                                                     | 3734-97-2                    | 100/10,000               | 100                      |                              |                |              |                     |
| Amitraz                                                                                                                                                                                            | 33089-61-1                   |                          |                          |                              | 313            |              |                     |
| Amitrole                                                                                                                                                                                           | 61-82-5                      |                          |                          | 10                           | 313            | U011         |                     |
| Ammonia                                                                                                                                                                                            | 7664-41-7                    | 500                      | 100                      |                              |                |              |                     |
| Ammonia (anhydrous)                                                                                                                                                                                | 7664-41-7                    | 500                      | 100                      |                              |                |              | 10,000              |
| Ammonia (conc 20% or greater)                                                                                                                                                                      | 7664-41-7                    |                          |                          | See<br>ammonium<br>hydroxide | Х              |              | 20,000              |
| Ammonia (includes anhydrous ammonia<br>and aqueous ammonia from water<br>dissociable ammonium salts and other<br>sources; 10 percent of total aqueous<br>ammonia is reportable under this listing) | 7664-41-7                    |                          |                          |                              | 313            |              |                     |
| Ammonium acetate                                                                                                                                                                                   | 631-61-8                     |                          |                          | 5,000                        |                |              |                     |
| Ammonium benzoate                                                                                                                                                                                  | 1863-63-4                    |                          |                          | 5,000                        |                |              |                     |
| Ammonium bicarbonate                                                                                                                                                                               | 1066-33-7                    |                          |                          | 5,000                        |                |              |                     |
| Ammonium bichromate                                                                                                                                                                                | 7789-09-5                    |                          |                          | 10                           |                |              |                     |
| Ammonium bifluoride                                                                                                                                                                                | 1341-49-7                    |                          |                          | 100                          |                |              |                     |
| Ammonium bisulfite                                                                                                                                                                                 | 10192-30-0                   |                          |                          | 5,000                        |                |              |                     |
| Ammonium carbamate                                                                                                                                                                                 | 1111-78-0                    |                          |                          | 5,000                        |                |              |                     |
| Ammonium carbonate                                                                                                                                                                                 | 506-87-6                     |                          |                          | 5,000                        |                |              |                     |
| Ammonium chloride                                                                                                                                                                                  | 12125-02-9                   |                          |                          | 5,000                        |                |              |                     |
| Ammonium chromate                                                                                                                                                                                  | 7788-98-9                    |                          |                          | 10                           | 313c           |              |                     |
| Ammonium citrate, dibasic                                                                                                                                                                          | 3012-65-5                    |                          |                          | 5,000                        |                |              |                     |
| Ammonium fluoborate                                                                                                                                                                                | 13826-83-0                   |                          |                          | 5,000                        |                |              |                     |
| Ammonium fluoride                                                                                                                                                                                  | 12125-01-8                   |                          |                          | 100                          |                |              |                     |
| Ammonium hydroxide                                                                                                                                                                                 | 1336-21-6                    |                          |                          | 1,000                        | Х              |              |                     |
| Ammonium oxalate                                                                                                                                                                                   | 5972-73-6                    |                          |                          | 5,000                        |                |              |                     |
| Ammonium oxalate                                                                                                                                                                                   | 6009-70-7                    |                          |                          | 5,000                        |                |              |                     |
| Ammonium oxalate                                                                                                                                                                                   | 14258-49-2                   |                          |                          | 5,000                        |                |              |                     |
| Ammonium picrate                                                                                                                                                                                   | 131-74-8                     |                          |                          | 10                           |                | P009         |                     |
| Ammonium silicofluoride                                                                                                                                                                            | 16919-19-0                   |                          |                          | 1,000                        |                |              |                     |
| Ammonium sulfamate                                                                                                                                                                                 | 7773-06-0                    |                          |                          | 5,000                        |                |              |                     |
| Ammonium sulfide                                                                                                                                                                                   | 12135-76-1                   |                          |                          | 100                          |                |              |                     |
| Ammonium sulfite                                                                                                                                                                                   | 10196-04-0                   |                          |                          | 5,000                        |                |              |                     |
| Ammonium tartrate                                                                                                                                                                                  | 3164-29-2                    |                          |                          | 5,000                        |                |              |                     |
| Ammonium tartrate                                                                                                                                                                                  | 14307-43-8                   |                          |                          | 5,000                        |                |              |                     |
| Ammonium thiocyanate                                                                                                                                                                               | 1762-95-4                    |                          |                          | 5,000                        |                |              |                     |
| Ammonium vanadate                                                                                                                                                                                  | 7803-55-6                    |                          |                          | 1,000                        | 313c           | P119         |                     |
| Amphetamine                                                                                                                                                                                        | 300-62-9                     | 1,000                    | 1,000                    |                              |                |              |                     |
| Amyl acetate                                                                                                                                                                                       | 628-63-7                     |                          |                          | 5,000                        |                |              |                     |
| iso-Amyl acetate                                                                                                                                                                                   | 123-92-2                     |                          |                          | 5,000                        |                |              |                     |
| sec-Amyl acetate                                                                                                                                                                                   | 626-38-0                     |                          |                          | 5,000                        |                |              |                     |
| tert-Amyl acetate                                                                                                                                                                                  | 625-16-1                     |                          |                          | 5,000                        |                |              |                     |

| Asbestos (friable)       1332-21-4       1       313         Atrazine       1912-24-9       313       4         Auramine       492-80-8       100       X       U014         Avermectin B1       71751-41-2       X       4         Azaserine       115-02-6       1       U015       1         H-Azepine-1 carbothioic acid, hexahydro-S-ethyl ester       2212-67-1       X       4         Azinphos-methyl       2642-71-9       100/10,000       100       4         Azinphos-methyl       86-50-0       10/10,000       1       1         Aziridine       151-56-4       500       1       1       X         Barban       101-27-9       10       U280       10,00       1         Barium       7440-39-3       313       313       13         Barium Compounds       N040       313       10       313         Barium cyanide       542-62-1       10       313       10         Bendiocarb       22781-23-3       100       313       U278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NAME                                  | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Aniline         62:53:3         1.000         5.000         5.000         313         U012           Aniline         90:04-0         100         313         0         0           o-Anisidine         90:04-0         100         313         0         0           o-Anisidine hydrochloride         134:29:2         313         0         0         313         0           Anthracene         120:12:7         5.000         313         0         0         313         0           Antimony Compounds         N010         & 8         313         0         0         0         100         100         100         100         100         100         100         0         0         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Anilazine                             | 101-05-3                     |                          |                          |              | 313            |              |                     |
| Aniline, 2.4.6-trimethyl-         88-06-1         500         500           o-Anisidine         90-04-0         100         313         0           p-Anisidine         104-94-9         313         0         313         0           o-Anisidine hydrochloride         134-29-2         313         0         313         0           Antimacene         120-12-7         5.000         313         0         313         0           Antimony pentachloride         7640-38-0         5.000         313         0         313         0           Antimony pentafluoride         7647-18-9         1.000         313c         0         313c         0           Antimony pentafluoride         7783-70-2         500         00         313c         0         313c         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                              | 1,000                    | 5,000                    | 5,000        |                | U012         |                     |
| o-Anisidine         90-04-0         100         313         97           p-Anisidine         104-94-9         313         0           o-Anisidine hydrochloride         134-29-2         313         0           Antimacene         120-12-7         5,000         313         0           Antimony compounds         N010         & 313         0         0           Antimony pentachloride         7647-18-9         1,000         313         0           Antimony pentachloride         7783-70-2         500         500         313         0           Antimony pentachloride         7789-61-9         1,000         313         0         0           Antimony tribromide         7783-56-4         1,000         313         0         0           Antimony tribromide         130-94-0         1,000/10,000         1,000         313         0           Antimony triburide         130-94-0         1,000/10,000         1,000         313         0         0           Antimony triburide         130-94-0         1,000/10,000         1,000         130         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aniline, 2,4,6-trimethyl-             | 88-05-1                      | 500                      | 500                      |              |                |              |                     |
| p-Anisidine         104-94-9         313           o-Anisidine hydrochloride         134-29-2         313           Anthracene         120-12-7         5,000         313           Antimony         7440-38-0         5,000         313           Antimony Compounds         N010         & 313         1           Antimony pentachloride         7647-18-9         1,000         313           Antimony pentachloride         7647-18-9         1,000         313           Antimony potassium tatrate         28300-74-5         100         313           Antimony triboride         7783-70-2         500         500         313           Antimony triboride         7783-64-4         1,000         313         1           Antimony triboride         7783-56-4         1,000         313         1           Antimony triboride         1397-94-0         1,000         130         1           Antimory triboride         1397-94-0         1,000/10,000         100         P072           Aroclor 1016         12674-11-2         1         1         1         1           Aroclor 1221         11104-28-2         1         1         1         1           Aroclor 1242         534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                              |                          |                          | 100          | 313            |              |                     |
| o-Anisidine hydrochloride         134.29-2         313           Antimacene         120-12-7         5,000         313           Antimony         7440-36-0         5,000         313           Antimony Compounds         N010         & 313         Antimony Compounds           Antimony pentachloride         7647-18-9         1,000         313.2           Antimony pentachloride         7647-18-9         1,000         313.2           Antimony pentachloride         7789-61-9         1,000         313.6           Antimony trichloride         1002-591-9         1,000         313.6           Antimony trichloride         1309-64-4         1,000         313.6           Antimony trichloride         1307-94-0         1,000         100         P072           Aroclor 121         11104-28-2         1         1         P072           Aroclor 1221         11141-16-5         1         1         P072           Aroclor 1248         12672-29-6         1         P010         Arsenic acid           Arsenic Compounds         N020         & 313         P010         Arsenic disulfide         1303-29-2           Aroclor 1248         12672-29-6         1         1         P010         Arsenic cinsulfi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                              |                          |                          |              |                |              |                     |
| Anthracene         120-12-7         5,000         313           Antimony         7440-36-0         5,000         313           Antimony Compounds         N010         &         313           Antimony pentachloride         7647-18-9         1,000            Antimony pentachloride         7783-70-2         500         500         313c           Antimony potassium lattrate         28300-74-5         100         313c            Antimony trichonide         7783-70-2         500         313c            Antimony trichonide         7783-70-2         500         313c            Antimony trichonide         7783-70-2         100         313c            Antimony trichonide         7783-56-4         1,000         313c            Antimony tricholade         1309-64-4         1,000         313c            Antimony tricholade         1309-64-4         1,000         100         P072           Aroclor 121         11104-28-2         1         1            Aroclor 1221         11141-16-5         1         1            Aroclor 1242         53469-21-9         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                              |                          |                          |              | 313            |              |                     |
| Antimony         7440-36-0         5,000         313           Antimony Compounds         N010         & 313         Antimony pentachloride         7847-18-9         1,000           Antimony pentachloride         7787-61-9         100         313c         Antimony pentachloride           Antimony pentachloride         7783-61-9         1,000         313c         Antimony tribromide           Antimony tribromide         7783-66-4         1,000         313c         Antimony tribromide           Antimony tribromide         7783-66-4         1,000         313c         Antimony tribromide           Antimony tribromide         1309-64-4         1,000         1000         P072           Antimony tribromide         1387-94-0         1,000         1000         P072           Aroctor 126         12674-11-2         1         Aroctor 1232         11141-16-5         1         Aroctor 1243         12672-29-6         1         Aroctor 1248         12672-29-6         1         Aroctor 1264         11097-68-1         1         Aroctor 1260         11096-82-5         1         1         Arsenic Compounds         N020         & 313         Arsenic Compounds         N020         & 313         Arsenic Compounds         N020         & 313         1         Arsenic Gus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                              |                          |                          | 5.000        |                |              |                     |
| Antimony Compounds         N010         &         8         313           Antimony pentachloride         7647-18-9         1,000         1           Antimony pentafluoride         7783-70-2         500         500         313c           Antimony potassium tartrate         28300-74-5         100         313c         1           Antimony trichloride         1025-91-9         1,000         313c         1           Antimony trichloride         1039-64-4         1,000         313c         1           Antimony tricolide         1397-94-0         1,000         100         P072           Arcolor 1016         12674-11-2         1         1         1           Aroclor 1016         12674-11-2         1         1         1           Aroclor 1221         11141-16-5         1         1         1           Aroclor 1242         53469-21-9         1         1         1           Aroclor 1244         12672-29-6         1         1         1           Aroclor 1254         11096-82-5         1         1         1           Arsenic Compounds         N020         &         8/133         1           Arsenic Cisulifide         1303-32-8         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                              |                          |                          | ,            |                |              |                     |
| Antimony pentachloride         7787-70-2         500         500         313c           Antimony potassium tartrate         28300-74-5         100         313c         1           Antimony potassium tartrate         28300-74-5         1000         313c         1           Antimony tribromide         7783-61-9         1,000         313c         1           Antimony tribromide         7783-66-4         1,000         313c         1           Antimony trioxide         1309-64-4         1,000         313c         1           Antimony trioxide         1309-64-4         1,000         313c         1           Antimony trioxide         1309-64-4         1,000         1         1         1           Antimony trioxide         1309-64-4         1,000         100         100         100           Antimony trioxide         1309-64-4         1,000         100         100         1         1           Arcolor 1261         1267-21-2         1         1         1         1         1           Aroclor 1221         11114-1-6-5         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                              |                          |                          | ,            |                |              |                     |
| Antimony pentafluoride         7783-70-2         500         500         313c           Antimony potassium tartrate         28300-74-5         100         313c         313c           Antimony trichloride         7789-61-9         1,000         313c         313c           Antimony trichloride         10025-91-9         1,000         313c         313c           Antimony trichloride         1309-64-4         1,000         313c         313c           Antimony trichloride         1397-94-0         1,000/10,000         100         P072           Antimony trickloride         1397-94-0         1,000/10,000         100         P072           Aroclor 1016         12674-11-2         1         1         2           Aroclor 1221         11141-16-5         1         1         2           Aroclor 1242         53469-21-9         1         1         2           Aroclor 1254         11097-69-1         1         1         2           Arsenic Compounds         N020         & 313         313         313           Arsenic disulfide         1303-32-8         1         313c         2           Arsenic disulfide         1303-32-9         1         313c         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                              |                          |                          |              |                |              |                     |
| Antimony potassium tartrate         28300-74-5         100         313c           Antimony tribromide         7789-61-9         1,000         313c           Antimony tribomide         1789-61-9         1,000         313c           Antimony tribomide         1783-56-4         1,000         313c           Antimony trichoride         1309-64-4         1,000         313c           Antimycin A         1397-94-0         1,000         100         9072           Aroctor 1016         12674-11-2         1         1         2           Aroctor 1221         11104-28-2         1         2         2           Aroctor 1232         11141-16-5         1         2         2           Aroctor 1242         53469-21-9         1         2         2           Aroctor 1242         1097-69-1         1         2         2           Aroctor 1260         11096-82-5         1         3         3         2           Arsenic compounds         N020         & 313         2         2         2         3         2         2         1         3         3         2         2         1         3         2         2         1         3         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                              | 500                      | 500                      | .,           | 313c           |              |                     |
| Antimony tribromide         7789-61-9         1,000         313c           Antimony trichloride         10025-91-9         1,000         313c           Antimony trichloride         7783-64         1,000         313c           Antimony trichloride         1309-64-4         1,000         313c           Antimycin A         1397-94-0         1,000         100         0           Antruy         86-88-4         500/10,000         100         0         P072           Aroclor 1211         11104-28-2         1         1         Image: Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct Construct                                                                                                                                                                                                                                                                                                                                                   |                                       |                              |                          |                          | 100          |                |              |                     |
| Antimony trichloride         10025-91-9         1,000         313c           Antimony trifluoride         7783-56-4         1,000         313c           Antimony trifluoride         1309-64-4         1,000         313c           Antimony trifluoride         1309-94-0         1,000/10,000         1,000           Antimy in A         1397-94-0         1,000/10,000         100         100           Aroclor 1016         12674-11-2         1         1         1           Aroclor 1221         11104-28-2         1         1         1           Aroclor 1222         11141-16-5         1         1         1           Aroclor 1242         53469-21-9         1         1         1           Aroclor 1243         11097-89-1         1         1         1           Arsenic acid         7778-39-4         1         313c         1           Arsenic Compounds         N020         & 313         1         1           Arsenic disulfide         1303-28-2         1         313c         1           Arsenic disulfide         1303-32-8         1         313c         1           Arsenic disulfide         1303-28-2         1         313c         1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                              |                          |                          |              |                |              |                     |
| Antimony trifluoride         7783-56-4         1,000         313c           Antimyony troxide         1309-64-4         1,000         313c           Antimyony troxide         1397-94-0         1,000/10,000         100         9072           Antimyony troxide         12674-11-2         1         1         9072           Aroclor 1221         11104-28-2         1         1         1           Aroclor 1221         11141-16-5         1         1         1           Aroclor 1242         53469-21-9         1         1         1           Aroclor 1248         12672-96         1         1         1           Aroclor 1254         11097-69-1         1         1         1           Arsenic Compounds         N020         & 313         1           Arsenic Compounds         N020         & 313         1           Arsenic disulfide         1303-28-8         1         313c         1           Arsenic trisulfide         1303-28-3         1         313c         1           Arsenic disulfide         1303-28-3         1         313c         1           Arsenic Compounds         N020         1         1         313c         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                              |                          |                          |              |                |              |                     |
| Antimony trioxide         1309-64-4         1,000/10,000         1,000         313c           Antimycin A         1397-94-0         1,000/10,000         1,000         P072           Aroclor 1016         12674-11-2         1         1           Aroclor 1221         11104-28-2         1         1           Aroclor 1232         11141-16-5         1         1           Aroclor 1242         53469-21-9         1         1           Aroclor 1243         12672-29-6         1         1           Aroclor 1250         11097-69-1         1         1           Arsenic Compounds         N020         & 313c         1           Arsenic Compounds         N020         & 313c         1           Arsenic incidide         1303-32-8         1         313c         1           Arsenic invixide         1327-53-3         100/10,000         1         313c         1           Arsenic trioxide         1327-53-3         100/10,000         1         313c         15,00           Arsenic trioxide         1327-53-3         100/10,000         1         313c         15,00           Arsenic trioxide         1327-53-3         100/10,000         1         313c         15,00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                              |                          |                          |              |                |              |                     |
| Antimyoin A         1397-94-0         1,000/10,000         1,000         P072           Aroclor 1016         12674-11-2         1         1         1           Aroclor 1221         11104-28-2         1         1         1           Aroclor 1232         11141-16-5         1         1         1           Aroclor 1242         53469-21-9         1         1         1           Aroclor 1248         12672-29-6         1         1         1           Aroclor 1254         11097-69-1         1         1         1           Arsenic         7440-38-2         1         313         1           Arsenic diulfide         1303-32-8         1         313c         1           Arsenic diulfide         1303-32-8         1         313c         1           Arsenic trioxide         1302-83-3         100/10,000         1         313c         1           Arsenic trioxide         1302-82-1         100         1         313c         1           Arsenic pentoxide         1327-53-3         100/10,000         1         313c         1           Arsenic trioxide         1322-753-3         100/10,000         1         313c         15,00      A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                              |                          |                          | ,            |                |              |                     |
| ANTU         86-88-4         500/10,000         100         P072           Aroclor 1016         12674-11-2         1         1            Aroclor 1221         11104-28-2         1         1            Aroclor 1232         11141-16-5         1             Aroclor 1242         53469-21-9         1             Aroclor 1248         12672-29-6         1             Aroclor 1260         11097-69-1         1             Arsenic acid         7778-39-4         1 313             Arsenic acid         7778-39-4         1 313.c         P010            Arsenic acid         7778-39-4         1 313.c         P011            Arsenic acid         7778-39-4         1 313.c         P011            Arsenic risulfide         1303-32-8         1 313.c         P012            Arsenic risulfide         1303-33-9         1 313.c         P012            Arsenic risulfide         1327-53-3         100/10,000         1 313.c         P012           Arsenic risulfide         1322-21-4         100         1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                              | 1 000/10 000             | 1 000                    | 1,000        | 0100           |              |                     |
| Aroclor 1016       12674-11-2       1         Aroclor 1221       11104-28-2       1         Aroclor 1232       11141-16-5       1         Aroclor 1242       53469-21-9       1         Aroclor 1248       12672-29-6       1         Aroclor 1260       11096-82-5       1         Aroclor 1260       11096-82-5       1         Arsenic acid       774-03-4       1 313         Arsenic acid       7778-39-4       1 313c         Arsenic disulfide       1303-32-8       1 313c         Arsenic disulfide       1303-32-8       1 313c         Arsenic trioxide       1327-53-3       100/10,000       1         Arsenic trioxide       1327-53-3       100/10,000       1         Arsenous oxide       1327-53-3       100/10,000       1         Arsenous oxide       1327-53-3       100/10,000       1       1 313c         Arsenous oxide       1327-53-3       100/10,000       1       1 313c       15,00         Arsenous oxide       1327-21-4       100       1       1 313c       15,00         Arsenous trichloride       7784-34-1       100       1       1 313c       15,00         Arsenous oxide       1322-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                              |                          |                          | 100          |                | P072         |                     |
| Aroclor 1221       11104-28-2       1         Aroclor 1232       11141-16-5       1         Aroclor 1242       53469-21-9       1         Aroclor 1248       12672-29-6       1         Aroclor 1260       11096-82-5       1         Arsenic acid       7778-39-4       1 313         Arsenic acid       7778-39-4       1 313c         Arsenic acid       7778-39-4       1 313c         Arsenic isulfide       1303-32-8       1 313c         Arsenic isulfide       1303-32-8       1 313c         Arsenic rioxide       1327-53-3       100/10,000       1         Arsenic trioxide       1327-53-3       100/10,000       1       313c         Arsenic trioxide       1327-53-3       100/10,000       1       313c       P012         Arsenic trioxide       1327-53-3       100/10,000       1       1 313c       P012         Arsenic trioxide       1327-53-3       100/10,000       1       1 313c       P012         Arsenic trioxide       1322-21-4       100       100       1,00         Arsenic trisulfide       132-21-4       1313       4         Auramine       492-80-8       100       100       1,00 </td <td></td> <td></td> <td>000/10,000</td> <td>100</td> <td></td> <td></td> <td>1012</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                              | 000/10,000               | 100                      |              |                | 1012         |                     |
| Aroclor 1232       11141-16-5       1       1         Aroclor 1242       53469-21-9       1       1         Aroclor 1248       12672-29-6       1       1         Aroclor 1254       11097-69-1       1       1         Aroclor 1260       11096-82-5       1       1         Arsenic acid       7778-39-4       1       313       1         Arsenic Compounds       N020       & 313       1       1         Arsenic Compounds       N020       & 313       1       1         Arsenic Compounds       N020       & 313       1       1         Arsenic Compounds       100/10,000       1       1       313c       1         Arsenic trisulfide       1303-32-8       1       1       31c       1         Arsenic trisulfide       1303-33-9       1       1       31c       1         Arsenic trisulfide       1303-33-9       1       1       31c       1         Arsenic trisulfide       1302-25-33       100/10,000       1       1       313c       1         Arsenous trichloride       7784-34-1       100       100       1,00       1,00         Arsenous trichloride       171761-41-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                              |                          |                          |              |                |              |                     |
| Aroclor 1242         53469-21-9         1         1           Aroclor 1248         12672-29-6         1         1         1           Aroclor 1254         11097-69-1         1         1         1           Aroclor 1260         11096-82-5         1         1         1           Arsenic         7440-38-2         1         313         1           Arsenic acid         7778-39-4         1         313c         1           Arsenic disulfide         1303-32-8         1         313c         1           Arsenic disulfide         1303-32-8         1         313c         1           Arsenic risulfide         1303-32-8         1         313c         1           Arsenic trisulfide         1303-32-8         1         313c         1           Arsenic trisulfide         1303-32-8         1         313c         1           Arsenic trisulfide         1303-32-8         100/10,000         1         1         313c         1           Arsenous wide         1327-53-3         100/10,000         1         1         313c         1           Arsenous trichloride         7784-34-1         500         1         1         313         1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                              |                          |                          |              |                |              |                     |
| Aroclor 1248         12672-29-6         1         1           Aroclor 1254         11097-69-1         1         1         1           Aroclor 1260         11096-82-5         1         1         1         1           Arsenic         7440-38-2         1         313         1         1           Arsenic acid         7778-39-4         1         313c         P010           Arsenic compounds         N020         &         8         313         1           Arsenic disulfide         1303-32-8         1         313c         1         1           Arsenic pentoxide         1303-32-8         1         313c         1         1           Arsenic pentoxide         1303-32-8         1         313c         1         1           Arsenic pentoxide         1303-32-9         1         313c         1         1           Arsenic brisulfide         1303-33-9         1         1         313c         1         1           Arsenous trichloride         7784-34-1         500         1         1         313c         15.00           Arsenous trichloride         7784-42-1         100         100         1         1.00         1         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                              |                          |                          | -            |                |              |                     |
| Aroclor 1254       11097-69-1       1       1         Aroclor 1260       11096-82-5       1       1         Arsenic acid       7740-38-2       1       313         Arsenic acid       7778-39-4       1       313c       P010         Arsenic Compounds       N020       & 313       1         Arsenic Compounds       N020       & 313       1         Arsenic disulfide       1303-32-8       1       313c       P011         Arsenic troxide       1327-53-3       100/10,000       1       1       313c       P012         Arsenic trisulfide       1303-33-9       1       313c       P012       Arsenic trisulfide       1303-33-9       1       313c       P012         Arsenous oxide       1327-53-3       100/10,000       1       1       313c       P012         Arsenous trichloride       7784-34-1       500       1       1       313       15,00         Arsenous trichloride       7784-34-1       100       100       1,00       4trazine         Asbestos (friable)       1332-21-4       1       1313       4trazine         Auramine       492-80-8       100       X       4trazine         Auramine<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                          |                          |              |                |              |                     |
| Aroclor 1260       11096-82-5       1       1         Arsenic       7440-38-2       1       313       P010         Arsenic acid       7778-39-4       1       313c       P010         Arsenic acid       7778-39-4       1       313c       P010         Arsenic Compounds       N020       & 313       Arsenic disulfide       1303-28       1       313c       P011         Arsenic disulfide       1303-28-2       100/10,000       1       1       313c       P011         Arsenic pentoxide       1327-53-3       100/10,000       1       1       313c       P012         Arsenic trisulfide       1303-33-9       1       313c       P012       Arsenous oxide       1327-53-3       100/10,000       1       1       313c       P012         Arsenous trichloride       7784-42-1       100       100       1,00       1,00         Arsenice       1912-24-9       313       1       Atrazine       100       X       100       X       14         Avermectin B1       71751-41-2       X       X       Azaserine       115-02-6       1       10015       11-Azepine-1 carbothioic acid, hexahydro-S-ethyl ester       10/10,000       1       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                              |                          |                          | -            |                |              |                     |
| Arsenic       7440-38-2       1       313         Arsenic acid       7778-39-4       1       313c       P010         Arsenic Compounds       N020       & 313       313c       P010         Arsenic Compounds       N020       & 313       1       313c       P010         Arsenic Compounds       1303-32-8       1       313c       P011         Arsenic pentoxide       1327-53-3       100/10,000       1       1       313c       P012         Arsenic trisulfide       1303-33-9       1       313c       P012       P012         Arsenous oxide       1327-53-3       100/10,000       1       1       313c       P012         Arsenous trichloride       7784-34-1       500       1       1       313c       15,00         Arsenic friable       1332-21-4       100       100       1,00       1,00       1,00         Asbestos (friable)       1332-21-4       1       313       100       1,00         Auramine       492-80-8       100       X       1014       4         Avermectin B1       71751-41-2       X       Azaserine       1       1015       1         1H-Azepine-1 carbothioic acid,<br>hexahydro-S-ethyl </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                              |                          |                          |              |                |              |                     |
| Arsenic acid         7778-39-4         1         313c         P010           Arsenic Compounds         N020         &         313         Arsenic compounds         313c         P010           Arsenic disulfide         1303-32-8         1         313c         P010         Arsenic disulfide         1303-32-8         1         313c         P011           Arsenic pentoxide         1302-28-2         100/10,000         1         1         313c         P012           Arsenic trisulfide         1303-28-3         100/10,000         1         1         313c         P012           Arsenic trisulfide         1327-53-3         100/10,000         1         313c         P012           Arsenous oxide         1327-53-3         100/10,000         1         313c         P012           Arsenous oxide         1327-53-3         100/10,000         1         313c         P012           Arsenous oxide         1327-53-3         100/10,000         1         313c         15,00           Arsenous oxide         1322-21-4         100         100         1,00         1,00           Astraine         1912-24-9         313         4         4uramine         492-80-8         100         X         100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                              |                          |                          |              |                |              |                     |
| Arsenic Compounds         N020         &         313           Arsenic disulfide         1303-32-8         1         313c           Arsenic pentoxide         1303-28-2         100/10,000         1         1         313c           Arsenic trioxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenic trioxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenous oxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenous oxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenous oxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenous trichloride         7784-34-1         100         100         1,00         1,00           Arsene         1912-24-9         313         1         Avaramine         492-80-8         1000         X         1014           Avermectin B1         71751-41-2         X         X         Azaserine         1         1015         1           H-Azapine-1 carbothioic acid,<br>Azinphos-ethyl         2642-71-9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>P010</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                              |                          |                          |              |                | P010         |                     |
| Arsenic disulfide         1303-32-8         1         313c           Arsenic pentoxide         1303-28-2         100/10,000         1         1         313c         P011           Arsenic trioxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenic trioxide         1303-33-9         1         313c         P012           Arsenous oxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenous trichloride         7784-34-1         500         1         1         313c         P012           Arsenous trichloride         7784-34-1         100         100         1,00         Arsenous trichloride         1,00           Arsenous trichleide         1332-21-4         1         1         313         15,00           Atrazine         1912-24-9         313         1         1         400         1         1         100         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                              |                          |                          |              |                | 1 010        |                     |
| Arsenic pentoxide         1303-28-2         100/10,000         1         1         313c         P011           Arsenic trioxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenic trisulfide         1303-33-9         1         313c         P012           Arsenous oxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenous trichloride         7784-34-1         100         100         1,00         1,00           Arsine         7784-42-1         100         100         1,00         1,00         1,00           Asbestos (friable)         13132-21-4         1         1313         4         4         1313         1         1         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                              |                          |                          |              |                |              |                     |
| Arsenic trioxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenic trisulfide         1303-33-9         1         313c         1         313c         1           Arsenous oxide         1327-53-3         100/10,000         1         1         313c         1           Arsenous trichloride         7784-34-1         500         1         1         313c         15,00           Arsenous trichloride         7784-42-1         100         100         1         1,00           Asbestos (friable)         1332-21-4         1         313         15,00           Atrazine         1912-24-9         313         100         X         10014           Avaramine         492-80-8         100         X         0014         42           Avermectin B1         71751-41-2         X         X         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42         42 <t< td=""><td></td><td></td><td>100/10 000</td><td>1</td><td></td><td></td><td>P011</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                              | 100/10 000               | 1                        |              |                | P011         |                     |
| Arsenic trisulfide         1303-33-9         1         313c           Arsenous oxide         1327-53-3         100/10,000         1         1         313c         P012           Arsenous trichloride         7784-34-1         500         1         1         313c         15,00           Arsenous trichloride         7784-42-1         100         100         1,00         1,00           Arsine         7784-42-1         100         100         1         313         15,00           Arsenous trichloride         1332-21-4         1         313         14,00         1,00         1,00           Asbestos (friable)         1332-21-4         1         313         14,00         14,00         1,00         1,00           Atrazine         1912-24-9         313         14,00         14,00         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                          |                          |              |                |              |                     |
| Arsenous oxide       1327-53-3       100/10,000       1       1       313c       P012         Arsenous trichloride       7784-34-1       500       1       1       313c       15,00         Arsine       7784-42-1       100       100       1       313       1,00         Asbestos (friable)       1332-21-4       1       313       1,00         Atrazine       1912-24-9       313       1         Auramine       492-80-8       100       X       1014         Avermectin B1       71751-41-2       X       1       2015         Azaserine       115-02-6       1       U015       1         H-Azepine-1 carbothioic acid,<br>hexahydro-S-ethyl ester       2642-71-9       100/10,000       10       1         Azinphos-methyl       86-50-0       10/10,000       1       1       1         Azinphos-methyl       75-55-8       10,000       1       1       X       P054       10,00         Azindine, 2-methyl       7440-39-3       313       313       1       1       1       1       1       1         Barium       7440-39-3       313       313       1       1       1       3132       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                              | 100/10,000               | · · · ·                  |              |                | 1012         |                     |
| Arsenous trichloride         7784-34-1         500         1         1         313c         15,00           Arsine         7784-42-1         100         100         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00         1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | 100/10 000               | 1                        |              |                | P012         |                     |
| Arsine         7784-42-1         100         100         1,00           Asbestos (friable)         1332-21-4         1         313         4           Atrazine         1912-24-9         313         4           Auramine         492-80-8         100         X         U014           Avermectin B1         71751-41-2         X         4         4           Azaserine         115-02-6         1         U015         1           H-Azepine-1 carbothioic acid,         2212-67-1         X         4         4           Azinphos-ethyl         2642-71-9         100/10,000         100         4         4           Azinphos-methyl         86-50-0         10/10,000         1         1         4         4           Azinphos-methyl         86-50-0         10/10,000         1         1         4         4           Azinghos-methyl         75-55-8         10,000         1         1         X         P067         10,00           Barban         101-27-9         10         U280         10         1313         10           Barium         7440-39-3         313         313         10         10         10         10         10,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                              | ,                        |                          |              |                | 1012         | 15 000              |
| Asbestos (friable)       1332-21-4       1 313         Atrazine       1912-24-9       313         Auramine       492-80-8       100       X         Avermectin B1       71751-41-2       X       A         Azaserine       115-02-6       1       U015       U015         1H-Azepine-1 carbothioic acid,<br>hexahydro-S-ethyl ester       2212-67-1       X       A         Azinphos-ethyl       2642-71-9       100/10,000       100       A         Azinphos-ethyl       86-50-0       10/10,000       1       A         Azinphos-methyl       86-50-0       10/10,000       1       X       P054         Aziridine       151-56-4       500       1       1       X       P067         Barban       101-27-9       10       U280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                              |                          |                          | 1            | 0100           |              | 1,000               |
| Atrazine       1912-24-9       313       1912-24-9         Auramine       492-80-8       100       X       U014         Avermectin B1       71751-41-2       X       1         Azaserine       115-02-6       1       U015         1H-Azepine-1 carbothioic acid,<br>hexahydro-S-ethyl ester       2212-67-1       X       1         Azinphos-ethyl       2642-71-9       100/10,000       100       1         Azinphos-methyl       86-50-0       10/10,000       1       1         Aziridine       151-56-4       500       1       1       X         Aziridine, 2-methyl       75-55-8       10,000       1       1       X       10,00         Barban       101-27-9       10       U280       10,00       10       1280         Barium       7440-39-3       313       13       13       13         Barium compounds       N040       313       10       133       10         Barium cyanide       542-62-1       10       313       100       133       10278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                              | 100                      | 100                      | 1            | 313            |              | 1,000               |
| Auramine       492-80-8       100       X       U014         Avermectin B1       71751-41-2       X       X       X         Azaserine       115-02-6       1       U015       X       X         IH-Azepine-1 carbothioic acid,<br>hexahydro-S-ethyl ester       2212-67-1       X       X       X         Azinphos-ethyl       2642-71-9       100/10,000       100       X       X       X         Azinphos-methyl       86-50-0       10/10,000       1       1       X       X       X         Azinphos-methyl       86-50-0       10/10,000       1       1       X       P054       10,00         Aziridine, 2-methyl       75-55-8       10,000       1       1       X       P067       10,00         Barban       101-27-9       10       U280       313       Barium       313       S         Barium       7440-39-3       313       10       313       10       133       10         Barium Compounds       N040       313       10       313       10       133       103         Barium cyanide       542-62-1       10       313       100       313       1078         Bendiocarb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · · |                              |                          |                          | 1            |                |              |                     |
| Avermectin B1       71751-41-2       X       X         Azaserine       115-02-6       1       U015         1H-Azepine-1 carbothioic acid,<br>hexahydro-S-ethyl ester       2212-67-1       X       X         Azinphos-ethyl       2642-71-9       100/10,000       100       X         Azinphos-methyl       86-50-0       10/10,000       1       X       P054         Azinphos-methyl       86-50-0       10/10,000       1       1       X         Azinphos-methyl       86-50-0       10/10,000       1       1       X         Azinphos-methyl       86-50-0       10/10,000       1       1       X         P054       10,000       1       1       X       P067       10,00         Aziridine, 2-methyl       75-55-8       10,000       1       1       X       P067       10,00         Barban       101-27-9       10       U280       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       313       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                              |                          |                          | 100          |                | 11014        |                     |
| Azaserine       115-02-6       1       U015         1H-Azepine-1 carbothioic acid,<br>hexahydro-S-ethyl ester       2212-67-1       X       X         Azinphos-ethyl       2642-71-9       100/10,000       100       X         Azinphos-methyl       86-50-0       10/10,000       1       1         Aziridine       151-56-4       500       1       1       X         Aziridine, 2-methyl       75-55-8       10,000       1       1       X         Barban       101-27-9       10       U280       U280         Barium       7440-39-3       313       1         Barium compounds       N040       313       1         Barium cyanide       542-62-1       10       313       U278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                              |                          |                          | 100          |                | 0014         |                     |
| 1H-Azepine-1 carbothioic acid,<br>hexahydro-S-ethyl ester       2212-67-1       X       X         Azinphos-ethyl       2642-71-9       100/10,000       100       X         Azinphos-methyl       86-50-0       10/10,000       1       X       P054         Azinidine       151-56-4       500       1       1       X       P054       10,00         Aziridine, 2-methyl       75-55-8       10,000       1       1       X       P067       10,00         Barban       101-27-9       10       U280       U280<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                              |                          |                          | 1            | ~              | 11015        |                     |
| hexahydro-S-ethyl ester       2642-71-9       100/10,000       100       100         Azinphos-ethyl       2642-71-9       100/10,000       100       1       100         Azinphos-methyl       86-50-0       10/10,000       1       1       100       100         Aziridine       151-56-4       500       1       1       X       P054       10,000         Aziridine, 2-methyl       75-55-8       10,000       1       1       X       P067       10,000         Barban       101-27-9       10       U280       100       1313       100         Barium       7440-39-3       313       100       313       100         Barium Compounds       N040       313       100       133       100         Barium cyanide       542-62-1       10       313       100       102       100         Bendiocarb       22781-23-3       100       313       U278       100       102       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                              |                          |                          | I            | Y              | 0010         |                     |
| Azinphos-ethyl       2642-71-9       100/10,000       100       Image: constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state |                                       | 2212-07-1                    |                          |                          |              | ^              |              |                     |
| Azinphos-methyl       86-50-0       10/10,000       1       1       Image: constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state          |                                       | 26/12_71 0                   | 100/10 000               | 100                      |              |                |              |                     |
| Aziridine       151-56-4       500       1       1       X       P054       10,00         Aziridine, 2-methyl       75-55-8       10,000       1       1       X       P067       10,00         Barban       101-27-9       10       U280       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                              |                          |                          | 1            |                |              |                     |
| Aziridine, 2-methyl       75-55-8       10,000       1       1       X       P067       10,00         Barban       101-27-9       10       U280         Barium       7440-39-3       313       313         Barium Compounds       N040       313       10         Barium cyanide       542-62-1       10       313       10         Bendiocarb       22781-23-3       100       313       U278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · ·                                 |                              |                          |                          |              | Y              | P054         | 10 000              |
| Barban         101-27-9         10         U280           Barium         7440-39-3         313         313           Barium Compounds         N040         313         313           Barium cyanide         542-62-1         10         313c         P013           Bendiocarb         22781-23-3         100         313         U278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                              |                          |                          |              |                |              | -                   |
| Barium         7440-39-3         313         313           Barium Compounds         N040         313         313           Barium cyanide         542-62-1         10         313c         P013           Bendiocarb         22781-23-3         100         313         U278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |                              | 10,000                   |                          |              | ^              |              | 10,000              |
| Barium Compounds         N040         313            Barium cyanide         542-62-1         10         313c         P013           Bendiocarb         22781-23-3         100         313         U278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                              |                          |                          | 10           | 212            | 0200         |                     |
| Barium cyanide         542-62-1         10         313c         P013           Bendiocarb         22781-23-3         100         313         U278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                              |                          |                          |              |                |              |                     |
| Bendiocarb 22781-23-3 100 313 U278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     |                              |                          |                          | 40           |                | D012         |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                              |                          |                          |              |                |              |                     |
| Rendicearb phonol 20064 00 6 1 4 000 10064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bendiocarb phenol                     | 22781-23-3                   |                          |                          | 1,000        |                | U278<br>U364 |                     |

| NAME                                                                               | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Benezeneamine, 2,6-dinitro-N,N-<br>dipropyl-4-(trifluoromethyl)-                   | 1582-09-8                    |                          |                          | 10           | Х              |              |                     |
| Benfluralin                                                                        | 1861-40-1                    |                          |                          |              | 313            |              |                     |
| Benomyl                                                                            | 17804-35-2                   |                          |                          | 10           | 313            | U271         |                     |
| Benz[c]acridine                                                                    | 225-51-4                     |                          |                          | 100          |                | U016         |                     |
| Benzal chloride                                                                    | 98-87-3                      | 500                      | 5,000                    | 5,000        | 313            | U017         |                     |
| Benzamide                                                                          | 55-21-0                      |                          | ,                        | ,            | 313            |              |                     |
| Benzamide, 3,5-dichloro-N-(1,1-                                                    | 23950-58-5                   |                          |                          | 5,000        | X              | U192         |                     |
| dimethyl-2-propynyl                                                                |                              |                          |                          | -,           |                |              |                     |
| Benz[a]anthracene                                                                  | 56-55-3                      |                          |                          | 10           | 313+           | U018         |                     |
| Benzenamine, 3-(trifluoromethyl)-                                                  | 98-16-8                      | 500                      | 500                      |              |                |              |                     |
| Benzene                                                                            | 71-43-2                      |                          |                          | 10           | 313            | U019         |                     |
| Benzeneacetic acid, 4-chloroalpha<br>(4-chlorophenyl)alphahydroxy-,<br>ethyl ester | 510-15-6                     |                          |                          | 10           | Х              | U038         |                     |
| Benzeneamine, N-hydroxy-N-nitroso,<br>ammonium salt                                | 135-20-6                     |                          |                          |              | Х              |              |                     |
| Benzenearsonic acid                                                                | 98-05-5                      | 10/10,000                | 10                       |              |                |              |                     |
| Benzene, 1-(chloromethyl)-4-nitro-                                                 | 100-14-1                     | 500/10,000               | 500                      |              |                |              |                     |
| 1,3-Benzenedicarbonitrile, 2,4,5,6-                                                | 1897-45-6                    |                          |                          |              | Х              |              |                     |
| tetrachloro-                                                                       |                              |                          |                          |              |                |              |                     |
| Benzene, 2,4-dichloro-1-(4-<br>nitrophenoxy)-                                      | 1836-75-5                    |                          |                          |              | Х              |              |                     |
| Benzene, 2,4-diisocyanato-1-methyl-                                                | 584-84-9                     | 500                      | 100                      | 100          | Х              |              | 10,000              |
| Benzene, 1,3-diisocyanato-2-methyl-                                                | 91-08-7                      | 100                      |                          |              | X              |              | 10,000              |
| Benzene, 1,3-diisocyanatomethyl-                                                   | 26471-62-5                   |                          | 100                      | 100          | X              | U223         | 10,000              |
| Benzene, m-dimethyl-                                                               | 108-38-3                     |                          |                          | 1,000        | X              | U239         | 10,000              |
| Benzene, o-dimethyl-                                                               | 95-47-6                      |                          |                          | 1,000        | X              | U239         |                     |
| Benzene, p-dimethyl-                                                               | 106-42-3                     |                          |                          | 100          | X              | U239         |                     |
| Benzeneethanamine, alpha,alpha-<br>dimethyl-                                       | 122-09-8                     |                          |                          | 5,000        |                | P046         |                     |
| Benzenemethanol, 4-chloroalpha4-<br>chlorophenyl)alpha<br>(trichloromethyl)-       | 115-32-2                     |                          |                          | 10           | Х              |              |                     |
| Benzenesulfonyl chloride                                                           | 98-09-9                      |                          |                          | 100          |                | U020         |                     |
| Benzenethiol                                                                       | 108-98-5                     | 500                      | 100                      | 100          |                | P014         |                     |
| Benzene, 1,1'-(2,2,2-<br>trichloroethylidene)bis [4-methoxy-                       | 72-43-5                      |                          |                          | 1            | Х              | U247         |                     |
| Benzidine                                                                          | 92-87-5                      |                          |                          | 1            | 313            | U021         |                     |
| Benzimidazole, 4,5-dichloro-2-<br>(trifluoromethyl)-                               | 3615-21-2                    |                          | 500                      |              |                |              |                     |
| Benzo[b]fluoranthene                                                               | 205-99-2                     |                          |                          | 1            | 313+           |              |                     |
| Benzo(j)fluoranthene                                                               | 205-82-3                     |                          |                          |              | 313+           |              |                     |
| Benzo(k)fluoranthene                                                               | 207-08-9                     |                          |                          | 5,000        | 313+           |              |                     |
| Benzoic acid                                                                       | 65-85-0                      |                          |                          | 5,000        |                |              |                     |
| Benzoic acid, 3-amino-2,5-dichloro-                                                | 133-90-4                     |                          |                          | 100          | Х              |              |                     |
| Benzoic acid, 5-(2-chloro-4-                                                       | 77501-63-4                   |                          |                          |              | 313            |              |                     |
| (trifluoromethyl)phenoxy)-2-nitro-, 2-<br>ethoxy-1-methyl-2-oxethyl ester          |                              |                          |                          |              |                |              |                     |
| Benzoic trichloride                                                                | 98-07-7                      | 100                      | 10                       | 10           | 313            | U023         |                     |
| Benzonitrile                                                                       | 100-47-0                     |                          |                          | 5,000        |                |              |                     |
| Benzo(rst)pentaphene                                                               | 189-55-9                     |                          |                          | 10           |                | U064         |                     |

| NAME                                                  | CAS/313<br>Category | Section 302<br>(EHS) TPQ | 304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r) |
|-------------------------------------------------------|---------------------|--------------------------|---------|--------------|----------------|--------------|---------------|
|                                                       | Codes               |                          | RQ      |              |                |              | TQ            |
| Benzo[g,h,i]perylene                                  | 191-24-2            |                          |         | 5,000        | 313            |              |               |
| Benzo(a)phenanthrene                                  | 218-01-9            |                          |         | 100          |                | U050         |               |
| Benzo[a]pyrene                                        | 50-32-8             |                          |         | 1            | 313+           | U022         |               |
| p-Benzoquinone                                        | 106-51-4            |                          |         | 10           | Х              | U197         |               |
| Benzotrichloride                                      | 98-07-7             | 100                      | 10      | 10           | Х              | U023         |               |
| Benzoyl chloride                                      | 98-88-4             |                          |         | 1,000        | 313            |              |               |
| Benzoyl peroxide                                      | 94-36-0             |                          |         |              | 313            |              |               |
| Benzyl chloride                                       | 100-44-7            | 500                      | 100     | 100          | 313            | P028         |               |
| Benzyl cyanide                                        | 140-29-4            | 500                      | 500     |              |                |              |               |
| Beryllium                                             | 7440-41-7           |                          |         | 10           | 313            | P015         |               |
| Beryllium chloride                                    | 7787-47-5           |                          |         | 1            | 313c           |              |               |
| Beryllium Compounds                                   | N050                |                          |         | &            | 313            |              |               |
| Beryllium fluoride                                    | 7787-49-7           |                          |         | 1            | 313c           |              |               |
| Beryllium nitrate                                     | 7787-55-5           |                          |         | 1            | 313c           |              |               |
| Beryllium nitrate                                     | 13597-99-4          |                          |         | 1            | 313c           |              |               |
| alpha-BHC                                             | 319-84-6            |                          |         | 10           | Х              |              |               |
| beta-BHC                                              | 319-85-7            |                          |         | 1            |                |              |               |
| delta-BHC                                             | 319-86-8            |                          |         | 1            |                |              |               |
| Bicyclo[2.2.1]heptane-2-carbonitrile,                 | 15271-41-7          | 500/10,000               | 500     |              |                |              |               |
| 5-chloro-6-                                           |                     |                          |         |              |                |              |               |
| ((((methylamino)carbonyl)oxy)imino)-                  |                     |                          |         |              |                |              |               |
| ,(1-alpha,2-beta,4-alpha,5-alpha,6E))-                |                     |                          |         |              |                |              |               |
| Bifenthrin                                            | 82657-04-3          |                          |         |              | 313            |              |               |
| 2,2'-Bioxirane                                        | 1464-53-5           | 500                      | 10      | 10           | Х              | U085         |               |
| Biphenyl                                              | 92-52-4             |                          |         | 100          | 313            |              |               |
| 2,2-bis(Bromomethyl)-1,3-propanediol                  | 3296-90-0           |                          |         |              | 313            |              |               |
| Bis(2-chloroethoxy) methane                           | 111-91-1            |                          |         | 1,000        | 313            | U024         |               |
| Bis(2-chloroethyl) ether                              | 111-44-4            | 10,000                   | 10      | 10           | 313            | U025         |               |
| Bis(chloromethyl) ether                               | 542-88-1            | 100                      | 10      | 10           | 313            | P016         | 1,000         |
| Bis(2-chloro-1-methylethyl)ether                      | 108-60-1            |                          |         | 1,000        | 313            | U027         |               |
| Bis(chloromethyl) ketone                              | 534-07-6            | 10/10,000                | 10      |              |                |              |               |
| Bis(2-ethylhexyl)phthalate                            | 117-81-7            |                          |         | 100          | Х              | U028         |               |
| N,N'-Bis(1-methylethyl)-6-methylthio-                 | 7287-19-6           |                          |         |              | Х              |              |               |
| 1,3,5-triazine-2,4-diamine                            |                     |                          |         |              |                |              |               |
| 1,4-                                                  | 10347-54-3          |                          |         |              | 313#           |              |               |
| Bis(methylisocyanate)cyclohexane                      |                     |                          |         |              |                |              |               |
| 1,3-                                                  | 38661-72-2          |                          |         |              | 313#           |              |               |
| Bis(methylisocyanate)cyclohexane                      |                     |                          |         |              |                |              |               |
| Bis(tributyltin) oxide                                | 56-35-9             |                          |         |              | 313            |              |               |
| Bitoscanate                                           | 4044-65-9           | 500/10,000               | 500     |              |                |              |               |
| Borane, trichloro-                                    | 10294-34-5          | 500                      | 500     |              | Х              |              | 5,000         |
| Borane, trifluoro-                                    | 7637-07-2           | 500                      | 500     |              | Х              |              | 5,000         |
| Boron trichloride                                     | 10294-34-5          | 500                      | 500     |              | 313            |              | 5,000         |
| Boron trifluoride                                     | 7637-07-2           | 500                      | 500     |              | 313            |              | 5,000         |
| Boron trifluoride compound with<br>methyl ether (1:1) | 353-42-4            | 1,000                    | 1,000   |              |                |              | 15,000        |
| Boron, trifluoro[oxybis[methane]]-, (T-<br>4)-        | 353-42-4            | 1,000                    | 1,000   |              |                |              | 15,000        |
| Bromacil                                              | 314-40-9            |                          |         |              | 313            |              |               |
| Bromacil, lithium salt                                | 53404-19-6          |                          |         |              | 313            |              |               |
| Bromadiolone                                          | 28772-56-7          | 100/10,000               | 100     |              |                |              |               |
| Bromine                                               | 7726-95-6           | 500                      | 500     |              | 313            |              | 10,000        |

| NAME                                                                | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|---------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Bromoacetone                                                        | 598-31-2                     |                          |                          | 1,000        |                | P017         |                     |
| 1-Bromo-1-(bromomethyl)-1,3-                                        | 35691-65-7                   |                          |                          | .,           | 313            |              |                     |
| propanedicarbonitrile                                               |                              |                          |                          |              |                |              | Í                   |
| Bromochlorodifluoromethane                                          | 353-59-3                     |                          |                          |              | 313            |              |                     |
| O-(4-Bromo-2-chlorophenyl)-O-ethyl-                                 | 41198-08-7                   |                          |                          |              | X              |              |                     |
| S-propylphosphorothioate                                            |                              |                          |                          |              |                |              | Í                   |
| Bromoform                                                           | 75-25-2                      |                          |                          | 100          | 313            | U225         |                     |
| Bromomethane                                                        | 74-83-9                      | 1,000                    | 1,000                    | 1,000        | 313            | U029         |                     |
| 5-Bromo-6-methyl-3-(1-methylpropyl)-<br>2,4-(1H,3H)-pyrimidinedione | 314-40-9                     |                          |                          |              | Х              |              |                     |
| 4-Bromophenyl phenyl ether                                          | 101-55-3                     |                          |                          | 100          |                | U030         |                     |
| Bromotrifluoroethylene                                              | 598-73-2                     |                          |                          | 100          |                | 0000         | 10,000              |
| Bromotrifluoromethane                                               | 75-63-8                      |                          |                          |              | 313            |              | 10,000              |
| Bromoxynil                                                          | 1689-84-5                    |                          |                          |              | 313            |              |                     |
| Bromoxynil octanoate                                                | 1689-99-2                    |                          |                          |              | 313            |              |                     |
| Brucine                                                             | 357-57-3                     |                          |                          | 100          | 313            | P018         |                     |
| 1,3-Butadiene                                                       | 106-99-0                     |                          |                          | 100          | 313            | FUIO         | 10,000              |
| 1,3-Butadiene, 2-methyl-                                            | 78-79-5                      |                          |                          | 100          | 515            |              | 10,000              |
| Butane                                                              | 106-97-8                     |                          |                          | 100          |                |              | 10,000              |
| Butane, 2-methyl-                                                   | 78-78-4                      |                          |                          |              |                |              | 10,000              |
| 2-Butenal                                                           | 4170-30-3                    | 1,000                    | 100                      | 100          | Х              | U053         | -                   |
|                                                                     | 123-73-9                     | 1,000                    |                          | 100          | ^              | U053         | 20,000              |
| 2-Butenal, (e)-<br>Butene                                           | 25167-67-3                   | 1,000                    | 100                      | 100          |                | 0055         | 20,000              |
|                                                                     |                              |                          |                          |              |                |              | 10,000              |
| 1-Butene                                                            | 106-98-9                     |                          |                          |              |                |              | 10,000              |
| 2-Butene                                                            | 107-01-7                     |                          |                          |              |                |              | 10,000              |
| 2-Butene-cis                                                        | 590-18-1                     |                          |                          | 4            | V              | 11074        | 10,000              |
| 2-Butene, 1,4-dichloro-                                             | 764-41-0                     |                          |                          | 1            | Х              | U074         | 40.000              |
| 2-Butene, (E)                                                       | 624-64-6                     |                          |                          |              |                |              | 10,000              |
| 2-Butene-trans                                                      | 624-64-6                     |                          |                          |              |                |              | 10,000              |
| 1-Buten-3-yne                                                       | 689-97-4                     |                          |                          | 400          | 040            |              | 10,000              |
| 2,4-D butoxyethyl ester                                             | 1929-73-3                    |                          |                          | 100          | 313            |              | ļ                   |
| Butyl acetate                                                       | 123-86-4                     |                          |                          | 5,000        |                |              | ļ                   |
| iso-Butyl acetate                                                   | 110-19-0                     |                          |                          | 5,000        |                |              | ļ                   |
| sec-Butyl acetate                                                   | 105-46-4                     |                          |                          | 5,000        |                |              | ļ                   |
| tert-Butyl acetate                                                  | 540-88-5                     |                          |                          | 5,000        | 0.1.0          |              | ļ                   |
| Butyl acrylate                                                      | 141-32-2                     |                          |                          | 5 000        | 313            | 11004        | ļ                   |
| n-Butyl alcohol                                                     | 71-36-3                      |                          |                          | 5,000        | 313            | U031         | ļ                   |
| sec-Butyl alcohol                                                   | 78-92-2                      |                          |                          |              | 313            |              |                     |
| tert-Butyl alcohol                                                  | 75-65-0                      |                          |                          |              | 313            |              |                     |
| Butylamine                                                          | 109-73-9                     |                          |                          | 1,000        |                |              | ļ                   |
| iso-Butylamine                                                      | 78-81-9                      |                          |                          | 1,000        |                |              | ļ                   |
| sec-Butylamine                                                      | 513-49-5                     |                          |                          | 1,000        |                |              | ļ                   |
| sec-Butylamine                                                      | 13952-84-6                   |                          |                          | 1,000        |                |              | ļ                   |
| tert-Butylamine                                                     | 75-64-9                      |                          |                          | 1,000        |                |              |                     |
| Butyl benzyl phthalate                                              | 85-68-7                      |                          |                          | 100          |                |              |                     |
| alphaButylalpha(4-chlorophenyl)-                                    | 88671-89-0                   |                          |                          |              | Х              |              |                     |
| 1H-1,2,4-triazole-1-propanenitrile                                  | 402.22 =                     |                          |                          |              |                |              | <b> </b>            |
| 1,2-Butylene oxide                                                  | 106-88-7                     |                          |                          | 100          | 313            |              |                     |
| Butylethylcarbamothioic acid S-propyl ester                         | 1114-71-2                    |                          |                          |              | Х              |              |                     |
| N-Butyl-N-ethyl-2,6-dinitro-4-<br>(trifluoromethyl) benzenamine     | 1861-40-1                    |                          |                          |              | Х              |              |                     |

| NAME                                                                                   | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| n-Butyl phthalate                                                                      | 84-74-2                      |                          |                          | 10           | Х              | U069         |                     |
| 1-Butyne                                                                               | 107-00-6                     |                          |                          |              |                |              | 10,000              |
| Butyraldehyde                                                                          | 123-72-8                     |                          |                          |              | 313            |              | ,                   |
| Butyric acid                                                                           | 107-92-6                     |                          |                          | 5,000        |                |              |                     |
| iso-Butyric acid                                                                       | 79-31-2                      |                          |                          | 5,000        |                |              |                     |
| Cacodylic acid                                                                         | 75-60-5                      |                          |                          | 1            |                | U136         |                     |
| Cadmium                                                                                | 7440-43-9                    |                          |                          | 10           | 313            |              |                     |
| Cadmium acetate                                                                        | 543-90-8                     |                          |                          | 10           |                |              |                     |
| Cadmium bromide                                                                        | 7789-42-6                    |                          |                          | 10           |                |              |                     |
| Cadmium chloride                                                                       | 10108-64-2                   |                          |                          | 10           |                |              |                     |
| Cadmium Compounds                                                                      | N078                         |                          |                          | &            |                |              |                     |
| Cadmium oxide                                                                          | 1306-19-0                    | 100/10,000               | 100                      | 5            | 313c           |              |                     |
| Cadmium stearate                                                                       |                              | 1,000/10,000             |                          |              | 313c           |              |                     |
| Calcium arsenate                                                                       | 7778-44-1                    | 500/10,000               | 1,000                    | 1            | 313c           |              |                     |
| Calcium arsenite                                                                       | 52740-16-6                   |                          |                          | 1            | 313c           |              |                     |
| Calcium carbide                                                                        | 75-20-7                      |                          |                          | 10           |                |              |                     |
| Calcium chromate                                                                       | 13765-19-0                   |                          |                          | 10           |                | U032         |                     |
| Calcium cyanamide                                                                      | 156-62-7                     |                          |                          | 1,000        |                | 0032         |                     |
| Calcium cyanide                                                                        | 592-01-8                     |                          |                          | 1,000        |                | P021         |                     |
| Calcium dodecylbenzenesulfonate                                                        | 26264-06-2                   |                          |                          | 1,000        | 3130           | FUZI         |                     |
| Calcium hypochlorite                                                                   | 7778-54-3                    |                          |                          | 1,000        |                |              |                     |
| Camphechlor                                                                            | 8001-35-2                    |                          | 1                        | 10           | х              | P123         |                     |
| Camphene, octachloro-                                                                  | 8001-35-2                    |                          |                          | 1            | X              | P123         |                     |
| Camphene, octachloro-                                                                  |                              | 100/10,000               |                          | I            | ^              | P123         |                     |
|                                                                                        | 56-25-7<br>133-06-2          | 100/10,000               | 100                      | 10           | 313            |              |                     |
| Captan<br>Carbachol chloride                                                           |                              | 500/40 000               | 500                      | 10           | 313            |              |                     |
|                                                                                        | 51-83-2                      | 500/10,000               | 500                      |              | X              |              |                     |
| Carbamic acid, diethylthio-, S-(p-<br>chlorobenzyl)                                    | 28249-77-6                   |                          |                          |              |                |              |                     |
| Carbamic acid, ethyl ester                                                             | 51-79-6                      |                          |                          | 100          | Х              | U238         |                     |
| Carbamic acid, methyl-, O-(((2,4-<br>dimethyl-1,3-dithiolan-2-<br>yl)methylene)amino)- | 26419-73-8                   | 100/10,000               | 100                      | 100          |                | P185         |                     |
| Carbamodithioic acid, 1,2-<br>ethanediylbis-, manganese complex                        | 12427-38-2                   |                          |                          |              | Х              |              |                     |
| Carbamodithioic acid, 1,2-<br>ethanediylbis-, zinc complex                             | 12122-67-7                   |                          |                          |              | Х              |              |                     |
| Carbamothioic acid, bis(1-<br>methylethyl)-S-(2,3-dichloro-2-<br>propenyl)ester        | 2303-16-4                    |                          |                          | 100          | Х              | U062         |                     |
| Carbamothioic acid, dipropyl-, S-<br>(phenylmethyl) ester                              | 52888-80-9                   |                          |                          | 5,000        |                | U387         |                     |
| Carbaryl                                                                               | 63-25-2                      |                          |                          | 100          | 313            | U279         |                     |
| Carbendazim                                                                            | 10605-21-7                   |                          |                          | 10           |                | U372         |                     |
| Carbofuran                                                                             | 1563-66-2                    | 10/10,000                | 10                       | 10           | 313            | P127         |                     |
| Carbofuran phenol                                                                      | 1563-38-8                    | ,                        |                          | 10           |                | U367         |                     |
| Carbon disulfide                                                                       | 75-15-0                      |                          | 100                      | 100          |                | P022         | 20,000              |
| Carbonic difluoride                                                                    | 353-50-4                     | ,                        |                          | 1,000        |                | U033         | .,                  |
| Carbonic dichloride                                                                    | 75-44-5                      | 10                       | 10                       | 10           |                | P095         | 500                 |
| Carbonochloridic acid, methylester                                                     | 79-22-1                      | 500                      | 1,000                    | 1,000        |                | U156         | 5,000               |
| Carbonochloridic acid, 1-methylethyl ester                                             | 108-23-6                     |                          | 1,000                    | .,000        |                |              | 15,000              |
| Carbonochloridic acid, propylester                                                     | 109-61-5                     | 500                      | 500                      |              |                |              | 15,000              |

| NAME                                          | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ                            | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-----------------------------------------------|------------------------------|--------------------------|--------------------------|-----------------------------------------|----------------|--------------|---------------------|
| Carbon oxide sulfide (COS)                    | 463-58-1                     |                          |                          | 100                                     | Х              |              | 10,000              |
| Carbon tetrachloride                          | 56-23-5                      |                          |                          | 10                                      |                | U211         | 10,000              |
| Carbonyl sulfide                              | 463-58-1                     |                          |                          | 100                                     | 313            | 0211         | 10,000              |
| Carbophenothion                               | 786-19-6                     | 500                      | 500                      | 100                                     | 010            |              | 10,000              |
| Carbosulfan                                   | 55285-14-8                   | 500                      | 500                      | 1,000                                   |                | P189         |                     |
| Carbosin                                      | 5234-68-4                    |                          |                          | 1,000                                   | 313            | F 109        |                     |
| Catechol                                      | 120-80-9                     |                          |                          | 100                                     | 313            |              |                     |
| CFC-11                                        | 75-69-4                      |                          |                          | 5,000                                   |                | U121         |                     |
| CFC-12                                        | 75-79-4                      |                          |                          | 5,000                                   |                | U075         |                     |
| CFC-12<br>CFC-114                             | 75-71-6                      |                          |                          | 5,000                                   | X              | 0075         |                     |
|                                               |                              |                          |                          |                                         | X              |              |                     |
| CFC-115                                       | 76-15-3                      |                          |                          |                                         |                |              |                     |
| CFC-13                                        | 75-72-9                      |                          |                          |                                         | X              |              |                     |
| Chinomethionat                                | 2439-01-2                    |                          |                          | 400                                     | 313            |              |                     |
| Chloramben                                    | 133-90-4                     |                          |                          | 100                                     | 313            |              |                     |
| Chlorambucil                                  | 305-03-3                     |                          |                          | 10                                      |                | U035         |                     |
| Chlordane                                     | 57-74-9                      | 1,000                    | 1                        | 1                                       | 313            | U036         |                     |
| Chlordane (Technical Mixture and Metabolites) | N.A.                         |                          |                          | &                                       |                |              |                     |
| Chlorendic acid                               | 115-28-6                     |                          |                          |                                         | 313            |              |                     |
| Chlorfenvinfos                                | 470-90-6                     | 500                      | 500                      |                                         |                |              |                     |
| Chlorimuron ethyl                             | 90982-32-4                   |                          |                          |                                         | 313            |              |                     |
| Chlorinated Benzenes                          | N.A.                         |                          |                          | &                                       |                |              |                     |
| Chlorinated Ethanes                           | N.A.                         |                          |                          | &                                       |                |              |                     |
| Chlorinated Naphthalene                       | N.A.                         |                          |                          | &                                       |                |              |                     |
| Chlorinated Phenols                           | N084                         |                          |                          | &                                       | 313            |              |                     |
| Chlorine                                      | 7782-50-5                    | 100                      | 10                       | 10                                      | 313            |              | 2,500               |
| Chlorine dioxide                              | 10049-04-4                   |                          |                          |                                         | 313            |              | 1,000               |
| Chlorine monoxide                             | 7791-21-1                    |                          |                          |                                         |                |              | 10,000              |
| Chlorine oxide                                | 7791-21-1                    |                          |                          |                                         |                |              | 10,000              |
| Chlorine oxide (CIO2)                         | 10049-04-4                   |                          |                          |                                         | Х              |              | 1,000               |
| Chlormephos                                   | 24934-91-6                   | 500                      | 500                      |                                         |                |              | .,                  |
| Chlormequat chloride                          | 999-81-5                     |                          | 100                      |                                         |                |              |                     |
| Chlornaphazine                                | 494-03-1                     | ,                        |                          | 100                                     |                | U026         |                     |
| Chloroacetaldehyde                            | 107-20-0                     |                          |                          | 1,000                                   |                | P023         |                     |
| Chloroacetic acid                             | 79-11-8                      |                          | 100                      | 100                                     |                | . 020        |                     |
| 2-Chloroacetophenone                          | 532-27-4                     | 100,10,000               | 100                      | 100                                     |                |              |                     |
| Chloroalkyl Ethers                            | N.A.                         |                          |                          | &                                       | 010            |              |                     |
| 1-(3-Chloroallyl)-3,5,7-triaza-1-             | 4080-31-3                    |                          |                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 313            |              |                     |
| azoniaadamantane chloride                     | 1000 01 0                    |                          |                          |                                         | 010            |              |                     |
| p-Chloroaniline                               | 106-47-8                     |                          |                          | 1,000                                   | 313            | P024         |                     |
| Chlorobenzene                                 | 108-90-7                     |                          |                          | 100                                     |                | U037         |                     |
| Chlorobenzilate                               | 510-15-6                     |                          |                          | 100                                     |                | U038         |                     |
| 2-(4-((6-Chloro-2-                            | 66441-23-4                   |                          |                          | 10                                      | X              | 0000         |                     |
| benzoxazolylen)oxy)phenoxy)propano            | 00441 20 4                   |                          |                          |                                         |                |              |                     |
| ic acid, ethyl ester                          |                              |                          |                          |                                         |                |              |                     |
| 2-Chloro-N-(2-chloroethyl)-N-                 | 51-75-2                      | 10                       | 10                       |                                         | Х              |              |                     |
| methylethanamine                              |                              |                          |                          |                                         |                |              |                     |
| p-Chloro-m-cresol                             | 59-50-7                      |                          |                          | 5,000                                   |                | U039         |                     |
| 2,4-D chlorocrotyl ester                      | 2971-38-2                    |                          |                          | 100                                     |                |              |                     |
| Chlorodibromomethane                          | 124-48-1                     |                          |                          | 100                                     |                |              |                     |
| 1-Chloro-1,1-difluoroethane                   | 75-68-3                      |                          |                          | 100                                     | 313            |              |                     |
| Chlorodifluoromethane                         | 75-45-6                      |                          |                          |                                         | 313            |              |                     |
| Gniorodinacionethane                          | 10-40-0                      |                          | l                        | <u> </u>                                | 010            | ļ            | ļ                   |

| NAME                                                                              | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-----------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 5-Chloro-3-(1,1-dimethylethyl)-6-<br>methyl-2,4(1H,3H)-pyrimidinedione            | 5902-51-2                    |                          |                          |              | Х              |              |                     |
| Chloroethane                                                                      | 75-00-3                      |                          |                          | 100          | 313            |              | 10,000              |
| Chloroethanol                                                                     | 107-07-3                     | 500                      | 500                      | 100          | 010            |              | 10,000              |
| Chloroethyl chloroformate                                                         | 627-11-2                     | 1,000                    | 1,000                    |              |                |              |                     |
| 6-Chloro-N-ethyl-N'-(1-methylethyl)-                                              | 1912-24-9                    | 1,000                    | 1,000                    |              | Х              |              |                     |
| 1,3,5-triazine-2,4-diamine                                                        | 1912-24-9                    |                          |                          |              | ^              |              |                     |
| 2-Chloroethyl vinyl ether                                                         | 110-75-8                     |                          |                          | 1,000        |                | U042         |                     |
| Chloroform                                                                        | 67-66-3                      | 10,000                   | 10                       | 1,000        | 313            | U044         | 20,000              |
| Chloromethane                                                                     | 74-87-3                      | 10,000                   | 10                       | 100          | 313            | U045         | 10,000              |
| 2-Chloro-N-(((4-methoxy-6-methyl-<br>1,3,5-triazin-2-                             | 64902-72-3                   |                          |                          | 100          | X              | 0043         | 10,000              |
| yl)amino]carbonyl)benzenesulfonamid<br>e                                          |                              |                          |                          |              |                |              |                     |
| 4-Chloro-5-(methylamino)-2-[3-<br>(trifluoromethyl)phenyl]-3(2H)-<br>pyridazinone | 27314-13-2                   |                          |                          |              | Х              |              |                     |
| Chloromethyl ether                                                                | 542-88-1                     | 100                      | 10                       | 10           | Х              | P016         | 1,000               |
| 4-Chloro-alpha-(1-                                                                | 51630-58-1                   | 100                      | 10                       | 10           | X              | 1010         | 1,000               |
| methylethyl)benzeneacetic acid<br>cyano(3-phenoxyphenyl)methyl ester              | 01000-00-1                   |                          |                          |              |                |              |                     |
| 2-Chloro-N-(1-methylethyl)-N-                                                     | 1918-16-7                    |                          |                          |              | Х              |              |                     |
| phenylacetamide                                                                   |                              |                          |                          |              | ~              |              |                     |
| Chloromethyl methyl ether                                                         | 107-30-2                     | 100                      | 10                       | 10           | 313            | U046         | 5,000               |
| (4-Chloro-2-methylphenoxy) acetate sodium salt                                    | 3653-48-3                    |                          |                          |              | X              |              | 0,000               |
| (4-Chloro-2-methylphenoxy) acetic acid                                            | 94-74-6                      |                          |                          |              | Х              |              |                     |
| 3-Chloro-2-methyl-1-propene                                                       | 563-47-3                     |                          |                          |              | 313            |              |                     |
| 2-Chloronaphthalene                                                               | 91-58-7                      |                          |                          | 5,000        |                | U047         |                     |
| Chlorophacinone                                                                   | 3691-35-8                    | 100/10,000               | 100                      |              |                |              |                     |
| 2-Chlorophenol                                                                    | 95-57-8                      |                          |                          | 100          |                | U048         |                     |
| Chlorophenols                                                                     | N084                         |                          |                          | &            | 313            |              |                     |
| 1-(4-Chlorophenoxy)-3,3-dimethyl-1-<br>(1H-1,2,4-triazol-1-yl)-2-butanone         | 43121-43-3                   |                          |                          |              | Х              |              |                     |
| .alpha(2-Chlorophenyl)alpha4-<br>chlorophenyl)-5-pyrimidinemethanol               | 60168-88-9                   |                          |                          |              | Х              |              |                     |
| p-Chlorophenyl isocyanate                                                         | 104-12-1                     |                          |                          |              | 313            |              |                     |
| 4-Chlorophenyl phenyl ether                                                       | 7005-72-3                    |                          |                          | 5,000        |                |              |                     |
| Chloropicrin                                                                      | 76-06-2                      |                          |                          |              | 313            |              |                     |
| Chloroprene                                                                       | 126-99-8                     |                          |                          | 100          | 313            |              |                     |
| 3-Chloropropionitrile                                                             | 542-76-7                     | 1,000                    | 1,000                    | 1,000        | 313            | P027         |                     |
| 2-Chloropropylene                                                                 | 557-98-2                     |                          |                          |              |                |              | 10,000              |
| 1-Chloropropylene                                                                 | 590-21-6                     |                          |                          |              |                |              | 10,000              |
| 2-(4-((6-Chloro-2-                                                                | 76578-14-8                   |                          |                          |              | Х              |              |                     |
| quinoxalinyl)oxy]phenoxy) propanoic<br>acid ethyl ester                           |                              |                          |                          |              |                |              |                     |
| Chlorosulfonic acid                                                               | 7790-94-5                    |                          |                          | 1,000        |                |              |                     |
| Chlorotetrafluoroethane                                                           | 63938-10-3                   | <u> </u>                 |                          | 1,000        | 313            |              |                     |
| 1-Chloro-1,1,2,2-tetrafluoroethane                                                | 354-25-6                     |                          |                          |              | 313            |              |                     |
| 2-Chloro-1,1,1,2-tetrafluoroethane                                                | 2837-89-0                    |                          |                          |              | 313            |              |                     |
| Chlorothalonil                                                                    | 1897-45-6                    | <u> </u>                 |                          | ļ            | 313            |              |                     |

| NAME                                     | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| p-Chloro-o-toluidine                     | 95-69-2                      |                          |                          |              | 313            |              |                     |
| 4-Chloro-o-toluidine, hydrochloride      | 3165-93-3                    |                          |                          | 100          | 010            | U049         |                     |
| 2-Chloro-6-(trichloromethyl)pyridine     | 1929-82-4                    |                          |                          | 100          | Х              | 0040         |                     |
| 2-Chloro-1,1,1-trifluoroethane           | 75-88-7                      |                          |                          |              | 313            |              |                     |
| Chlorotrifluoromethane                   | 75-72-9                      |                          |                          |              | 313            |              |                     |
| 5-(2-Chloro-4-                           | 62476-59-9                   |                          |                          |              | X              |              |                     |
| (trifluoromethyl)phenoxy)-2-             | 02470-39-9                   |                          |                          |              | ~              |              |                     |
| nitrobenzoic acid, sodium salt           |                              |                          |                          |              |                |              |                     |
| 5-(2-Chloro-4-                           | 72178-02-0                   |                          |                          |              | Х              |              |                     |
| (trifluoromethyl)phenoxy)-N-             | 12110 02 0                   |                          |                          |              | ~              |              |                     |
| methylsulfonyl)-2-nitrobenzamide         |                              |                          |                          |              |                |              |                     |
| 5-(2-Chloro-4-                           | 77501-63-4                   |                          |                          |              | Х              |              |                     |
| (trifluoromethyl)phenoxy)-2-nitro-2-     | 11001001                     |                          |                          |              |                |              |                     |
| ethoxy-1-methyl-2-oxoethyl ester         |                              |                          |                          |              |                |              |                     |
| N-(2-Chloro-4-(trifluoromethyl)phenyl)-  | 69409-94-5                   |                          |                          |              | Х              |              |                     |
| DL-valine(+)-cyano(3-                    |                              |                          |                          |              |                |              |                     |
| phenoxyphenyl)methyl ester               |                              |                          |                          |              |                |              |                     |
| 3-Chloro-1,1,1-trifluoropropane          | 460-35-5                     |                          |                          |              | 313            |              |                     |
| 3-(2-Chloro-3,3,3-trifluoro-1-propenyl)- | 68085-85-8                   |                          |                          |              | Х              |              |                     |
| 2,2-dimethylcyclopropanecarboxylic       |                              |                          |                          |              |                |              |                     |
| acid cyano(3-phenoxyphenyl) methyl       |                              |                          |                          |              |                |              |                     |
| ester                                    |                              |                          |                          |              |                |              |                     |
| Chloroxuron                              | 1982-47-4                    | 500/10,000               | 500                      |              |                |              |                     |
| Chlorpyrifos                             | 2921-88-2                    |                          |                          | 1            |                |              |                     |
| Chlorpyrifos methyl                      | 5598-13-0                    |                          |                          |              | 313            |              |                     |
| Chlorsulfuron                            | 64902-72-3                   |                          |                          |              | 313            |              |                     |
| Chlorthiophos                            | 21923-23-9                   | 500                      | 500                      |              |                |              |                     |
| Chromic acetate                          | 1066-30-4                    |                          |                          | 1,000        | 313c           |              |                     |
| Chromic acid                             | 7738-94-5                    |                          |                          | 10           | 313c           |              |                     |
| Chromic acid                             | 11115-74-5                   |                          |                          | 10           | 313c           |              |                     |
| Chromic chloride                         | 10025-73-7                   | 1/10,000                 | 1                        |              | 313c           |              |                     |
| Chromic sulfate                          | 10101-53-8                   |                          |                          | 1,000        | 313c           |              |                     |
| Chromium                                 | 7440-47-3                    |                          |                          | 5,000        | 313            |              |                     |
| Chromium Compounds                       | N090                         |                          |                          | &            |                |              |                     |
| Chromous chloride                        | 10049-05-5                   |                          |                          | 1,000        |                |              |                     |
| d-trans-Chrysanthemic acid of d-         | 28057-48-9                   |                          |                          | ,            | Х              |              |                     |
| allethrone                               |                              |                          |                          |              |                |              |                     |
| Chrysene                                 | 218-01-9                     |                          |                          | 100          | Х              | U050         |                     |
| C.I. Acid Green 3                        | 4680-78-8                    |                          |                          |              | 313            |              |                     |
| C.I. Acid Red 114                        | 6459-94-5                    |                          |                          |              | 313            |              |                     |
| C.I. Basic Green 4                       | 569-64-2                     |                          |                          |              | 313            |              |                     |
| C.I. Basic Red 1                         | 989-38-8                     |                          |                          |              | 313            |              |                     |
| C.I. Direct Black 38                     | 1937-37-7                    |                          |                          |              | 313            |              |                     |
| C.I. Direct Blue 218                     | 28407-37-6                   |                          |                          |              | 313            |              |                     |
| C.I. Direct Blue 6                       | 2602-46-2                    |                          |                          |              | 313            |              |                     |
| C.I. Direct Brown 95                     | 16071-86-6                   |                          |                          |              | 313            |              |                     |
| C.I. Disperse Yellow 3                   | 2832-40-8                    |                          |                          |              | 313            |              |                     |
| C.I. Food Red 5                          | 3761-53-3                    |                          |                          |              | 313            |              |                     |
| C.I. Food Red 15                         | 81-88-9                      |                          |                          |              | 313            |              |                     |
| C.I. Solvent Orange 7                    | 3118-97-6                    |                          |                          |              | 313            |              |                     |
| C.I. Solvent Yellow 3                    | 97-56-3                      |                          |                          |              | 313            |              |                     |
|                                          | 0,000                        |                          |                          |              |                |              |                     |

| NAME                                                            | CAS/313           | Section 302  | Section<br>304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE |              |
|-----------------------------------------------------------------|-------------------|--------------|--------------------|--------------|----------------|--------------|--------------|
|                                                                 | Category<br>Codes | (EHS) TPQ    | RQ                 | RQ           | 313            | CODE         | 112(r)<br>TQ |
| C.I. Solvent Yellow 34                                          | 492-80-8          |              |                    | 100          | 313            | U014         |              |
| C.I. Vat Yellow 4                                               | 128-66-5          |              |                    |              | 313            |              |              |
| Cobalt                                                          | 7440-48-4         |              |                    |              | 313            |              |              |
| Cobalt carbonyl                                                 | 10210-68-1        | 10/10,000    | 10                 |              | 313c           |              |              |
| Cobalt Compounds                                                | N096              |              |                    | &            | 313            |              |              |
| Cobalt, ((2,2'-(1,2-                                            | 62207-76-5        | 100/10,000   | 100                |              | 313c           |              |              |
| ethanediylbis(nitrilomethylidyne))bis(6                         |                   |              |                    |              |                |              |              |
| -fluorophenylato))(2-)-N,N',O,O')-<br>Cobaltous bromide         | 7789-43-7         |              |                    | 1,000        | 313c           |              |              |
| Cobaltous formate                                               | 544-18-3          |              |                    | 1,000        |                |              |              |
| Cobaltous sulfamate                                             | 14017-41-5        |              |                    | 1,000        | 313c           |              |              |
|                                                                 | N.A.              |              |                    | 1,000        | 3130           |              |              |
| Coke Oven Emissions<br>Colchicine                               | 64-86-8           | 10/10 000    | 10                 | I            |                |              |              |
|                                                                 | 7440-50-8         | 10/10,000    | 10                 | E 000        | 212            |              |              |
| Copper                                                          |                   |              |                    | 5,000        | 313            |              |              |
| Copper Compounds                                                | N100              |              |                    | &            | 313            | DOOO         |              |
| Copper cyanide                                                  | 544-92-3          | 400/40 000   | 40                 | 10           | 313c           | P029         |              |
| Coumaphos                                                       | 56-72-4           | 100/10,000   |                    | 10           |                |              |              |
| Coumatetralyl                                                   | 5836-29-3         | 500/10,000   | 500                | 4            |                | 11054        |              |
| Creosote                                                        | N.A.              |              |                    | 1            | 0.1.0          | U051         |              |
| Creosote                                                        | 8001-58-9         |              |                    |              | 313            |              |              |
| p-Cresidine                                                     | 120-71-8          |              |                    | (00          | 313            |              |              |
| m-Cresol                                                        | 108-39-4          |              | 400                | 100          | 313            | U052         |              |
| o-Cresol                                                        |                   | 1,000/10,000 | 100                | 100          | 313            | U052         |              |
| p-Cresol                                                        | 106-44-5          |              |                    | 100          | 313            | U052         |              |
| Cresol (mixed isomers)                                          | 1319-77-3         | 100/10 000   | (                  | 100          | 313            | U052         |              |
| Crimidine                                                       | 535-89-7          | 100/10,000   |                    | 400          | 0.10           |              |              |
| Crotonaldehyde                                                  | 4170-30-3         | 1,000        |                    | 100          | 313            | U053         | 20,000       |
| Crotonaldehyde, (E)-                                            | 123-73-9          | 1,000        | 100                | 100          |                | U053         | 20,000       |
| Cumene                                                          | 98-82-8           |              |                    | 5,000        |                | U055         |              |
| Cumene hydroperoxide                                            | 80-15-9           |              |                    | 10           | 313            | U096         |              |
| Cupferron                                                       | 135-20-6          |              |                    |              | 313            |              |              |
| Cupric acetate                                                  | 142-71-2          |              |                    | 100          | 313c           |              |              |
| Cupric acetoarsenite                                            | 12002-03-8        | ,            | 1                  | 1            | 313c           |              |              |
| Cupric chloride                                                 | 7447-39-4         |              |                    | 10           |                |              |              |
| Cupric nitrate                                                  | 3251-23-8         |              |                    | 100          | 313c           |              |              |
| Cupric oxalate                                                  | 5893-66-3         |              |                    | 100          |                |              |              |
| Cupric sulfate                                                  | 7758-98-7         |              |                    | 10           |                |              |              |
| Cupric sulfate, ammoniated                                      | 10380-29-7        |              |                    | 100          |                |              |              |
| Cupric tartrate                                                 | 815-82-7          |              |                    | 100          | 313c           |              |              |
| Cyanazine                                                       | 21725-46-2        |              |                    |              | 313            |              |              |
| Cyanide Compounds                                               | N106              |              |                    | &            | 313            |              |              |
| Cyanides (soluble salts and complexes), not otherwise specified | N.A.              |              |                    | 10           | 313c           | P030         |              |
| Cyanogen                                                        | 460-19-5          |              |                    | 100          |                | P031         | 10,000       |
| Cyanogen bromide                                                | 506-68-3          | 500/10,000   | 1,000              | 1,000        | 313c           | U246         |              |
| Cyanogen chloride                                               | 506-77-4          |              | .,000              | 1,000        |                | P033         | 10,000       |
| Cyanogen iodide                                                 |                   | 1,000/10,000 | 1,000              | .0           | 313c           |              | ,            |
| Cyanophos                                                       | 2636-26-2         | 1,000        | -                  |              | 0.00           |              |              |
| Cyanuric fluoride                                               | 675-14-9          | ,            | ,                  |              | 313c           |              |              |
| Cycloate                                                        | 1134-23-2         |              | 100                |              | 313            |              |              |
| 2,5-Cyclohexadiene-1,4-dione, 2,3,5-                            | 68-76-8           |              |                    |              | X              |              |              |
| tris(1-aziridinyl)-                                             | 0-10-0            |              |                    |              |                |              |              |

| NAME                                                                                            | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Cyclohexanamine                                                                                 | 108-91-8                     | 10,000                   | 10,000                   |              |                |              | 15,000              |
| Cyclohexane                                                                                     | 110-82-7                     |                          |                          | 1,000        | 313            | U056         |                     |
| 1,4-Cyclohexane diisocyanate                                                                    | 2556-36-7                    |                          |                          |              | 313#           |              |                     |
| Cyclohexane, 1,2,3,4,5,6-hexachloro-,(1.alpha.,2.alpha.,3.beta.,4.alpha.,5.a<br>lpha.,6.beta.)- | 58-89-9                      | 1,000/10,000             | 1                        | 1            | Х              | U129         |                     |
| Cyclohexanol                                                                                    | 108-93-0                     |                          |                          |              | 313            |              |                     |
| Cyclohexanone                                                                                   | 108-94-1                     |                          |                          | 5,000        | 0.0            | U057         |                     |
| Cycloheximide                                                                                   | 66-81-9                      | 100/10,000               | 100                      | 0,000        |                |              |                     |
| Cyclohexylamine                                                                                 | 108-91-8                     | ,                        |                          |              |                |              | 15,000              |
| 2-Cyclohexyl-4,6-dinitrophenol                                                                  | 131-89-5                     | 10,000                   | 10,000                   | 100          |                | P034         | 10,000              |
| Cyclophosphamide                                                                                | 50-18-0                      |                          |                          | 100          |                | U058         |                     |
| Cyclopropane                                                                                    | 75-19-4                      |                          |                          | 10           |                | 0000         | 10,000              |
| Cyfluthrin                                                                                      | 68359-37-5                   |                          |                          |              | 313            |              | 10,000              |
| Cyhalothrin                                                                                     | 68085-85-8                   |                          |                          |              | 313            |              |                     |
| 2,4-D                                                                                           | 94-75-7                      |                          |                          | 100          | 313            | U240         |                     |
| 2,4-D<br>2,4-D Acid                                                                             | 94-75-7                      |                          |                          |              | X              |              |                     |
| -                                                                                               |                              |                          |                          | 100          |                | U240         |                     |
| 2,4-D butyl ester                                                                               | 94-80-4                      |                          |                          | 100          | 313            |              |                     |
| 2,4-D Esters                                                                                    | 94-11-1                      |                          |                          | 100          | Х              |              |                     |
| 2,4-D Esters                                                                                    | 94-79-1                      |                          |                          | 100          |                |              |                     |
| 2,4-D Esters                                                                                    | 94-80-4                      |                          |                          | 100          | X              |              |                     |
| 2,4-D Esters                                                                                    | 1320-18-9                    |                          |                          | 100          | Х              |              |                     |
| 2,4-D Esters                                                                                    | 1928-38-7                    |                          |                          | 100          |                |              |                     |
| 2,4-D Esters                                                                                    | 1928-61-6                    |                          |                          | 100          |                |              |                     |
| 2,4-D Esters                                                                                    | 1929-73-3                    |                          |                          | 100          | Х              |              |                     |
| 2,4-D Esters                                                                                    | 2971-38-2                    |                          |                          | 100          | Х              |              |                     |
| 2,4-D Esters                                                                                    | 25168-26-7                   |                          |                          | 100          |                |              |                     |
| 2,4-D Esters                                                                                    | 53467-11-1                   |                          |                          | 100          |                |              |                     |
| 2,4-D isopropyl ester                                                                           | 94-11-1                      |                          |                          | 100          | 313            |              |                     |
| 2,4-D propylene glycol butyl ether<br>ester                                                     | 1320-18-9                    |                          |                          | 100          | 313            |              |                     |
| 2,4-D, salts and esters                                                                         | 94-75-7                      |                          |                          | 100          |                | U240         |                     |
| Daunomycin                                                                                      | 20830-81-3                   |                          |                          | 10           |                | U059         |                     |
| Dazomet                                                                                         | 533-74-4                     |                          |                          |              | 313            |              |                     |
| Dazomet, sodium salt                                                                            | 53404-60-7                   |                          |                          |              | 313            |              |                     |
| 2,4-DB                                                                                          | 94-82-6                      |                          |                          |              | 313            |              |                     |
| DBCP                                                                                            | 96-12-8                      |                          |                          | 1            | Х              | U066         |                     |
| DDD                                                                                             | 72-54-8                      |                          |                          | 1            |                | U060         |                     |
| DDE                                                                                             | 72-55-9                      |                          |                          | 1            |                |              |                     |
| DDE                                                                                             | 3547-04-4                    |                          |                          | 5,000        |                |              |                     |
| DDT                                                                                             | 50-29-3                      |                          |                          | 1            |                | U061         |                     |
| DDT and Metabolites                                                                             | N.A.                         |                          |                          | &            |                |              |                     |
| Decaborane(14)                                                                                  | 17702-41-9                   | 500/10,000               | 500                      |              |                |              |                     |
| Decabromodiphenyl oxide                                                                         | 1163-19-5                    |                          |                          |              | 313            |              |                     |
| DEF                                                                                             | 78-48-8                      |                          |                          |              | X              |              |                     |
| DEHP                                                                                            | 117-81-7                     |                          | 1                        | 100          | X              | U028         |                     |
| Demeton                                                                                         | 8065-48-3                    | 500                      | 500                      |              | -              |              |                     |
| Demeton-S-methyl                                                                                | 919-86-8                     |                          | 500                      |              |                |              |                     |
| Desmedipham                                                                                     | 13684-56-5                   |                          |                          |              | 313            |              |                     |
| 2,4-D 2-ethylhexyl ester                                                                        | 1928-43-4                    |                          |                          |              | 313            |              |                     |
| 2,4-D 2-ethyl-4-methylpentyl ester                                                              | 53404-37-8                   |                          |                          |              | 313            |              |                     |
| Dialifor                                                                                        | 10311-84-9                   |                          | 100                      |              | 515            |              |                     |
|                                                                                                 | 10311-04-9                   | A 12                     | 100                      |              |                |              |                     |

| NAME                                   | CAS/313           | Section 302 |               | CERCLA |      |          |              |
|----------------------------------------|-------------------|-------------|---------------|--------|------|----------|--------------|
|                                        | Category<br>Codes | (EHS) TPQ   | 304 EHS<br>RQ | RQ     | 313  | CODE     | 112(r)<br>TQ |
| Diallate                               | 2303-16-4         |             |               | 100    | 313  | U062     |              |
| 2,4-Diaminoanisole                     | 615-05-4          |             |               |        | 313  |          |              |
| 2,4-Diaminoanisole sulfate             | 39156-41-7        |             |               |        | 313  |          |              |
| 4,4'-Diaminodiphenyl ether             | 101-80-4          |             |               |        | 313  |          |              |
| Diaminotoluene                         | 496-72-0          |             |               | 10     |      | U221     |              |
| Diaminotoluene                         | 823-40-5          |             |               | 10     |      | U221     |              |
| 2,4-Diaminotoluene                     | 95-80-7           |             |               | 10     |      | -        |              |
| Diaminotoluene (mixed isomers)         | 25376-45-8        |             |               | 10     |      | U221     |              |
| o-Dianisidine dihydrochloride          | 20325-40-0        |             |               |        | X    |          |              |
| o-Dianisidine hydrochloride            | 111984-09-9       |             |               |        | X    |          |              |
| Diazinon                               | 333-41-5          |             |               | 1      | 313  |          |              |
| Diazomethane                           | 334-88-3          |             |               | 100    |      |          |              |
| Dibenz(a,h)acridine                    | 226-36-8          |             |               |        | 313+ |          |              |
| Dibenz(a,j)acridine                    | 224-42-0          |             |               |        | 313+ |          |              |
| Dibenz[a,h]anthracene                  | 53-70-3           |             |               | 1      |      | U063     |              |
| 7H-Dibenzo(c,g)carbazole               | 194-59-2          |             |               |        | 313+ | 0000     |              |
| Dibenzo(a,e)fluoranthene               | 5385-75-1         |             |               |        | 313+ |          |              |
| Dibenzofuran                           | 132-64-9          |             |               | 100    | 313  |          |              |
| Dibenzo(a,e)pyrene                     | 192-65-4          |             |               | 100    | 313+ |          |              |
| Dibenzo(a,h)pyrene                     | 189-64-0          |             |               |        | 313+ |          |              |
| Dibenzo(a,I)pyrene                     | 191-30-0          |             |               |        | 313+ |          |              |
| Dibenz[a,i]pyrene                      | 189-55-9          |             |               | 10     | X    | U064     |              |
| Diborane                               | 19287-45-7        | 100         | 100           |        | ~    |          | 2,500        |
| Diborane(6)                            | 19287-45-7        | 100         | 100           |        |      |          | 2,500        |
| 1,2-Dibromo-3-chloropropane            | 96-12-8           | 100         | 100           | 1      | 313  | U066     | 2,000        |
| 1,2-Dibromoethane                      | 106-93-4          |             |               | 1      | 313  | U067     |              |
| 3,5-Dibromo-4-hydroxybenzonitrile      | 1689-84-5         |             |               |        | X    | 000.     |              |
| 2,2-Dibromo-3-nitrilopropionamide      | 10222-01-2        |             |               |        | 313s |          |              |
| Dibromotetrafluoroethane               | 124-73-2          |             |               |        | 313  |          |              |
| Dibutyl phthalate                      | 84-74-2           |             |               | 10     |      | U069     |              |
| Dicamba                                | 1918-00-9         |             |               | 1,000  | 313  | 0000     |              |
| Dichlobenil                            | 1194-65-6         |             |               | 100    | 010  |          |              |
| Dichlone                               | 117-80-6          |             |               | 1      |      |          |              |
| Dichloran                              | 99-30-9           |             |               |        | 313  |          |              |
| o-Dichlorobenzene                      | 95-50-1           |             |               | 100    | X    | U070     |              |
| Dichlorobenzene                        | 25321-22-6        |             |               | 100    | X    | 0070     |              |
| 1,2-Dichlorobenzene                    | 95-50-1           |             |               | 100    |      | U070     |              |
| 1,3-Dichlorobenzene                    | 541-73-1          |             |               | 100    | 313  | U071     |              |
| 1,4-Dichlorobenzene                    | 106-46-7          |             |               | 100    |      | U072     |              |
| Dichlorobenzene (mixed isomers)        | 25321-22-6        |             |               | 100    | 313  | 0072     |              |
| Dichlorobenzidine                      | N.A.              |             |               | &      | 010  |          |              |
| 3,3'-Dichlorobenzidine                 | 91-94-1           |             |               | 1      | 313  | U073     |              |
| 3,3'-Dichlorobenzidine dihydrochloride | 612-83-9          |             |               |        | 313  | 5015     |              |
| 3,3'-Dichlorobenzidine sulfate         | 64969-34-2        |             |               |        | 313  | <u> </u> |              |
| Dichlorobromomethane                   | 75-27-4           |             |               | 5,000  | 313  |          |              |
| trans-1,4-Dichloro-2-butene            | 110-57-6          | 500         | 500           | 3,000  | 313  |          |              |
| trans-1,4-Dichlorobutene               | 110-57-6          | 500         | 500           |        | X    |          |              |
| 1,4-Dichloro-2-butene                  | 764-41-0          | 500         | 500           | 1      |      | U074     |              |
| 4,6-Dichloro-N-(2-chlorophenyl)-1,3,5- | 101-05-3          |             |               |        | X    | 5074     |              |
| triazin-2-amine                        | 101-00-3          |             |               |        | ^    |          |              |
| 1,2-Dichloro-1,1-difluoroethane        | 1649-08-7         |             |               |        | 313  |          |              |
| Dichlorodifluoromethane                | 75-71-8           |             |               | 5,000  |      | U075     |              |
|                                        | 10-11-0           | Δ-13        |               | 3,000  | 515  | 0010     | i            |

| NAME                                          | CAS/313<br>Category | Section 302<br>(EHS) TPQ | 304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r) |
|-----------------------------------------------|---------------------|--------------------------|---------|--------------|----------------|--------------|---------------|
|                                               | Codes               |                          | RQ      |              |                |              | ΤQ            |
| 1,1-Dichloroethane                            | 75-34-3             |                          |         | 1,000        | Х              | U076         |               |
| 1,2-Dichloroethane                            | 107-06-2            |                          |         | 100          | 313            | U077         |               |
| 3-(2,2-Dichloroethenyl)-2,2-                  | 52645-53-1          |                          |         |              | Х              |              |               |
| dimethylcyclopropane carboxylic acid,         |                     |                          |         |              |                |              |               |
| (3-phenoxy-phenyl)methyl ester                |                     |                          |         |              |                |              |               |
| 3-(2,2-Dichloroethenyl)-2,2-                  | 68359-37-5          |                          |         |              | Х              |              |               |
| dimethylcyclopropanecarboxylic acid,          |                     |                          |         |              |                |              |               |
| cyano(4-fluoro-3-                             |                     |                          |         |              |                |              |               |
| phenoxyphenyl)methyl ester                    |                     |                          |         |              |                |              |               |
| 1,1-Dichloroethylene                          | 75-35-4             |                          |         | 100          | Х              | U078         | 10,000        |
| 1,2-Dichloroethylene                          | 156-60-5            |                          |         | 1,000        |                | U079         |               |
| 1,2-Dichloroethylene                          | 540-59-0            |                          |         |              | 313            |              |               |
| Dichloroethyl ether                           | 111-44-4            | 10,000                   | 10      | 10           | Х              | U025         |               |
| 1,1-Dichloro-1-fluoroethane                   | 1717-00-6           |                          |         |              | 313            |              |               |
| Dichlorofluoromethane                         | 75-43-4             |                          |         |              | 313            |              |               |
| Dichloroisopropyl ether                       | 108-60-1            |                          |         | 1,000        | Х              | U027         |               |
| Dichloromethane                               | 75-09-2             |                          |         | 1,000        | 313            | U080         |               |
| 3,6-Dichloro-2-methoxybenzoic acid            | 1918-00-9           |                          |         | 1,000        | Х              |              |               |
| 3,6-Dichloro-2-methoxybenzoic acid,           | 1982-69-0           |                          |         |              | Х              |              |               |
| sodium salt                                   |                     |                          |         |              |                |              |               |
| Dichloromethyl ether                          | 542-88-1            | 100                      | 10      | 10           | Х              | P016         | 1,000         |
| 3-(2,4-Dichloro-5-(1-                         | 19666-30-9          |                          |         |              | Х              |              |               |
| methylethoxy)phenyl)-5-(1,1-                  |                     |                          |         |              |                |              |               |
| dimethylethyl)-1,3,4-oxadiazol-2(3H)-         |                     |                          |         |              |                |              |               |
| one                                           |                     |                          |         |              |                |              |               |
| Dichloromethylphenylsilane                    | 149-74-6            | 1,000                    | 1,000   |              |                |              |               |
| 2,6-Dichloro-4-nitroaniline                   | 99-30-9             |                          |         |              | X              |              |               |
| Dichloropentafluoropropane                    | 127564-92-5         |                          |         |              | 313            |              |               |
| 2,2-Dichloro-1,1,1,3,3-                       | 128903-21-9         |                          |         |              | 313            |              |               |
| pentafluoropropane                            | 400.40.0            |                          |         |              | 0.1.0          |              |               |
| 2,3-Dichloro-1,1,1,2,3-                       | 422-48-0            |                          |         |              | 313            |              |               |
| pentafluoropropane                            | 400.44.0            |                          |         |              | 040            |              |               |
| 1,2-Dichloro-1,1,2,3,3-                       | 422-44-6            |                          |         |              | 313            |              |               |
| pentafluoropropane                            | 400 50 0            |                          |         |              | 040            |              |               |
| 3,3-Dichloro-1,1,1,2,2-                       | 422-56-0            |                          |         |              | 313            |              |               |
| pentafluoropropane                            | 507-55-1            |                          |         |              | 313            |              |               |
| 1,3-Dichloro-1,1,2,2,3-                       | 507-55-1            |                          |         |              | 515            |              |               |
| pentafluoropropane<br>1,1-Dichloro-1,2,2,3,3- | 13474-88-9          |                          |         |              | 313            |              |               |
| pentafluoropropane                            | 13474-00-9          |                          |         |              | 515            |              |               |
| 1,2-Dichloro-1,1,3,3,3-                       | 431-86-7            |                          |         |              | 313            |              |               |
| pentafluoropropane                            | 431-00-7            |                          |         |              | 515            |              |               |
| 1,3-Dichloro-1,1,2,3,3-                       | 136013-79-1         |                          |         |              | 313            |              |               |
| pentafluoropropane                            | 150015-75-1         |                          |         |              | 515            |              |               |
| 1,1-Dichloro-1,2,3,3,3-                       | 111512-56-2         |                          |         |              | 313            |              |               |
| pentafluoropropane                            | 0   2 - 00-2        |                          |         |              | 010            |              |               |
| Dichlorophene                                 | 97-23-4             |                          |         |              | 313            |              |               |
| 2,6-Dichlorophenol                            | 87-65-0             |                          |         | 100          |                | U082         |               |
| 2,4-Dichlorophenol                            | 120-83-2            |                          |         | 100          | 313            | U081         |               |
| 2-(4-(2,4-                                    | 51338-27-3          |                          |         | 100          | X              | 5501         |               |
| Dichlorophenoxy)phenoxy)propanoic             |                     |                          |         |              |                |              |               |
| acid, methyl ester                            |                     |                          |         |              |                |              |               |
| Dichlorophenylarsine                          | 696-28-6            | 500                      | 1       | 1            |                | P036         |               |

| NAME                                                                                    | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-----------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 3-(3,5-Dichlorophenyl)-5-ethenyl-5-<br>methyl-2,4-oxazolidinedione                      | 50471-44-8                   |                          |                          |              | Х              |              |                     |
| 2-(3,4-Dichlorophenyl)-4-methyl-1,2,4-<br>oxadiazolidine-3,5-dione                      | 20354-26-1                   |                          |                          |              | Х              |              |                     |
| N-(3,4-Dichlorophenyl)propanamide                                                       | 709-98-8                     |                          |                          |              | Х              |              |                     |
| 1-(2-(2,4-Dichlorophenyl)-2-(2-<br>propenyloxy)ethyl)-1H-imidazole                      | 35554-44-0                   |                          |                          |              | X              |              |                     |
| 1-(2-(2,4-Dichlorophenyl)-4-propyl-<br>1,3-dioxolan-2-yl)-methyl-1H-1,2,4,-<br>triazole | 60207-90-1                   |                          |                          |              | Х              |              |                     |
| Dichloropropane                                                                         | 26638-19-7                   |                          |                          | 1,000        |                |              |                     |
| Dichloropropane - Dichloropropene<br>(mixture)                                          | 8003-19-8                    |                          |                          | 100          |                |              |                     |
| 1,1-Dichloropropane                                                                     | 78-99-9                      |                          |                          | 1,000        |                |              |                     |
| 1,2-Dichloropropane                                                                     | 78-87-5                      |                          | 1                        | 1,000        |                | U083         |                     |
| 1,3-Dichloropropane                                                                     | 142-28-9                     |                          | ĺ                        | 1,000        | -              |              |                     |
| Dichloropropene                                                                         | 26952-23-8                   |                          |                          | 100          |                |              |                     |
| 1,3-Dichloropropene                                                                     | 542-75-6                     |                          | ĺ                        | 100          | Х              | U084         |                     |
| trans-1,3-Dichloropropene                                                               | 10061-02-6                   |                          |                          |              | 313            |              |                     |
| 2,3-Dichloropropene                                                                     | 78-88-6                      |                          |                          | 100          | 313            |              |                     |
| 2,2-Dichloropropionic acid                                                              | 75-99-0                      |                          |                          | 5,000        |                |              |                     |
| 1,3-Dichloropropylene                                                                   | 542-75-6                     |                          |                          | 100          | 313            | U084         |                     |
| Dichlorosilane                                                                          | 4109-96-0                    |                          |                          |              |                |              | 10,000              |
| Dichlorotetrafluoroethane                                                               | 76-14-2                      |                          |                          |              | 313            |              | -,                  |
| Dichlorotrifluoroethane                                                                 | 34077-87-7                   |                          |                          |              | 313            |              |                     |
| Dichloro-1,1,2-trifluoroethane                                                          | 90454-18-5                   |                          |                          |              | 313            |              |                     |
| 1,1-Dichloro-1,2,2-trifluoroethane                                                      | 812-04-4                     |                          |                          |              | 313            |              |                     |
| 1,2-Dichloro-1,1,2-trifluoroethane                                                      | 354-23-4                     |                          |                          |              | 313            |              |                     |
| 2,2-Dichloro-1,1,1-trifluoroethane                                                      | 306-83-2                     |                          |                          |              | 313            |              |                     |
| Dichlorvos                                                                              | 62-73-7                      | 1,000                    | 10                       | 10           | 313            |              |                     |
| Diclofop methyl                                                                         | 51338-27-3                   | ,                        |                          |              | 313            |              |                     |
| Dicofol                                                                                 | 115-32-2                     |                          |                          | 10           | 313            |              |                     |
| Dicrotophos                                                                             | 141-66-2                     | 100                      | 100                      |              |                |              |                     |
| Dicyclopentadiene                                                                       | 77-73-6                      |                          |                          |              | 313            |              |                     |
| Dieldrin                                                                                | 60-57-1                      |                          |                          | 1            |                | P037         |                     |
| Diepoxybutane                                                                           | 1464-53-5                    | 500                      | 10                       | 10           | 313            | U085         |                     |
| Diethanolamine                                                                          | 111-42-2                     |                          |                          | 100          | 313            |              |                     |
| Diethatyl ethyl                                                                         | 38727-55-8                   |                          |                          |              | 313            |              |                     |
| Diethylamine                                                                            | 109-89-7                     |                          |                          | 100          |                |              |                     |
| O-(2-(Diethylamino)-6-methyl-4-<br>pyrimidinyl)-O,O-dimethyl<br>phosphorothioate        | 29232-93-7                   |                          |                          |              | Х              |              |                     |
| N,N-Diethylaniline                                                                      | 91-66-7                      |                          |                          | 1,000        |                |              |                     |
| Diethylarsine                                                                           | 692-42-2                     |                          |                          | 1,000        |                | P038         |                     |
| Diethyl chlorophosphate                                                                 | <u> </u>                     | 500                      | 500                      |              |                | 1-030        |                     |
| Diethyldiisocyanatobenzene                                                              | 134190-37-7                  | 500                      | 500                      |              | 313#           |              |                     |
| Di(2-ethylhexyl) phthalate                                                              | 117-81-7                     |                          |                          | 100          | 313#           | U028         |                     |
| O,O-Diethyl S-methyl dithiophosphate                                                    | 3288-58-2                    |                          |                          | 5,000        | 515            | U028<br>U087 |                     |
| Diethyl-p-nitrophenyl phosphate                                                         | 3288-58-2                    |                          |                          | 5,000        |                | P041         |                     |
| Diethyl phthalate                                                                       | 84-66-2                      |                          |                          | 1,000        |                | U088         |                     |
| O,O-Diethyl O-pyrazinyl                                                                 | 297-97-2                     | 500                      | 100                      | 100          |                | P040         |                     |
| phosphorothioate                                                                        | 291-91-2                     | 500                      | 100                      | 100          |                | F'040        |                     |

| NAME                                               | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Diethylstilbestrol                                 | 56-53-1                      |                          |                          | 1            |                | U089         |                     |
| Diethyl sulfate                                    | 64-67-5                      |                          |                          | 10           | 313            |              |                     |
| Diflubenzuron                                      | 35367-38-5                   |                          |                          |              | 313            |              |                     |
| Difluoroethane                                     | 75-37-6                      |                          |                          |              |                |              | 10,000              |
| Digitoxin                                          | 71-63-6                      | 100/10,000               | 100                      |              |                |              | 10,000              |
| Diglycidyl ether                                   | 2238-07-5                    | 1,000                    |                          |              |                |              |                     |
| Diglycidyl resorcinol ether                        | 101-90-6                     | ,                        | 1,000                    |              | 313            |              |                     |
| Digoxin                                            | 20830-75-5                   |                          | 10                       |              | 515            |              |                     |
| 2,3,-Dihydro-5,6-dimethyl-1,4-dithiin              | 55290-64-7                   | 10/10,000                | 10                       |              | Х              |              |                     |
| 1,1,4,4-tetraoxide                                 |                              |                          |                          |              |                |              |                     |
| 5,6-Dihydro-2-methyl-N-phenyl-1,4-                 | 5234-68-4                    |                          |                          |              | Х              |              |                     |
| oxathiin-3-carboxamide                             |                              |                          |                          |              |                |              |                     |
| Dihydrosafrole                                     | 94-58-6                      |                          |                          | 10           |                | U090         |                     |
| Diisocyanates (includes only 20 chemicals)         | N120                         |                          |                          |              | 313            |              |                     |
| 4,4'-Diisocyanatodiphenyl ether                    | 4128-73-8                    |                          |                          |              | 313#           |              |                     |
| 2,4'-Diisocyanatodiphenyl sulfide                  | 75790-87-3                   |                          |                          |              | 313#           |              |                     |
| Diisopropylfluorophosphate                         | 55-91-4                      | 100                      | 100                      | 100          |                | P043         |                     |
| Dimefox                                            | 115-26-4                     | 500                      | 500                      |              |                |              |                     |
| 1,4:5,8-Dimethanonaphthalene,                      | 309-00-2                     | 500/10,000               | 1                        | 1            | Х              | P004         |                     |
| 1,2,3,4,10,10-hexachloro-                          |                              | ,                        |                          |              |                |              |                     |
| 1,4,4a,5,8,8a-hexahydro-                           |                              |                          |                          |              |                |              |                     |
| (1.alpha.,4.alpha.,4a.beta.,5.alpha.,8.            |                              |                          |                          |              |                |              |                     |
| alpha.,8a.beta.)-                                  |                              |                          |                          |              |                |              |                     |
| Dimethipin                                         | 55290-64-7                   |                          |                          |              | 313            |              |                     |
| Dimethoate                                         | 60-51-5                      | 500/10,000               | 10                       | 10           | 313            | P044         |                     |
| 3,3'-Dimethoxybenzidine                            | 119-90-4                     |                          |                          | 100          | 313            | U091         |                     |
| 3,3'-Dimethoxybenzidine<br>dihydrochloride         | 20325-40-0                   |                          |                          |              | 313            |              |                     |
| 3,3'-Dimethoxybenzidine-4,4'-<br>diisocyanate      | 91-93-0                      |                          |                          |              | 313#           |              |                     |
| 3,3'-Dimethoxybenzidine                            | 111984-09-9                  |                          |                          |              | 313            |              |                     |
| hydrochloride                                      |                              |                          |                          |              |                |              |                     |
| Dimethylamine                                      | 124-40-3                     |                          |                          | 1,000        | 313            | U092         | 10,000              |
| Dimethylamine dicamba                              | 2300-66-5                    |                          |                          | ,            | 313            |              | ,                   |
| 4-Dimethylaminoazobenzene                          | 60-11-7                      |                          |                          | 10           | 313            | U093         |                     |
| Dimethylaminoazobenzene                            | 60-11-7                      |                          |                          | 10           | X              | U093         |                     |
| N,N-Dimethylaniline                                | 121-69-7                     |                          |                          | 100          |                |              |                     |
| 7,12-Dimethylbenz[a]anthracene                     | 57-97-6                      |                          |                          | 1            | 313+           | U094         |                     |
| 3,3'-Dimethylbenzidine                             | 119-93-7                     |                          |                          | 10           |                | U095         |                     |
| 3,3'-Dimethylbenzidine                             | 612-82-8                     |                          | ļ                        | 10           | 313            |              | 1                   |
| dihydrochloride                                    | 512-02-0                     |                          |                          |              | 510            |              |                     |
| 3,3'-Dimethylbenzidine dihydrofluoride             | 41766-75-0                   |                          | ļ                        | ļ            | 313            |              | 1                   |
| 2,2-Dimethyl-1,3-benzodioxol-4-ol                  | 22781-23-3                   |                          | ļ                        | 100          | X              | U278         | 1                   |
| methylcarbamate                                    | 22101-20-0                   |                          |                          | 100          | ~              | 0270         |                     |
| Dimethylcarbamyl chloride                          | 79-44-7                      |                          |                          | 1            | 313            | U097         |                     |
| Dimethyl chlorothiophosphate                       | 2524-03-0                    | 500                      | 500                      | I            | 313            | 5551         |                     |
| Dimethyldichlorosilane                             | 75-78-5                      |                          | 500                      |              | 515            |              | 5,000               |
| ,                                                  |                              | 500                      | 500                      |              | 212#           |              | 5,000               |
| 3,3'-Dimethyl-4,4'-diphenylene<br>diisocyanate     | 91-97-4                      |                          |                          |              | 313#           |              |                     |
| 3,3'-Dimethyldiphenylmethane-4,4'-<br>diisocyanate | 139-25-3                     |                          |                          |              | 313#           |              |                     |

| NAME                                                                                                        | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| N-(5-(1,1-Dimethylethyl)-1,3,4-                                                                             | 34014-18-1                   |                          |                          |              | Х              |              |                     |
| thiadiazol-2-yl)-N,N'-dimethylurea                                                                          |                              |                          |                          |              |                |              |                     |
| Dimethylformamide                                                                                           | 68-12-2                      |                          |                          | 100          | X              |              |                     |
| N,N-Dimethylformamide                                                                                       | 68-12-2                      |                          |                          | 100          | 313            |              |                     |
| 1,1-Dimethyl hydrazine                                                                                      | 57-14-7                      | 1,000                    | 10                       | 10           | 313            | U098         | 15,000              |
| Dimethylhydrazine                                                                                           | 57-14-7                      | 1,000                    | 10                       | 10           |                | U098         | 15,000              |
| O,O-Dimethyl O-(3-methyl-4-<br>(methylthio) phenyl) ester,                                                  | 55-38-9                      |                          |                          |              | Х              |              |                     |
| phosphorothioic acid                                                                                        |                              |                          |                          |              |                |              |                     |
| 2,2-Dimethyl-3-(2-methyl-1-<br>propenyl)cyclopropanecarboxylic acid<br>(1,3,4,5,6,7-hexahydro-1,3-dioxo-2H- | 7696-12-0                    |                          |                          |              | Х              |              |                     |
| isoindol-2-yl)methyl ester                                                                                  |                              |                          |                          |              |                |              |                     |
| 2,2-Dimethyl-3-(2-methyl-1-                                                                                 | 26002-80-2                   |                          |                          |              | Х              |              | ł                   |
| propenyl)cyclopropanecarboxylic acid<br>(3-phenoxyphenyl)methyl ester                                       | 20002 00 2                   |                          |                          |              | Χ              |              |                     |
| 2,4-Dimethylphenol                                                                                          | 105-67-9                     |                          |                          | 100          | 313            | U101         |                     |
| Dimethyl-p-phenylenediamine                                                                                 | 99-98-9                      | 10/10,000                | 10                       |              |                |              |                     |
| Dimethyl phosphorochloridothioate                                                                           | 2524-03-0                    | 500                      | 500                      |              | Х              |              |                     |
| Dimethyl phthalate                                                                                          | 131-11-3                     |                          | 000                      | 5,000        |                | U102         |                     |
| 2,2-Dimethylpropane                                                                                         | 463-82-1                     |                          |                          | 0,000        | 010            | 0102         | 10,000              |
| Dimethyl sulfate                                                                                            | 77-78-1                      | 500                      | 100                      | 100          | 313            | U103         | 10,000              |
| O,O-Dimethyl-O-(3,5,6-trichloro-2-                                                                          | 5598-13-0                    | 500                      | 100                      | 100          | X              | 0100         |                     |
| pyridyl)phosphorothioate                                                                                    | 5550-15-0                    |                          |                          |              | ~              |              |                     |
| Dimetilan                                                                                                   | 644-64-4                     | 500/10,000               | 1                        | 1            |                | P191         |                     |
| Dinitrobenzene (mixed isomers)                                                                              | 25154-54-5                   | 000/10,000               |                          | 100          |                | 1 101        |                     |
| m-Dinitrobenzene                                                                                            | 99-65-0                      |                          |                          | 100          | 313            |              |                     |
| o-Dinitrobenzene                                                                                            | 528-29-0                     |                          |                          | 100          | 313            |              |                     |
| p-Dinitrobenzene                                                                                            | 100-25-4                     |                          |                          | 100          | 313            |              |                     |
| Dinitrobutyl phenol                                                                                         | 88-85-7                      | 100/10,000               | 1,000                    | 1,000        | 313            | P020         |                     |
| 4,6-Dinitro-o-cresol                                                                                        | 534-52-1                     | 10/10,000                |                          | 1,000        | 313            | P047         |                     |
| Dinitrocresol                                                                                               | 534-52-1                     | 10/10,000                |                          | 10           | X              | P047         |                     |
| 4,6-Dinitro-o-cresol and salts                                                                              | 534-52-1                     | 10/10,000                | 10                       | 10           |                | P047         |                     |
| Dinitrophenol                                                                                               | 25550-58-7                   |                          |                          | 10           |                | 1 047        |                     |
| 2,4-Dinitrophenol                                                                                           | 51-28-5                      |                          |                          | 10           |                | P048         |                     |
| 2,5-Dinitrophenol                                                                                           | 329-71-5                     |                          |                          | 10           |                | 1 040        |                     |
| 2,6-Dinitrophenol                                                                                           | 573-56-8                     |                          |                          | 10           |                |              |                     |
| 1,6-Dinitropyrene                                                                                           | 42397-64-8                   |                          |                          | 10           | 313+           |              |                     |
| 1,8-Dinitropyrene                                                                                           | 42397-65-9                   |                          |                          |              | 313+           |              |                     |
| Dinitrotoluene (mixed isomers)                                                                              | 25321-14-6                   |                          |                          | 10           | 313            |              |                     |
| 2,4-Dinitrotoluene                                                                                          | 121-14-2                     |                          |                          | 10           |                | U105         |                     |
| 2,6-Dinitrotoluene                                                                                          | 606-20-2                     |                          |                          | 100          | 313            | U105         |                     |
| 3,4-Dinitrotoluene                                                                                          | 610-39-9                     |                          |                          | 100          |                | 0100         |                     |
| Dinocap                                                                                                     | 39300-45-3                   |                          |                          | 10           |                |              |                     |
| N                                                                                                           |                              |                          | 1 000                    | 1 000        | 313<br>X       | P020         | <u> </u>            |
| Dinoseb<br>Dinoterb                                                                                         | 88-85-7                      | 100/10,000               |                          | 1,000        | ^              | FU2U         |                     |
|                                                                                                             | 1420-07-1                    | 500/10,000               | 500                      | E 000        |                | 11407        |                     |
| Di-n-octyl phthalate                                                                                        | 117-84-0                     |                          |                          | 5,000        |                | U107         |                     |
| n-Dioctylphthalate                                                                                          | 117-84-0                     |                          |                          | 5,000        |                | U107         | ļ                   |
| 1,4-Dioxane                                                                                                 | 123-91-1                     |                          |                          | 100          | 313            | U108         | ļ                   |
| Dioxathion                                                                                                  | 78-34-2                      | 500                      | 500                      |              |                |              | <b> </b>            |
| Dioxin and dioxin-like compounds<br>(includes only 17 chemicals)                                            | N150                         |                          |                          |              | 313            |              |                     |

| NAME                               | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Diphacinone                        | 82-66-6                      | 10/10,000                | 10                       |              |                |              |                     |
| Diphenamid                         | 957-51-7                     | 10,10,000                |                          |              | 313            |              |                     |
| Diphenylamine                      | 122-39-4                     |                          |                          |              | 313            |              |                     |
| 1,2-Diphenylhydrazine              | 122-66-7                     |                          |                          | 10           | 313            | U109         |                     |
| Diphenylhydrazine                  | N.A.                         |                          |                          | 8<br>8       | 010            | 0100         |                     |
| Diphosphoramide, octamethyl-       | 152-16-9                     | 100                      | 100                      | 100          |                | P085         |                     |
| Dipotassium endothall              | 2164-07-0                    | 100                      | 100                      | 100          | 313            | 1 000        |                     |
| Dipropylamine                      | 142-84-7                     |                          |                          | 5,000        | 010            | U110         |                     |
| 4-(Dipropylamino)-3,5-             | 19044-88-3                   |                          |                          | 0,000        | Х              | 0110         |                     |
| dinitrobenzenesulfonamide          |                              |                          |                          |              | ~              |              |                     |
| Dipropyl isocinchomeronate         | 136-45-8                     |                          |                          |              | 313            |              |                     |
| Di-n-propylnitrosamine             | 621-64-7                     |                          |                          | 10           | X              | U111         |                     |
| Diquat                             | 85-00-7                      |                          |                          | 1,000        |                | ••••         |                     |
| Diquat                             | 2764-72-9                    |                          |                          | 1,000        |                |              |                     |
| Disodium cyanodithioimidocarbonate | 138-93-2                     |                          |                          | .,           | 313            |              |                     |
| Disulfoton                         | 298-04-4                     | 500                      | 1                        | 1            |                | P039         |                     |
| Dithiazanine iodide                | 514-73-8                     |                          | 500                      |              |                |              |                     |
| Dithiobiuret                       | 541-53-7                     | 100/10,000               | 100                      | 100          | Х              | P049         |                     |
| 2,4-Dithiobiuret                   | 541-53-7                     | 100/10,000               | 100                      | 100          | 313            | P049         |                     |
| Diuron                             | 330-54-1                     | ,                        |                          | 100          | 313            |              |                     |
| Dodecylbenzenesulfonic acid        | 27176-87-0                   |                          |                          | 1,000        |                |              |                     |
| Dodecylguanidine monoacetate       | 2439-10-3                    |                          |                          | .,           | Х              |              |                     |
| Dodine                             | 2439-10-3                    |                          |                          |              | 313            |              |                     |
| 2,4-DP                             | 120-36-5                     |                          |                          |              | 313            |              |                     |
| 2,4-D sodium salt                  | 2702-72-9                    |                          |                          |              | 313            |              |                     |
| Emetine, dihydrochloride           | 316-42-7                     | 1/10,000                 | 1                        |              |                |              |                     |
| Endosulfan                         | 115-29-7                     | 10/10,000                | 1                        | 1            |                | P050         |                     |
| alpha - Endosulfan                 | 959-98-8                     |                          |                          | 1            |                |              |                     |
| beta - Endosulfan                  | 33213-65-9                   |                          |                          | 1            |                |              |                     |
| Endosulfan and Metabolites         | N.A.                         |                          |                          | &            |                |              |                     |
| Endosulfan sulfate                 | 1031-07-8                    |                          |                          | 1            |                |              |                     |
| Endothall                          | 145-73-3                     |                          |                          | 1,000        |                | P088         |                     |
| Endothion                          | 2778-04-3                    | 500/10,000               | 500                      | ,            |                |              |                     |
| Endrin                             | 72-20-8                      | ,                        | 1                        | 1            |                | P051         |                     |
| Endrin aldehyde                    | 7421-93-4                    |                          |                          | 1            |                |              |                     |
| Endrin and Metabolites             | N.A.                         |                          |                          | &            |                |              |                     |
| Epichlorohydrin                    | 106-89-8                     | 1,000                    | 100                      | 100          | 313            | U041         | 20,000              |
| Epinephrine                        | 51-43-4                      | ,                        |                          | 1,000        |                | P042         | ,                   |
| EPN                                | 2104-64-5                    | 100/10,000               | 100                      | ,            |                |              |                     |
| EPTC                               | 759-94-4                     | ,                        |                          |              | Х              |              |                     |
| Ergocalciferol                     |                              | 1,000/10,000             | 1,000                    |              |                | İ            |                     |
| Ergotamine tartrate                | 379-79-3                     |                          | 500                      |              |                |              |                     |
| Ethanamine                         | 75-04-7                      |                          |                          | 100          |                |              | 10,000              |
| Ethane                             | 74-84-0                      |                          |                          |              |                |              | 10,000              |
| Ethane, chloro-                    | 75-00-3                      |                          |                          | 100          | Х              |              | 10,000              |
| 1,2-Ethanediamine                  | 107-15-3                     |                          | 5,000                    | 5,000        |                |              | 20,000              |
| Éthane, 1,1-difluoro-              | 75-37-6                      |                          |                          |              |                |              | 10,000              |
| Ethanedinitrile                    | 460-19-5                     |                          |                          | 100          |                | P031         | 10,000              |
| Ethane, 1,1'-oxybis-               | 60-29-7                      |                          |                          | 100          |                | U117         | 10,000              |
| Ethaneperoxoic acid                | 79-21-0                      | 500                      | 500                      |              | Х              |              | 10,000              |
| Ethanesulfonyl chloride, 2-chloro- | 1622-32-8                    |                          | 500                      |              |                |              |                     |
| Ethane, 1,1,1,2-tetrachloro-       | 630-20-6                     |                          |                          | 100          | Х              | U208         |                     |

| NAME                                      | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Ethane, 1,1'-thiobis[2-chloro-            | 505-60-2                     | 500                      | 500                      |              | Х              |              |                     |
| Ethanethiol                               | 75-08-1                      |                          |                          |              |                |              | 10,000              |
| Ethane, 1,1,2-trichloro-1,2,2,-trifluoro- | 76-13-1                      |                          |                          |              | Х              |              | ,                   |
| Ethanimidothioic acid, 2-                 | 30558-43-1                   |                          |                          | 5,000        |                | U394         |                     |
| (dimethylamino)-N-hydroxy-2-oxo-,         |                              |                          |                          | -,           |                |              |                     |
| methyl ester                              |                              |                          |                          |              |                |              |                     |
| Ethanimidothioic acid, N-                 | 16752-77-5                   | 500/10,000               | 100                      | 100          |                | P066         |                     |
| [[methylamino)carbonyl]                   |                              |                          |                          |              |                |              |                     |
| Ethanol, 1,2-dichloro-, acetate           | 10140-87-1                   | 1,000                    | 1,000                    |              |                |              |                     |
| Ethanol, 2-ethoxy-                        | 110-80-5                     |                          |                          | 1,000        | Х              | U359         |                     |
| Ethanol, 2,2'-oxybis-, dicarbamate        | 5952-26-1                    |                          |                          | 5,000        |                | U395         |                     |
| Ethene                                    | 74-85-1                      |                          |                          |              | Х              |              | 10,000              |
| Ethene, bromotrifluoro-                   | 598-73-2                     |                          |                          |              |                |              | 10,000              |
| Ethene, chloro-                           | 75-01-4                      |                          |                          | 1            | Х              | U043         | 10,000              |
| Ethene, chlorotrifluoro-                  | 79-38-9                      |                          |                          |              |                |              | 10,000              |
| Ethene, 1,1-dichloro-                     | 75-35-4                      |                          |                          | 100          | Х              | U078         | 10,000              |
| Ethene, 1,1-difluoro-                     | 75-38-7                      |                          |                          |              |                |              | 10,000              |
| Ethene, ethoxy-                           | 109-92-2                     |                          |                          |              |                |              | 10,000              |
| Ethene, fluoro-                           | 75-02-5                      |                          |                          |              |                |              | 10,000              |
| Ethene, methoxy-                          | 107-25-5                     |                          |                          |              |                |              | 10,000              |
| Ethene, tetrafluoro-                      | 116-14-3                     |                          |                          |              |                |              | 10,000              |
| Ethion                                    | 563-12-2                     | 1,000                    | 10                       | 10           |                |              |                     |
| Ethoprop                                  | 13194-48-4                   | 1,000                    | 1,000                    |              | 313            |              |                     |
| Ethoprophos                               | 13194-48-4                   | 1,000                    | 1,000                    |              | Х              |              |                     |
| 2-Ethoxyethanol                           | 110-80-5                     |                          |                          | 1,000        | 313            | U359         |                     |
| 2-(1-(Ethoxyimino) butyl)-5-(2-           | 74051-80-2                   |                          |                          | ,            | Х              |              |                     |
| (ethylthio)propyl)-3-hydroxyl-2-          |                              |                          |                          |              |                |              |                     |
| cyclohexen-1-one                          |                              |                          |                          |              |                |              |                     |
| 2-((Ethoxyl((1-                           | 25311-71-1                   |                          |                          |              | Х              |              |                     |
| methylethyl)amino]phosphinothioyl]ox      |                              |                          |                          |              |                |              |                     |
| y) benzoic acid 1-methylethyl ester       |                              |                          |                          |              |                |              |                     |
| Ethyl acetate                             | 141-78-6                     |                          |                          | 5,000        |                | U112         |                     |
| Ethyl acetylene                           | 107-00-6                     |                          |                          |              |                |              | 10,000              |
| Ethyl acrylate                            | 140-88-5                     |                          |                          | 1,000        | 313            | U113         |                     |
| 3-                                        | 31218-83-4                   |                          |                          |              | Х              |              |                     |
| ((Ethylamino)methoxyphosphinothioyl)      |                              |                          |                          |              |                |              |                     |
| oxy)-2-butenoic acid, 1-methylethyl       |                              |                          |                          |              |                |              |                     |
| ester                                     |                              |                          |                          |              |                |              |                     |
| Ethylbenzene                              | 100-41-4                     |                          |                          | 1,000        | 313            |              |                     |
| Ethylbis(2-chloroethyl)amine              | 538-07-8                     |                          | 500                      |              |                |              |                     |
| Ethyl carbamate                           | 51-79-6                      |                          |                          | 100          | Х              | U238         |                     |
| Ethyl chloride                            | 75-00-3                      |                          |                          | 100          | Х              |              | 10,000              |
| Ethyl chloroformate                       | 541-41-3                     |                          |                          |              | 313            |              |                     |
| Ethyl-2-(((((4-chloro-6-                  | 90982-32-4                   |                          |                          |              | Х              |              |                     |
| methoxyprimidin-2-                        |                              |                          |                          |              |                |              |                     |
| yl)amino)carbonyl)amino)sulfonyl)ben      |                              |                          |                          |              |                |              |                     |
| zoate                                     | 407 40 0                     |                          | 40                       | 40           |                | D404         | 40.000              |
| Ethyl cyanide                             | 107-12-0                     | 500                      | 10                       | 10           | 040            | P101         | 10,000              |
| Ethyl dipropylthiocarbamate               | 759-94-4                     |                          |                          |              | 313            |              | 40.000              |
| Ethylene                                  | 74-85-1                      |                          |                          |              | 313            |              | 10,000              |
| Ethylenebisdithiocarbamic acid, salts     | N171                         |                          |                          |              | 313            |              |                     |
| and esters                                |                              | <u> </u>                 |                          |              |                |              |                     |

| NAME                                                                          | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Ethylenebisdithiocarbamic acid, salts & esters                                | 111-54-6                     |                          |                          | 5,000        | Х              | U114         |                     |
| Ethylenediamine                                                               | 107-15-3                     | 10,000                   | 5,000                    | 5,000        |                |              | 20,000              |
| Ethylenediamine-tetraacetic acid (EDTA)                                       | 60-00-4                      |                          |                          | 5,000        |                |              |                     |
| Ethylene dibromide                                                            | 106-93-4                     |                          |                          | 1            | Х              | U067         |                     |
| Ethylene dichloride                                                           | 107-06-2                     |                          |                          | 100          | Х              | U077         |                     |
| Ethylene fluorohydrin                                                         | 371-62-0                     | 10                       | 10                       |              |                |              |                     |
| Ethylene glycol                                                               | 107-21-1                     |                          |                          | 5,000        | 313            |              |                     |
| Ethyleneimine                                                                 | 151-56-4                     | 500                      | 1                        | 1            | 313            | P054         | 10,000              |
| Ethylene oxide                                                                | 75-21-8                      | 1,000                    | 10                       | 10           | 313            | U115         | 10,000              |
| Ethylene thiourea                                                             | 96-45-7                      | ,                        |                          | 10           |                | U116         | ,                   |
| Ethyl ether                                                                   | 60-29-7                      |                          |                          | 100          |                | U117         | 10,000              |
| Ethylidene Dichloride                                                         | 75-34-3                      |                          |                          | 1,000        |                | U076         | -,                  |
| Ethyl mercaptan                                                               | 75-08-1                      |                          |                          | ,            |                |              | 10,000              |
| Ethyl methacrylate                                                            | 97-63-2                      |                          |                          | 1,000        |                | U118         | ,                   |
| Ethyl methanesulfonate                                                        | 62-50-0                      |                          |                          | 1            |                | U119         |                     |
| N-Ethyl-N'-(1-methylethyl)-6-<br>(methylthio)-1,3,5,-triazine-2,4-<br>diamine | 834-12-8                     |                          |                          |              | Х              |              |                     |
| O-Ethyl O-(4-<br>(methylthio)phenyl)phosphorodithioic<br>acid S-propyl ester  | 35400-43-2                   |                          |                          |              | Х              |              |                     |
| Ethyl nitrite                                                                 | 109-95-5                     |                          |                          |              |                |              | 10,000              |
| N-(1-Ethylpropyl)-3,4-dimethyl-2,6-<br>dinitrobenzenamine                     | 40487-42-1                   |                          |                          |              | Х              |              |                     |
| S-(2-(Ethylsulfinyl)ethyl) O,O-dimethyl<br>ester phosphorothioic acid         | 301-12-2                     |                          |                          |              | Х              |              |                     |
| Ethylthiocyanate                                                              | 542-90-5                     | 10,000                   | 10,000                   |              |                |              |                     |
| Ethyne                                                                        | 74-86-2                      |                          |                          |              |                |              | 10,000              |
| Famphur                                                                       | 52-85-7                      |                          |                          | 1,000        | 313            | P097         |                     |
| Fenamiphos                                                                    | 22224-92-6                   | 10/10,000                | 10                       |              |                |              |                     |
| Fenarimol                                                                     | 60168-88-9                   |                          |                          |              | 313            |              |                     |
| Fenbutatin oxide                                                              | 13356-08-6                   |                          |                          |              | 313            |              |                     |
| Fenoxaprop ethyl                                                              | 66441-23-4                   |                          |                          |              | 313            |              |                     |
| Fenoxycarb                                                                    | 72490-01-8                   |                          |                          |              | 313            |              |                     |
| Fenpropathrin                                                                 | 39515-41-8                   |                          |                          |              | 313            |              |                     |
| Fensulfothion                                                                 | 115-90-2                     | 500                      | 500                      |              |                |              |                     |
| Fenthion                                                                      | 55-38-9                      |                          |                          |              | 313            |              |                     |
| Fenvalerate                                                                   | 51630-58-1                   |                          |                          |              | 313            |              |                     |
| Ferbam                                                                        | 14484-64-1                   |                          |                          |              | 313            |              |                     |
| Ferric ammonium citrate                                                       | 1185-57-5                    |                          |                          | 1,000        |                |              |                     |
| Ferric ammonium oxalate                                                       | 2944-67-4                    |                          |                          | 1,000        |                | İ            |                     |
| Ferric ammonium oxalate                                                       | 55488-87-4                   |                          |                          | 1,000        |                | 1            |                     |
| Ferric chloride                                                               | 7705-08-0                    |                          |                          | 1,000        |                | 1            |                     |
| Ferric fluoride                                                               | 7783-50-8                    |                          |                          | 100          |                |              |                     |
| Ferric nitrate                                                                | 10421-48-4                   |                          |                          | 1,000        |                |              |                     |
| Ferric sulfate                                                                | 10028-22-5                   |                          |                          | 1,000        |                |              |                     |
| Ferrous ammonium sulfate                                                      | 10045-89-3                   |                          |                          | 1,000        |                |              |                     |
| Ferrous chloride                                                              | 7758-94-3                    |                          |                          | 1,000        |                |              |                     |
| Ferrous sulfate                                                               | 7720-78-7                    |                          |                          | 1,000        |                |              |                     |
| Ferrous sulfate                                                               | 7782-63-0                    |                          |                          | 1,000        |                | <u> </u>     |                     |

| NAME                                        | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|---------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Fine mineral fibers                         | N.A.                         |                          |                          | &            |                |              |                     |
| Fluazifop butyl                             | 69806-50-4                   |                          |                          |              | 313            |              |                     |
| Fluenetil                                   | 4301-50-2                    | 100/10,000               | 100                      |              |                |              |                     |
| Fluometuron                                 | 2164-17-2                    |                          |                          |              | 313            |              |                     |
| Fluoranthene                                | 206-44-0                     |                          |                          | 100          | Х              | U120         |                     |
| Fluorene                                    | 86-73-7                      |                          |                          | 5,000        |                |              |                     |
| Fluorine                                    | 7782-41-4                    | 500                      | 10                       | 10           | 313            | P056         | 1,000               |
| Fluoroacetamide                             | 640-19-7                     | 100/10,000               | 100                      | 100          |                | P057         |                     |
| Fluoroacetic acid                           | 144-49-0                     | 10/10,000                | 10                       |              |                |              |                     |
| Fluoroacetic acid, sodium salt              | 62-74-8                      | 10/10,000                | 10                       | 10           | Х              | P058         |                     |
| Fluoroacetyl chloride                       | 359-06-8                     | 10                       | 10                       |              |                |              |                     |
| Fluorouracil                                | 51-21-8                      | 500/10,000               | 500                      |              | 313            |              |                     |
| 5-Fluorouracil                              | 51-21-8                      |                          |                          |              | Х              |              |                     |
| Fluvalinate                                 | 69409-94-5                   |                          |                          |              | 313            |              |                     |
| Folpet                                      | 133-07-3                     |                          |                          |              | 313            |              |                     |
| Fomesafen                                   | 72178-02-0                   |                          |                          |              | 313            |              |                     |
| Fonofos                                     | 944-22-9                     | 500                      | 500                      |              |                |              |                     |
| Formaldehyde                                | 50-00-0                      | 500                      | 100                      | 100          | 313            | U122         | 15,000              |
| Formaldehyde cyanohydrin                    | 107-16-4                     | 1,000                    | 1,000                    |              |                |              | ,                   |
| Formaldehyde (solution)                     | 50-00-0                      | ,                        |                          | 100          | Х              | U122         | 15,000              |
| Formetanate hydrochloride                   | 23422-53-9                   |                          | 100                      | 100          |                | P198         | ,                   |
| Formic acid                                 | 64-18-6                      | ,                        |                          | 5,000        |                | U123         |                     |
| Formic acid, methyl ester                   | 107-31-3                     |                          |                          | ,            |                |              | 10,000              |
| Formothion                                  | 2540-82-1                    | 100                      | 100                      |              |                |              | ,                   |
| Formparanate                                | 17702-57-7                   | 100/10,000               |                          | 100          |                | P197         |                     |
| Fosthietan                                  | 21548-32-3                   | 500                      |                          |              |                | _            |                     |
| Freon 113                                   | 76-13-1                      |                          |                          |              | 313            |              |                     |
| Fuberidazole                                | 3878-19-1                    | 100/10,000               | 100                      |              |                |              |                     |
| Fumaric acid                                | 110-17-8                     |                          |                          | 5,000        |                |              |                     |
| Furan                                       | 110-00-9                     | 500                      | 100                      | 100          | 313            | U124         | 5,000               |
| Furan, tetrahydro-                          | 109-99-9                     |                          |                          | 1,000        |                | U213         | -,                  |
| Furfural                                    | 98-01-1                      |                          |                          | 5,000        |                | U125         |                     |
| Gallium trichloride                         | 13450-90-3                   | 500/10,000               | 500                      | ,            |                |              |                     |
| Glycidol                                    | 556-52-5                     | ,                        |                          |              | 313            |              |                     |
| Glycidylaldehyde                            | 765-34-4                     |                          |                          | 10           |                | U126         |                     |
| Glycol Ethers                               | N230                         |                          |                          | &            |                |              |                     |
| Guanidine, N-methyl-N'-nitro-N-<br>nitroso- | 70-25-7                      |                          |                          | 10           |                | U163         |                     |
| Guthion                                     | 86-50-0                      | 10/10,000                | 1                        | 1            |                |              |                     |
| Haloethers                                  | N.A.                         |                          | -                        | &            |                |              |                     |
| Halomethanes                                | N.A.                         |                          |                          | &            |                |              |                     |
| Halon 1211                                  | 353-59-3                     |                          |                          |              | Х              |              |                     |
| Halon 1301                                  | 75-63-8                      |                          |                          |              | X              |              |                     |
| Halon 2402                                  | 124-73-2                     |                          |                          |              | X              |              |                     |
| HCFC-121                                    | 354-14-3                     |                          |                          |              | X              |              |                     |
| HCFC-121a                                   | 354-11-0                     |                          |                          |              | X              |              |                     |
| HCFC-123                                    | 306-83-2                     |                          |                          |              | X              |              |                     |
| HCFC-123a                                   | 354-23-4                     |                          |                          |              | X              |              |                     |
| HCFC-123b                                   | 812-04-4                     |                          |                          |              | X              |              |                     |
| HCFC-124                                    | 2837-89-0                    |                          |                          |              | X              |              |                     |
| HCFC-124a                                   | 354-25-6                     |                          |                          |              | X              |              |                     |
| HCFC-132b                                   | 1649-08-7                    |                          |                          |              | X              |              |                     |

| NAME                                                                     | CAS/313<br>Category | Section 302<br>(EHS) TPQ | Section<br>304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r) |
|--------------------------------------------------------------------------|---------------------|--------------------------|--------------------|--------------|----------------|--------------|---------------|
|                                                                          | Codes               | (,                       | RQ                 |              | ••••           |              | TQ            |
| HCFC-133a                                                                | 75-88-7             |                          |                    |              | Х              |              |               |
| HCFC-141b                                                                | 1717-00-6           |                          |                    |              | X              |              |               |
| HCFC-142b                                                                | 75-68-3             |                          |                    |              | X              |              |               |
| HCFC-21                                                                  | 75-43-4             |                          |                    |              | X              |              |               |
| HCFC-22                                                                  | 75-45-6             |                          |                    |              | X              |              |               |
| HCFC-225aa                                                               | 128903-21-9         |                          |                    |              | X              |              |               |
| HCFC-225ba                                                               | 422-48-0            |                          |                    |              | X              |              |               |
| HCFC-225bb                                                               | 422-44-6            |                          |                    |              | X              |              |               |
| HCFC-225ca                                                               | 422-56-0            |                          |                    |              | X              |              |               |
| HCFC-225cb                                                               | 507-55-1            |                          |                    |              | X              |              |               |
| HCFC-225cc                                                               | 13474-88-9          |                          |                    |              | X              |              |               |
| HCFC-225da                                                               | 431-86-7            |                          |                    |              | X              |              |               |
| HCFC-2250a                                                               | 136013-79-1         |                          |                    |              | X              |              |               |
| HCFC-225ea                                                               | 111512-56-2         |                          |                    |              | X              |              |               |
| HCFC-223eb<br>HCFC-253fb                                                 | 460-35-5            |                          |                    |              | X              |              |               |
|                                                                          | 460-35-5<br>76-44-8 |                          |                    | 4            | 313            | P059         |               |
| Heptachlor<br>Heptachlor and Metabolites                                 | 76-44-8<br>N.A.     |                          |                    | 8            | 513            | PU39         |               |
|                                                                          |                     |                          |                    |              |                |              |               |
| Heptachlor epoxide<br>1,2,3,4,6,7,8-heptachlorodibenzo-p-                | 1024-57-3           |                          |                    | 1            | 2401           |              |               |
| dioxin                                                                   | 35822-46-9          |                          |                    |              | 313!           |              |               |
| 1,2,3,4,7,8,9-heptachlorodibenzofuran                                    | 55673-89-7          |                          |                    |              | 313!           |              |               |
| 1,2,3,4,6,7,8-heptachlorodibenzofuran                                    | 67562-39-4          |                          |                    |              | 313!           |              |               |
| 1,4,5,6,7,8,8-Heptachloro-3a,4,7,7a-<br>tetrahydro-4,7-methano-1H-indene | 76-44-8             |                          |                    | 1            | Х              | P059         |               |
| Hexachlorobenzene                                                        | 118-74-1            |                          |                    | 10           | 313            | U127         |               |
| Hexachloro-1,3-butadiene                                                 | 87-68-3             |                          |                    | 1            | 313            | U128         |               |
| Hexachlorobutadiene                                                      | 87-68-3             |                          |                    | 1            | X              | U128         |               |
| Hexachlorocyclohexane (all isomers)                                      | 608-73-1            |                          |                    | &            |                | 0.20         |               |
| alpha-Hexachlorocyclohexane                                              | 319-84-6            |                          |                    | 10           | 313            |              |               |
| Hexachlorocyclohexane (gamma                                             |                     | 1,000/10,000             | 1                  | 1            | X              | U129         |               |
| isomer)                                                                  |                     | .,,,                     |                    |              |                | 0.20         |               |
| Hexachlorocyclopentadiene                                                | 77-47-4             | 100                      | 10                 | 10           | 313            | U130         |               |
| 1,2,3,7,8,9-hexachlorodibenzo-p-<br>dioxin                               | 19408-74-3          |                          |                    |              | 313!           |              |               |
| 1,2,3,4,7,8-hexachlorodibenzo-p-<br>dioxin                               | 39227-28-6          |                          |                    |              | 313!           |              |               |
| 1,2,3,6,7,8-hexachlorodibenzo-p-                                         | 57653-85-7          |                          |                    |              | 313!           |              |               |
| dioxin                                                                   | <b>57447 44 0</b>   |                          |                    |              | 0401           |              |               |
| 1,2,3,6,7,8-hexachlorodibenzofuran                                       | 57117-44-9          |                          |                    |              | 313!           |              |               |
| 2,3,4,6,7,8-hexachlorodibenzofuran                                       | 60851-34-5          |                          |                    |              | 313!           |              |               |
| 1,2,3,4,7,8-hexachlorodibenzofuran                                       | 70648-26-9          |                          |                    |              | 313!           |              |               |
| 1,2,3,7,8,9-hexachlorodibenzofuran                                       | 72918-21-9          |                          |                    | 100          | 313!           | 11404        |               |
| Hexachloroethane                                                         | 67-72-1             |                          |                    | 100          | 313            | U131         |               |
| Hexachloronaphthalene                                                    | 1335-87-1           |                          |                    | ·            | 313            | 11400        |               |
| Hexachlorophene                                                          | 70-30-4             |                          |                    | 100          | 313            | U132         |               |
| Hexachloropropene                                                        | 1888-71-7           |                          |                    | 1,000        |                | U243         |               |
| Hexaethyl tetraphosphate                                                 | 757-58-4            |                          |                    | 100          |                | P062         |               |
| Hexakis(2-methyl-2-                                                      | 13356-08-6          |                          |                    |              | Х              |              |               |
| phenylpropyl)distannoxane                                                | 4665                | /                        |                    |              |                |              |               |
| Hexamethylenediamine, N,N'-dibutyl-                                      | 4835-11-4           |                          | 500                |              |                |              |               |
| Hexamethylene-1,6-diisocyanate                                           | 822-06-0            |                          |                    | 100          | 313#           |              |               |
| Hexamethylphosphoramide                                                  | 680-31-9            |                          |                    | 1            | 313            |              |               |

| NAME                                   | CAS/313           | Section 302 |               | CERCLA |       |          |              |
|----------------------------------------|-------------------|-------------|---------------|--------|-------|----------|--------------|
|                                        | Category<br>Codes | (EHS) TPQ   | 304 EHS<br>RQ | RQ     | 313   | CODE     | 112(r)<br>TQ |
| Hexane                                 | 110-54-3          |             |               | 5,000  | Х     |          |              |
| n-Hexane                               | 110-54-3          |             |               | 5,000  |       |          |              |
| Hexazinone                             | 51235-04-2        |             |               | ,      | 313   |          |              |
| Hydramethylnon                         | 67485-29-4        |             |               |        | 313   |          |              |
| Hydrazine                              | 302-01-2          | 1,000       | 1             | 1      | 313   | U133     | 15,000       |
| Hydrazine, 1,2-diethyl-                | 1615-80-1         | ,           |               | 10     |       | U086     | ,            |
| Hydrazine, 1,1-dimethyl-               | 57-14-7           | 1,000       | 10            |        | Х     | U098     | 15,000       |
| Hydrazine, 1,2-dimethyl-               | 540-73-8          | ,           |               | 1      |       | U099     | -,           |
| Hydrazine, 1,2-diphenyl-               | 122-66-7          |             |               | 10     | Х     | U109     |              |
| Hydrazine, methyl-                     | 60-34-4           | 500         | 10            | 10     | X     | P068     | 15,000       |
| Hydrazine sulfate                      | 10034-93-2        |             |               |        | 313   |          | ,            |
| Hydrazobenzene                         | 122-66-7          |             |               | 10     | X     | U109     |              |
| Hydrochloric acid                      | 7647-01-0         |             |               | 5,000  |       | 0.00     |              |
| Hydrochloric acid (conc 37% or         | 7647-01-0         |             |               | 5,000  |       |          | 15,000       |
| greater)                               |                   |             |               | 0,000  |       |          | 10,000       |
| Hydrochloric acid (aerosol forms only) | 7647-01-0         |             |               | 5,000  | 313   |          |              |
| Hydrocyanic acid                       | 74-90-8           | 100         | 10            | ,      |       | P063     | 2,500        |
| Hydrofluoric acid                      | 7664-39-3         | 100         | 100           |        | X     | U134     | 2,000        |
| Hydrofluoric acid (conc. 50% or        | 7664-39-3         | 100         | 100           |        | X     | U134     | 1,000        |
| greater)                               | 1001000           | 100         | 100           | 100    | ~     | 0101     | 1,000        |
| Hydrogen                               | 1333-74-0         |             |               |        |       |          | 10,000       |
| Hydrogen chloride (anhydrous)          | 7647-01-0         | 500         | 5,000         | 5,000  | Х     |          | 5,000        |
| Hydrogen chloride (gas only)           | 7647-01-0         |             | 5,000         | 5,000  | X     |          | 5,000        |
| Hydrogen cyanide                       | 74-90-8           | 100         | 10            | 10     |       | P063     | 2,500        |
| Hydrogen fluoride                      | 7664-39-3         | 100         | 100           | 100    |       | U134     | 2,000        |
| Hydrogen fluoride (anhydrous)          | 7664-39-3         | 100         |               |        |       | U134     | 1,000        |
| Hydrogen peroxide (Conc.> 52%)         | 7722-84-1         | 1,000       |               |        |       | 0.01     | 1,000        |
| Hydrogen selenide                      | 7783-07-5         | 10          | 10            |        | 313c  |          | 500          |
| Hydrogen sulfide                       | 7783-06-4         | 500         | 100           | 100    | 313   | U135     | 10,000       |
| Hydroperoxide, 1-methyl-1-             | 80-15-9           |             |               | 10     | X     | U096     | 10,000       |
| phenylethyl-                           | 00 10 0           |             |               | 10     | ~     | 0000     |              |
| Hydroquinone                           | 123-31-9          | 500/10,000  | 100           | 100    | 313   |          |              |
| Imazalil                               | 35554-44-0        |             |               |        | 313   |          |              |
| Indeno(1,2,3-cd)pyrene                 | 193-39-5          |             |               | 100    |       | U137     |              |
| 3-lodo-2-propynyl butylcarbamate       | 55406-53-6        |             |               |        | 313   |          |              |
| Iron carbonyl (Fe(CO)5), (TB-5-11)-    | 13463-40-6        | 100         | 100           |        | X     |          | 2,500        |
| Iron, pentacarbonyl-                   | 13463-40-6        |             | 100           |        | 313   |          | 2,500        |
| Isobenzan                              | 297-78-9          |             | 100           |        | 010   |          | 2,000        |
| Isobutane                              | 75-28-5           |             |               |        |       |          | 10,000       |
| Isobutyl alcohol                       | 78-83-1           |             |               | 5,000  |       | U140     | ,            |
| Isobutyraldehyde                       | 78-84-2           |             |               | 0,000  | 313   | 0110     |              |
| Isobutyronitrile                       | 78-82-0           | 1,000       | 1,000         |        | 010   |          | 20,000       |
| Isocyanic acid, 3,4-dichlorophenyl     | 102-36-3          | 500/10,000  | 500           |        |       |          | 20,000       |
| ester                                  |                   | 220, 10,000 |               |        |       |          |              |
| Isodrin                                | 465-73-6          | 100/10,000  | 1             | 1      | 313   | P060     |              |
| Isofenphos                             | 25311-71-1        |             |               |        | 313   |          |              |
| Isofluorphate                          | 55-91-4           | 100         | 100           | 100    | 2.0   | P043     |              |
| 1H-Isoindole-1,3(2H)-dione,            | 133-06-2          | 100         | 100           | 100    | Х     |          |              |
| 3a,4,7,7a-tetrahydro-2-                | 100-00-2          |             |               | 10     | ~     |          |              |
| [(trichloromethyl)thio]-               |                   |             |               |        |       |          |              |
| Isononylphenol                         | 11066-49-2        |             |               |        | 313\$ |          |              |
| 4-Isononylphenol                       | 26543-97-5        |             |               |        | 313\$ | <u> </u> |              |

| NAME                                          | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-----------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Isopentane                                    | 78-78-4                      |                          |                          |              |                |              | 10,000              |
| Isophorone                                    | 78-59-1                      |                          |                          | 5,000        |                |              |                     |
| Isophorone diisocyanate                       | 4098-71-9                    | 500                      | 500                      |              | 313#           |              |                     |
| Isoprene                                      | 78-79-5                      |                          |                          | 100          | 313            |              | 10,000              |
| Isopropanolamine dodecylbenzene sulfonate     | 42504-46-1                   |                          |                          | 1,000        |                |              |                     |
| Isopropyl alcohol (mfg-strong acid process)   | 67-63-0                      |                          |                          |              | 313            |              |                     |
| Isopropylamine                                | 75-31-0                      |                          |                          |              |                |              | 10,000              |
| Isopropyl chloride                            | 75-29-6                      |                          |                          |              |                |              | 10,000              |
| Isopropyl chloroformate                       | 108-23-6                     | 1,000                    | 1,000                    |              |                |              | 15,000              |
| 4,4'-Isopropylidenediphenol                   | 80-05-7                      |                          |                          |              | 313            |              |                     |
| Isopropylmethylpyrazolyl<br>dimethylcarbamate | 119-38-0                     | 500                      | 100                      | 100          |                | P192         |                     |
| Isosafrole                                    | 120-58-1                     |                          |                          | 100          | 313            | U141         |                     |
| Isothiocyanatomethane                         | 556-61-6                     | 500                      | 500                      |              | Х              |              |                     |
| Kepone                                        | 143-50-0                     |                          |                          | 1            |                | U142         |                     |
| Lactofen                                      | 77501-63-4                   |                          |                          |              | 313            |              |                     |
| Lactonitrile                                  | 78-97-7                      | 1,000                    | 1,000                    |              |                |              |                     |
| Lasiocarpine                                  | 303-34-4                     |                          |                          | 10           |                | U143         |                     |
| Lead                                          | 7439-92-1                    |                          |                          | 10           |                |              |                     |
| Lead acetate                                  | 301-04-2                     |                          |                          | 10           |                | U144         |                     |
| Lead arsenate                                 | 7645-25-2                    |                          |                          | 1            | 313c           |              |                     |
| Lead arsenate                                 | 7784-40-9                    |                          |                          | 1            | 313c           |              |                     |
| Lead arsenate                                 | 10102-48-4                   |                          |                          | 1            | 313c           |              |                     |
| Lead chloride                                 | 7758-95-4                    |                          |                          | 10           | 313c           |              |                     |
| Lead Compounds                                | N420                         |                          |                          | &            |                |              |                     |
| Lead fluoborate                               | 13814-96-5                   |                          |                          | 10           |                |              |                     |
| Lead fluoride                                 | 7783-46-2                    |                          |                          | 10           |                |              |                     |
| Lead iodide                                   | 10101-63-0                   |                          |                          | 10           |                |              |                     |
| Lead nitrate                                  | 10099-74-8                   |                          |                          | 10           |                |              |                     |
| Lead phosphate                                | 7446-27-7                    |                          |                          | 10           |                | U145         |                     |
| Lead stearate                                 | 1072-35-1                    |                          |                          | 10           |                |              |                     |
| Lead stearate                                 | 7428-48-0                    |                          |                          | 10           |                |              |                     |
| Lead stearate                                 | 52652-59-2                   |                          |                          | 10           |                |              |                     |
| Lead stearate                                 | 56189-09-4                   |                          |                          | 10           |                |              |                     |
| Lead subacetate                               | 1335-32-6                    |                          |                          | 10           |                | U146         |                     |
| Lead sulfate                                  | 7446-14-2                    |                          |                          | 10           |                |              |                     |
| Lead sulfate                                  | 15739-80-7                   |                          |                          | 10           |                |              |                     |
| Lead sulfide                                  | 1314-87-0                    |                          |                          | 10           |                |              |                     |
| Lead thiocyanate                              | 592-87-0                     |                          | 500                      | 10           | 313c           |              |                     |
| Leptophos                                     | 21609-90-5                   |                          |                          |              |                |              |                     |
| Lewisite                                      | 541-25-3                     |                          |                          |              | 242            | 114.00       |                     |
| Lindane                                       |                              | 1,000/10,000             | 1                        | 1            | 313            | U129         |                     |
| Linuron<br>Lithium carbonate                  | 330-55-2<br>554-13-2         |                          |                          |              | 313<br>313     |              |                     |
|                                               |                              |                          |                          | 10           |                |              |                     |
| Lithium chromate                              | 14307-35-8                   |                          | 400                      | 10           | 3130           |              |                     |
| Lithium hydride                               | 7580-67-8                    |                          | 100                      |              | 240            |              |                     |
| Malathion<br>Malaia acid                      | 121-75-5                     |                          |                          | 100          | 313            |              |                     |
| Maleic acid                                   | 110-16-7                     |                          |                          | 5,000        |                | 11447        |                     |
| Maleic anhydride                              | 108-31-6                     |                          |                          | 5,000        |                | U147         |                     |
| Maleic hydrazide                              | 123-33-1                     | A 24                     |                          | 5,000        |                | U148         |                     |

| NAME                                 | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|--------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Malononitrile                        | 109-77-3                     | 500/10,000               | 1,000                    | 1,000        | 313            | U149         |                     |
| Maneb                                | 12427-38-2                   |                          |                          |              | 313            |              |                     |
| Manganese                            | 7439-96-5                    |                          |                          |              | 313            |              |                     |
| Manganese,                           | 15339-36-3                   |                          |                          | 10           | 313c           | P196         |                     |
| bis(dimethylcarbamodithioato-S,S')-  |                              |                          |                          |              |                |              |                     |
| Manganese Compounds                  | N450                         |                          |                          | &            | 313            |              |                     |
| Manganese, tricarbonyl               | 12108-13-3                   | 100                      | 100                      |              | 313c           |              |                     |
| methylcyclopentadienyl               |                              |                          |                          |              |                |              |                     |
| MBOCA                                | 101-14-4                     |                          |                          | 10           | Х              | U158         |                     |
| MBT                                  | 149-30-4                     |                          |                          |              | Х              |              |                     |
| МСРА                                 | 94-74-6                      |                          |                          |              | Х              |              |                     |
| MDI                                  | 101-68-8                     |                          |                          | 5,000        | Х              |              |                     |
| Mechlorethamine                      | 51-75-2                      | 10                       | 10                       | -,           | Х              |              |                     |
| Mecoprop                             | 93-65-2                      |                          |                          |              | 313            |              |                     |
| Melphalan                            | 148-82-3                     |                          |                          | 1            |                | U150         | 1                   |
| Mephosfolan                          | 950-10-7                     | 500                      | 500                      | · · ·        |                |              |                     |
| 2-Mercaptobenzothiazole              | 149-30-4                     |                          |                          |              | 313            |              |                     |
| Mercaptodimethur                     | 2032-65-7                    | 500/10,000               | 10                       | 10           |                | P199         |                     |
| Mercuric acetate                     | 1600-27-7                    | 500/10,000               |                          |              | 313c           |              |                     |
| Mercuric chloride                    | 7487-94-7                    | 500/10,000               |                          |              | 313c           |              |                     |
| Mercuric cyanide                     | 592-04-1                     | 000/10,000               | 000                      | 1            |                |              |                     |
| Mercuric nitrate                     | 10045-94-0                   |                          |                          | 10           |                |              |                     |
| Mercuric oxide                       | 21908-53-2                   | 500/10,000               | 500                      | 10           | 313c           |              |                     |
| Mercuric sulfate                     | 7783-35-9                    | 000/10,000               | 500                      | 10           |                |              |                     |
| Mercuric thiocyanate                 | 592-85-8                     |                          |                          | 10           |                |              |                     |
| Mercurous nitrate                    | 7782-86-7                    |                          |                          | 10           |                |              |                     |
| Mercurous nitrate                    | 10415-75-5                   |                          |                          | 10           |                |              |                     |
| Mercury                              | 7439-97-6                    |                          |                          | 10           |                | U151         |                     |
| Mercury Compounds                    | N458                         |                          |                          | &            |                | 0131         |                     |
| Mercury fulminate                    | 628-86-4                     |                          |                          | 10           |                | P065         |                     |
| Merphos                              | 150-50-5                     |                          |                          | 10           | 313            | F005         |                     |
| Methacrolein diacetate               | 10476-95-6                   | 1,000                    | 1,000                    |              | 515            |              |                     |
| Methacrylic anhydride                | 760-93-0                     | 500                      | ,                        |              |                |              |                     |
| Methacrylonitrile                    | 126-98-7                     | 500                      |                          | 1,000        | 313            | U152         | 10,000              |
| Methacryloyl chloride                | 920-46-7                     | 100                      |                          | 1,000        | 313            | 0152         | 10,000              |
| Methacryloyloxyethyl isocyanate      | 30674-80-7                   | 100                      |                          |              |                |              |                     |
| Methamidophos                        | 10265-92-6                   |                          |                          |              |                |              |                     |
| Metham sodium                        | 137-42-8                     | 100/10,000               | 100                      |              | 313            |              |                     |
| Methanamine                          | 74-89-5                      |                          |                          | 100          |                |              | 10.000              |
|                                      | 74-69-5                      |                          |                          | 100          |                |              | 10,000              |
| Methanamine, N,N-dimethyl-           | 124-40-3                     |                          |                          |              |                | 11002        |                     |
| Methanamine, N-methyl-               |                              |                          | 10                       | 1,000        |                | U092         | 10,000              |
| Methanamine, N-methyl-N-nitroso-     | 62-75-9                      |                          | 10                       | 10           | ^              | P082         | 10.000              |
| Methane                              | 74-82-8                      |                          |                          | 400          | V              | 11045        | 10,000              |
| Methane, chloro-                     | 74-87-3                      |                          | 10                       | 100          |                | U045         | 10,000              |
| Methane, chloromethoxy-              | 107-30-2                     |                          |                          | 10           |                | U046         | 5,000               |
| Methane, isocyanato-                 | 624-83-9                     |                          | 10                       | 10           | Х              | P064         | 10,000              |
| Methane, oxybis-                     | 115-10-6                     |                          |                          |              |                | <b>D</b> 040 | 10,000              |
| Methane, oxybis[chloro-              | 542-88-1                     | 100                      |                          | 10           |                | P016         | 1,000               |
| Methanesulfenyl chloride, trichloro- | 594-42-3                     |                          |                          | 100          | Х              |              | 10,000              |
| Methanesulfonyl fluoride             | 558-25-8                     |                          |                          |              |                |              |                     |
| Methane, tetranitro-                 | 509-14-8                     |                          |                          | 10           |                | P112         | 10,000              |
| Methanethiol                         | 74-93-1                      | 500                      | 100                      | 100          | Х              | U153         | 10,000              |

| NAME                                                                                                                 | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Methane, trichloro-                                                                                                  | 67-66-3                      | 10,000                   | 10                       | 10           | Х              | U044         | 20,000              |
| 4,7-Methanoindan, 1,2,3,4,5,6,7,8,8-<br>octachloro-2,3,3a,4,7,7a-hexahydro-                                          | 57-74-9                      | 1,000                    | 1                        | 1            | X              | U036         |                     |
| Methanol                                                                                                             | 67-56-1                      |                          |                          | 5,000        | 313            | U154         |                     |
| Methapyrilene                                                                                                        | 91-80-5                      |                          |                          | 5,000        | 515            | U155         |                     |
|                                                                                                                      | 20354-26-1                   |                          |                          | 5,000        | 313            | 0155         |                     |
| Methazole                                                                                                            |                              | 500/40 000               | 500                      |              | 313            |              |                     |
| Methidathion                                                                                                         | 950-37-8<br>2032-65-7        | 500/10,000               | 500                      | 10           | 242            | D100         |                     |
| Methiocarb                                                                                                           |                              | 500/10,000               | 10                       |              | 313            | P199         |                     |
| Methomyl                                                                                                             | 16752-77-5                   | 500/10,000               | 100                      | 100          | 040            | P066         |                     |
| Methoxone                                                                                                            | 94-74-6                      |                          |                          |              | 313            |              |                     |
| Methoxone sodium salt                                                                                                | 3653-48-3                    |                          |                          |              | 313            | 110.47       |                     |
| Methoxychlor                                                                                                         | 72-43-5                      |                          |                          | 1            | 313            | U247         |                     |
| 2-Methoxyethanol                                                                                                     | 109-86-4                     | 500/40 000               | 500                      |              | 313            |              |                     |
| Methoxyethylmercuric acetate                                                                                         | 151-38-2                     | 500/10,000               | 500                      |              | 313c           |              |                     |
| 2-(4-Methoxy-6-methyl-1,3,5-triazin-2-<br>yl)-<br>methylamino)carbonyl)amino)sulfonyl)<br>benzoic acid, methyl ester | 101200-48-0                  |                          |                          |              | Х              |              |                     |
| Methyl acrylate                                                                                                      | 96-33-3                      |                          |                          |              | 313            |              |                     |
| Methyl bromide                                                                                                       | 74-83-9                      | 1,000                    | 1,000                    | 1,000        | Х              | U029         |                     |
| 2-Methyl-1-butene                                                                                                    | 563-46-2                     |                          |                          |              |                |              | 10,000              |
| 3-Methyl-1-butene                                                                                                    | 563-45-1                     |                          |                          |              |                |              | 10,000              |
| Methyl chloride                                                                                                      | 74-87-3                      |                          |                          | 100          | Х              | U045         | 10,000              |
| Methyl 2-chloroacrylate                                                                                              | 80-63-7                      | 500                      | 500                      |              |                |              |                     |
| Methyl chlorocarbonate                                                                                               | 79-22-1                      | 500                      | 1,000                    | 1,000        | 313            | U156         | 5,000               |
| Methyl chloroform                                                                                                    | 71-55-6                      |                          |                          | 1,000        | Х              | U226         |                     |
| Methyl chloroformate                                                                                                 | 79-22-1                      | 500                      | 1,000                    | 1,000        | Х              | U156         | 5,000               |
| 3-Methylcholanthrene                                                                                                 | 56-49-5                      |                          |                          | 10           | 313+           | U157         |                     |
| 5-Methylchrysene                                                                                                     | 3697-24-3                    |                          |                          |              | 313+           |              |                     |
| 4-Methyldiphenylmethane-3,4-                                                                                         | 75790-84-0                   |                          |                          |              | 313#           |              |                     |
| diisocyanate                                                                                                         |                              |                          |                          |              |                |              |                     |
| 6-Methyl-1,3-dithiolo[4,5-b]quinoxalin-<br>2-one                                                                     | 2439-01-2                    |                          |                          |              | Х              |              |                     |
| 4,4'-Methylenebis(2-chloroaniline)                                                                                   | 101-14-4                     |                          |                          | 10           | 313            | U158         |                     |
| 2,2'-Methylenebis(4-chlorophenol                                                                                     | 97-23-4                      |                          |                          |              | Х              |              |                     |
| 4,4'-Methylenebis(N,N-                                                                                               | 101-61-1                     |                          |                          |              | 313            | İ            | İ                   |
| dimethyl)benzenamine                                                                                                 |                              |                          |                          |              |                |              |                     |
| 1,1'-Methylene bis(4-                                                                                                | 5124-30-1                    |                          |                          |              | 313#           |              |                     |
| isocyanatocyclohexane)                                                                                               |                              |                          |                          |              |                |              |                     |
| Methylenebis(phenylisocyanate)                                                                                       | 101-68-8                     |                          |                          | 5,000        | 313#           |              |                     |
| Methylene bromide                                                                                                    | 74-95-3                      |                          |                          | 1,000        | 313            | U068         |                     |
| Methylene chloride                                                                                                   | 75-09-2                      |                          |                          | 1,000        | Х              | U080         |                     |
| 4,4'-Methylenedianiline                                                                                              | 101-77-9                     |                          |                          | 10           | 313            |              |                     |
| Methyl ether                                                                                                         | 115-10-6                     |                          |                          |              |                |              | 10,000              |
| Methyl ethyl ketone                                                                                                  | 78-93-3                      |                          |                          | 5,000        |                | U159         |                     |
| Methyl ethyl ketone peroxide                                                                                         | 1338-23-4                    |                          |                          | 10           |                | U160         |                     |
| Methyleugenol                                                                                                        | 93-15-2                      |                          |                          |              | 313            |              |                     |
| Methyl formate                                                                                                       | 107-31-3                     |                          |                          |              | -              | İ            | 10,000              |
| Methyl hydrazine                                                                                                     | 60-34-4                      | 500                      | 10                       | 10           | 313            | P068         | 15,000              |
| Methyl iodide                                                                                                        | 74-88-4                      |                          |                          | 100          | 313            | U138         | .,                  |
| Methyl isobutyl ketone                                                                                               | 108-10-1                     | <u> </u>                 |                          | 5,000        | 313            | U161         |                     |
| Methyl isocyanate                                                                                                    | 624-83-9                     | 500                      | 10                       |              | 313            | P064         | 10,000              |

| NAME                            | CAS/313<br>Category | Section 302<br>(EHS) TPQ | 304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r) |
|---------------------------------|---------------------|--------------------------|---------|--------------|----------------|--------------|---------------|
|                                 | Codes               |                          | RQ      |              |                |              | TQ            |
| Methyl isothiocyanate           | 556-61-6            | 500                      | 500     |              | 313            |              |               |
| 2-Methyllactonitrile            | 75-86-5             | 1,000                    | 10      | 10           | 313            | P069         |               |
| Methyl mercaptan                | 74-93-1             | 500                      |         | 100          | 313s           | U153         | 10,000        |
| Methylmercuric dicyanamide      | 502-39-6            | 500/10,000               | 500     |              | 313c           |              |               |
| Methyl methacrylate             | 80-62-6             |                          |         | 1,000        | 313            | U162         |               |
| N-Methylolacrylamide            | 924-42-5            |                          |         |              | 313            |              |               |
| Methyl parathion                | 298-00-0            | 100/10,000               | 100     | 100          | 313            | P071         |               |
| Methyl phenkapton               | 3735-23-7           | 500                      | 500     |              |                |              |               |
| Methyl phosphonic dichloride    | 676-97-1            | 100                      | 100     |              |                |              |               |
| 2-Methylpropene                 | 115-11-7            |                          |         |              |                |              | 10,000        |
| 2-Methylpyridine                | 109-06-8            |                          |         | 5,000        | 313            | U191         |               |
| N-Methyl-2-pyrrolidone          | 872-50-4            |                          |         |              | 313            |              |               |
| Methyl tert-butyl ether         | 1634-04-4           |                          |         | 1,000        | 313            |              |               |
| Methyl thiocyanate              | 556-64-9            | 10,000                   | 10,000  |              |                |              | 20,000        |
| Methylthiouracil                | 56-04-2             | ·                        |         | 10           |                | U164         |               |
| Methyltrichlorosilane           | 75-79-6             | 500                      | 500     |              |                |              | 5,000         |
| Methyl vinyl ketone             | 78-94-4             | 10                       |         |              |                | 1            | .,            |
| Metiram                         | 9006-42-2           |                          |         |              | 313            |              |               |
| Metolcarb                       | 1129-41-5           | 100/10,000               | 1,000   | 1,000        |                | P190         |               |
| Metribuzin                      | 21087-64-9          |                          | .,      | .,           | 313            |              |               |
| Mevinphos                       | 7786-34-7           | 500                      | 10      | 10           | 313            |              |               |
| Mexacarbate                     | 315-18-4            | 500/10,000               |         | 1,000        | 010            | P128         |               |
| Michler's ketone                | 90-94-8             | ,                        | 1,000   | 1,000        | 313            | 1 120        |               |
| Mitomycin C                     | 50-07-7             | 500/10,000               | 10      | 10           | 010            | U010         |               |
| Molinate                        | 2212-67-1           | 000/10,000               | 10      | 10           | 313            | 0010         |               |
| Molybdenum trioxide             | 1313-27-5           |                          |         |              | 313            |              |               |
| Monochloropentafluoroethane     | 76-15-3             |                          |         |              | 313            |              |               |
| Monocrotophos                   | 6923-22-4           | 10/10,000                | 10      |              | 010            |              |               |
| Monoethylamine                  | 75-04-7             | 10/10,000                | 10      | 100          |                |              | 10,000        |
| Monomethylamine                 | 74-89-5             |                          |         | 100          |                |              | 10,000        |
| Monuron                         | 150-68-5            |                          |         | 100          | 313            |              | 10,000        |
| Muscimol                        | 2763-96-4           | 500/10,000               | 1,000   | 1,000        | 515            | P007         |               |
| Mustard gas                     | 505-60-2            | ,                        |         |              | 313            | F 007        |               |
| Myclobutanil                    | 88671-89-0          |                          | 500     |              | 313            |              |               |
| Nabam                           | 142-59-6            |                          |         |              | 313            |              |               |
| Naled                           | 300-76-5            |                          |         | 10           | 313            |              |               |
| Naphthalene                     | 91-20-3             |                          |         | 100          | 313            | U165         |               |
|                                 |                     |                          |         | 100          | 313#           | 0105         |               |
| 1,5-Naphthalene diisocyanate    | 3173-72-6           |                          |         | 100          |                | 11070        |               |
| 1-Naphthalenol, methylcarbamate | 63-25-2             |                          |         | 100          | Х              | U279         |               |
| Naphthenic acid                 | 1338-24-5           |                          |         | 100          |                | 11460        |               |
| 1,4-Naphthoquinone              | 130-15-4            |                          |         | 5,000        |                | U166         |               |
| alpha-Naphthylamine             | 134-32-7            |                          |         | 100          | 313            | U167         |               |
| beta-Naphthylamine              | 91-59-8             |                          |         | 10           |                | U168         |               |
| Nickel                          | 7440-02-0           |                          |         | 100          |                |              |               |
| Nickel ammonium sulfate         | 15699-18-0          |                          |         | 100          |                | D070         | 4 000         |
| Nickel carbonyl                 | 13463-39-3          |                          | 10      | 10           |                | P073         | 1,000         |
| Nickel chloride                 | 7718-54-9           |                          |         | 100          |                |              |               |
| Nickel chloride                 | 37211-05-5          |                          |         | 100          | 313c           |              |               |
| Nickel Compounds                | N495                |                          |         | &            | 313            |              |               |
| Nickel cyanide                  | 557-19-7            |                          |         | 10           | 313c           | P074         |               |
| Nickel hydroxide                | 12054-48-7          |                          |         | 10           | 313c           |              |               |

| NAME                                  | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|---------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Nickel nitrate                        | 14216-75-2                   |                          |                          | 100          | 313c           |              |                     |
| Nickel sulfate                        | 7786-81-4                    |                          |                          | 100          |                |              |                     |
| Nicotine                              | 54-11-5                      | 100                      | 100                      | 100          |                | P075         |                     |
| Nicotine and salts                    | N503                         |                          |                          |              | 313            |              |                     |
| Nicotine and salts                    | 54-11-5                      |                          |                          | 100          |                | P075         |                     |
| Nicotine sulfate                      | 65-30-5                      |                          | 100                      | 100          |                |              |                     |
| Nitrapyrin                            | 1929-82-4                    | 100,10,000               |                          |              | 313            |              |                     |
| Nitrate compounds (water dissociable) | N511                         |                          |                          |              | 313            |              |                     |
| Nitric acid                           | 7697-37-2                    | 1,000                    | 1,000                    | 1,000        |                |              |                     |
| Nitric acid (conc 80% or greater)     | 7697-37-2                    |                          |                          | 1,000        |                |              | 15,000              |
| Nitric oxide                          | 10102-43-9                   |                          | ,                        | 10 @         |                | P076         | 10,000              |
| Nitrilotriacetic acid                 | 139-13-9                     |                          | 10                       | 10 @         | 313            | 1 070        | 10,000              |
| p-Nitroaniline                        | 100-01-6                     |                          |                          | 5,000        |                | P077         |                     |
| 5-Nitro-o-anisidine                   | 99-59-2                      |                          |                          | 3,000        | 313            |              |                     |
| Nitrobenzene                          | 99-39-2                      |                          | 1,000                    | 1,000        |                | U169         |                     |
| 4-Nitrobiphenyl                       | 92-93-3                      |                          | 1,000                    | 1,000        |                | 0109         |                     |
| 6-Nitrochrysene                       | 7496-02-8                    |                          |                          | 10           | 313+           |              |                     |
|                                       | 1122-60-7                    | 500                      | 500                      |              | 313+           |              |                     |
| Nitrocyclohexane                      |                              |                          | 500                      |              | 242            |              |                     |
| Nitrofen                              | 1836-75-5                    |                          | 10                       | 10 @         | 313            | 0070         |                     |
| Nitrogen dioxide                      | 10102-44-0                   |                          | 10                       | 10 @         |                | P078         |                     |
| Nitrogen dioxide                      | 10544-72-6                   |                          | 40                       | 10 @         |                |              |                     |
| Nitrogen mustard                      | 51-75-2                      | 10                       |                          | 40.0         | 313            | <b>D</b> 070 | 40.000              |
| Nitrogen oxide (NO)                   | 10102-43-9                   | 100                      | 10                       | 10 @         | 0.10           | P076         | 10,000              |
| Nitroglycerin                         | 55-63-0                      |                          |                          | 10           |                | P081         |                     |
| Nitromethane                          | 75-52-5                      |                          |                          |              | 313            |              |                     |
| Nitrophenol (mixed isomers)           | 25154-55-6                   |                          |                          | 100          |                |              |                     |
| 2-Nitrophenol                         | 88-75-5                      |                          |                          | 100          |                |              |                     |
| 4-Nitrophenol                         | 100-02-7                     |                          |                          | 100          |                | U170         |                     |
| m-Nitrophenol                         | 554-84-7                     |                          |                          | 100          |                |              |                     |
| p-Nitrophenol                         | 100-02-7                     |                          |                          | 100          | Х              | U170         |                     |
| Nitrophenols                          | N.A.                         |                          |                          | &            |                |              |                     |
| 2-Nitropropane                        | 79-46-9                      |                          |                          | 10           |                | U171         |                     |
| 1-Nitropyrene                         | 5522-43-0                    |                          |                          |              | 313+           |              |                     |
| 4–Nitropyrene                         | 57835-92-4                   |                          |                          |              | 313+           |              |                     |
| Nitrosamines                          | N.A.                         |                          |                          | &            |                |              |                     |
| N-Nitrosodi-n-butylamine              | 924-16-3                     |                          |                          | 10           |                | U172         |                     |
| N-Nitrosodiethanolamine               | 1116-54-7                    |                          |                          | 1            |                | U173         |                     |
| N-Nitrosodiethylamine                 | 55-18-5                      |                          |                          | 1            |                | U174         |                     |
| N-Nitrosodimethylamine                | 62-75-9                      |                          |                          | 10           |                | P082         |                     |
| Nitrosodimethylamine                  | 62-75-9                      |                          | 10                       |              |                | P082         |                     |
| N-Nitrosodiphenylamine                | 86-30-6                      |                          |                          | 100          |                |              |                     |
| p-Nitrosodiphenylamine                | 156-10-5                     |                          |                          |              | 313            |              |                     |
| N-Nitrosodi-n-propylamine             | 621-64-7                     |                          |                          | 10           | 313            | U111         |                     |
| N-Nitroso-N-ethylurea                 | 759-73-9                     |                          |                          | 1            |                | U176         |                     |
| N-Nitroso-N-methylurea                | 684-93-5                     |                          |                          | 1            |                | U177         |                     |
| N-Nitroso-N-methylurethane            | 615-53-2                     |                          |                          | 1            |                | U178         |                     |
| N-Nitrosomethylvinylamine             | 4549-40-0                    |                          |                          | 10           |                | P084         |                     |
| N-Nitrosomorpholine                   | 59-89-2                      |                          |                          | 1            |                |              |                     |
| N-Nitrosonornicotine                  | 16543-55-8                   |                          | 1                        |              | 313            | 1            | 1                   |
| N-Nitrosopiperidine                   | 100-75-4                     |                          |                          | 10           |                | U179         |                     |
| N-Nitrosopyrrolidine                  | 930-55-2                     |                          |                          | 1            |                | U180         |                     |

| NAME                                   | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Nitrotoluene                           | 1321-12-6                    |                          |                          | 1,000        |                |              |                     |
| m-Nitrotoluene                         | 99-08-1                      |                          |                          | 1,000        |                |              |                     |
| o-Nitrotoluene                         | 88-72-2                      |                          |                          | 1,000        | 313            |              |                     |
| p-Nitrotoluene                         | 99-99-0                      |                          |                          | 1,000        | 010            |              |                     |
| 5-Nitro-o-toluidine                    | 99-55-8                      |                          |                          | 1,000        | 313            | U181         |                     |
| Nitrous acid, ethyl ester              | 109-95-5                     |                          |                          | 100          | 010            | 0101         | 10,000              |
| Nonylphenol (includes only 6           | N530                         |                          |                          |              | 313            |              | 10,000              |
| chemicals)                             | 10000                        |                          |                          |              | 010            |              |                     |
| Nonylphenol                            | 25154-52-3                   |                          |                          |              | 313\$          |              |                     |
| Nonylphenol, branched                  | 90481-04-2                   |                          |                          |              | 313\$          |              |                     |
| 4-Nonylphenol                          | 104-40-5                     |                          |                          |              | 313\$          |              |                     |
| 4-Nonylphenol, branched                | 84852-15-3                   |                          |                          |              | 313\$          |              |                     |
| Norbormide                             | 991-42-4                     |                          | 100                      |              |                |              |                     |
| Norflurazon                            | 27314-13-2                   |                          |                          |              | 313            |              |                     |
| 1,2,3,4,6,7,8,9-octachlorodibenzo-p-   | 3268-87-9                    |                          |                          |              | 313!           |              |                     |
| dioxin                                 |                              |                          |                          |              |                |              |                     |
| 1,2,3,4,6,7,8,9-                       | 39001-02-0                   |                          |                          |              | 313!           |              |                     |
| octachlorodibenzofuran                 |                              |                          |                          |              |                |              |                     |
| Octachloronaphthalene                  | 2234-13-1                    |                          |                          |              | 313            |              |                     |
| Octachlorostyrene                      | 29082-74-4                   |                          |                          |              | 313            |              |                     |
| Octanoic acid, 2,6-dibromo-4-          | 1689-99-2                    |                          |                          |              | Х              |              |                     |
| cyanophenyl ester                      |                              |                          |                          |              |                |              |                     |
| Oleum (fuming sulfuric acid)           | 8014-95-7                    |                          |                          | 1,000        |                |              | 10,000              |
| o-Nitroanisole                         | 91-23-6                      |                          |                          |              | 313            |              |                     |
| Organorhodium Complex (PMN-82-<br>147) | 0                            | 10/10,000                | 10                       | PMN          |                |              |                     |
| Oryzalin                               | 19044-88-3                   |                          |                          |              | 313            |              |                     |
| Osmium oxide OsO4 (T-4)-               | 20816-12-0                   |                          |                          | 1,000        | Х              | P087         |                     |
| Osmium tetroxide                       | 20816-12-0                   |                          |                          | 1,000        | 313            | P087         |                     |
| Ouabain                                | 630-60-4                     | 100/10,000               | 100                      |              |                |              |                     |
| 7-Oxabicyclo(2.2.1)heptane-2,3-        | 2164-07-0                    |                          |                          |              | Х              |              |                     |
| dicarboxylic acid, dipotassium salt    |                              |                          |                          |              |                |              |                     |
| Oxamyl                                 | 23135-22-0                   | ,                        |                          |              |                | P194         |                     |
| Oxetane, 3,3-bis(chloromethyl)-        | 78-71-7                      | 500                      |                          |              |                |              |                     |
| Oxirane                                | 75-21-8                      | ,                        |                          |              | Х              | U115         | 10,000              |
| Oxirane, (chloromethyl)-               | 106-89-8                     |                          |                          |              | X              | U041         | 20,000              |
| Oxirane, methyl-                       | 75-56-9                      | 10,000                   | 100                      | 100          | X              |              | 10,000              |
| Oxydemeton methyl                      | 301-12-2                     |                          |                          |              | 313            |              |                     |
| Oxydiazon                              | 19666-30-9                   |                          | 500                      |              | 313            |              |                     |
| Oxydisulfoton                          | 2497-07-6                    |                          | 500                      |              | 040            |              |                     |
| Oxyfluorfen                            | 42874-03-3                   |                          |                          |              | 313            |              |                     |
| Ozone                                  | 10028-15-6                   | 100                      | 100                      |              | 313            |              |                     |
| Paraformaldehyde                       | 30525-89-4                   |                          |                          | 1,000        | 0.40           | 11400        |                     |
| Paraldehyde                            | 123-63-7                     | 40/40.000                | 40                       | 1,000        | 313            | U182         |                     |
| Paraquat dichloride                    | 1910-42-5                    |                          |                          |              | 313            |              |                     |
| Paraquat methosulfate                  | 2074-50-2                    | 10/10,000                |                          |              | 040            | Dooc         |                     |
| Parathion                              | 56-38-2                      |                          |                          |              | 313            | P089         |                     |
| Parathion-methyl                       | 298-00-0                     |                          |                          |              | Х              | P071         |                     |
| Paris green                            | 12002-03-8                   |                          | 1                        | 1            | N N            |              |                     |
| PCBs                                   | 1336-36-3                    |                          |                          | 1            | X              | 1405         |                     |
| PCNB                                   | 82-68-8                      |                          |                          | 100          | X              | U185         |                     |
| PCP                                    | 87-86-5                      | <u> </u>                 |                          | 10           | Х              |              |                     |

| NAME                                                             | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Pebulate                                                         | 1114-71-2                    |                          |                          |              | 313            |              |                     |
| Pendimethalin                                                    | 40487-42-1                   |                          |                          |              | 313            |              |                     |
| Pentaborane                                                      | 19624-22-7                   | 500                      | 500                      |              |                |              |                     |
| Pentachlorobenzene                                               | 608-93-5                     |                          |                          | 10           | 313            | U183         |                     |
| 1,2,3,7,8-pentachlorodibenzo-p-dioxin                            | 40321-76-4                   |                          |                          |              | 313!           | 0.00         |                     |
| 2,3,4,7,8-pentachlorodibenzofuran                                | 57117-31-4                   |                          |                          |              | 313!           |              |                     |
| 1,2,3,7,8-pentachlorodibenzofuran                                | 57117-41-6                   |                          |                          |              | 313!           |              |                     |
| Pentachloroethane                                                | 76-01-7                      |                          |                          | 10           |                | U184         |                     |
| Pentachloronitrobenzene                                          | 82-68-8                      |                          |                          | 100          |                | U185         |                     |
| Pentachlorophenol                                                | 87-86-5                      |                          |                          | 10           |                | 0.00         |                     |
| Pentadecylamine                                                  | 2570-26-5                    | 100/10,000               | 100                      | 10           | 010            |              |                     |
| 1,3-Pentadiene                                                   | 504-60-9                     | 100/10,000               | 100                      | 100          |                | U186         | 10,000              |
| Pentane                                                          | 109-66-0                     |                          |                          | 100          |                | 0100         | 10,000              |
| 1-Pentene                                                        | 109-67-1                     |                          |                          |              |                |              | 10,000              |
| 2-Pentene, (E)-                                                  | 646-04-8                     |                          |                          |              |                |              | 10,000              |
| 2-Pentene, (Z)-                                                  | 627-20-3                     |                          |                          |              |                |              | 10,000              |
| Pentobarbital sodium                                             | 57-33-0                      |                          |                          |              | 313            |              | 10,000              |
| Peracetic acid                                                   | 79-21-0                      | 500                      | 500                      |              | 313            |              | 10,000              |
| Perchloroethylene                                                | 127-18-4                     | 500                      | 500                      | 100          |                | U210         | 10,000              |
| Perchloromethyl mercaptan                                        | 594-42-3                     | 500                      | 100                      | 100          |                | 0210         | 10,000              |
| Permethrin                                                       | 52645-53-1                   | 500                      | 100                      | 100          | 313            |              | 10,000              |
| Phenacetin                                                       | 62-44-2                      |                          |                          | 100          |                | U187         |                     |
| Phenanthrene                                                     | 85-01-8                      |                          |                          | 5,000        |                | 0107         |                     |
|                                                                  | 108-95-2                     | 500/10,000               | 1 000                    | ,            |                | U188         |                     |
| Phenol<br>Phenol, 2-(1-methylethoxy)-,                           | 114-26-1                     | 500/10,000               | 1,000                    | 1,000<br>100 | 313<br>X       | U411         |                     |
| methylcarbamate                                                  | 114-20-1                     |                          |                          | 100          | ^              | 0411         |                     |
| Phenol, 3-(1-methylethyl)-,                                      | 64-00-6                      | 500/10,000               | 10                       | 10           |                | P202         |                     |
| methylcarbamate                                                  | 04-00-0                      | 500/10,000               | 10                       | 10           |                | F 202        |                     |
| Phenolphthalein                                                  | 77-09-8                      |                          |                          |              | 313            |              |                     |
| Phenol, 2,2'-thiobis[4-chloro-6-methyl-                          | 4418-66-0                    | 100/10,000               | 100                      |              | 515            |              |                     |
| Phenothrin                                                       | 26002-80-2                   | 100/10,000               | 100                      |              | 313            |              |                     |
| Phenoxarsine, 10,10'-oxydi-                                      | 58-36-6                      | 500/10,000               | 500                      |              | 515            |              |                     |
| (2-(4-Phenoxyphenoxy)ethyl carbamic                              | 72490-01-8                   | 500/10,000               | 500                      |              | Х              |              |                     |
| acid ethyl ester                                                 |                              |                          |                          |              |                |              |                     |
| Phenyl dichloroarsine                                            | 696-28-6                     | 500                      | 1                        | 1            |                | P036         |                     |
| (1,2-                                                            | 23564-06-9                   |                          |                          |              | Х              |              |                     |
| Phenylenebis(iminocarbonothioyl))                                |                              |                          |                          |              |                |              |                     |
| biscarbamic acid diethyl ester                                   |                              |                          |                          |              |                |              |                     |
| 1,2-Phenylenediamine                                             | 95-54-5                      |                          |                          |              | 313            |              |                     |
| p-Phenylenediamine                                               | 106-50-3                     |                          |                          | 5,000        |                |              |                     |
| 1,3-Phenylenediamine                                             | 108-45-2                     |                          |                          |              | 313            |              |                     |
| 1,2-Phenylenediamine dihydrochloride                             | 615-28-1                     |                          |                          |              | 313            |              |                     |
| 1,4-Phenylenediamine dihydrochloride                             | 624-18-0                     |                          |                          |              | 313            |              |                     |
| 1,4-Phenylene diisocyanate                                       | 104-49-4                     |                          |                          |              | 313#           |              |                     |
| 1,3-Phenylene diisocyanate                                       | 123-61-5                     |                          |                          |              | 313#           |              |                     |
| Phenylhydrazine hydrochloride                                    |                              | 1,000/10,000             | 1,000                    |              |                |              |                     |
| Phenylmercuric acetate                                           | 62-38-4                      | 500/10,000               |                          | 100          | 313c           | P092         |                     |
| Phenylmercury acetate                                            | 62-38-4                      | 500/10,000               | 100                      | 100          | 313c           | P092         |                     |
| 5-(Phenylmethyl)-3-furanyl)methyl<br>2,2-dimethyl-3-(2-methyl-1- | 10453-86-8                   |                          |                          |              | Х              |              |                     |
| propenyl)cyclopropanecarboxylate                                 |                              |                          |                          |              |                |              |                     |
| 2-Phenylphenol                                                   | 90-43-7                      |                          |                          |              | 313            |              |                     |

| NAME                                    | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-----------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Phenylsilatrane                         | 2097-19-0                    | 100/10,000               | 100                      |              |                |              |                     |
| Phenylthiourea                          | 103-85-5                     | 100/10,000               | 100                      | 100          |                | P093         |                     |
| Phenytoin                               | 57-41-0                      |                          |                          |              | 313            |              |                     |
| Phorate                                 | 298-02-2                     | 10                       | 10                       | 10           |                | P094         |                     |
| Phosacetim                              | 4104-14-7                    | 100/10,000               | 100                      |              |                |              |                     |
| Phosfolan                               | 947-02-4                     | 100/10,000               | 100                      |              |                |              |                     |
| Phosgene                                | 75-44-5                      | 10                       | 10                       | 10           | 313            | P095         | 500                 |
| Phosphamidon                            | 13171-21-6                   | 100                      | 100                      |              |                |              |                     |
| Phosphine                               | 7803-51-2                    | 500                      | 100                      | 100          | 313            | P096         | 5,000               |
| Phosphonic acid, (2,2,2-trichloro-1-    | 52-68-6                      |                          |                          | 100          | X              |              | -,                  |
| hydroxyethyl)-,dimethyl ester           |                              |                          |                          |              |                |              |                     |
| Phosphonothioic acid, methyl-, O-       | 2703-13-1                    | 500                      | 500                      |              |                |              |                     |
| ethyl O-(4-(methylthio)phenyl) ester    |                              |                          |                          |              |                |              |                     |
| Phosphonothioic acid, methyl-, S-(2-    | 50782-69-9                   | 100                      | 100                      |              |                |              |                     |
| (bis(1-methylethyl)amino)ethyl) O-      |                              |                          |                          |              |                |              |                     |
| ethyl ester                             |                              |                          |                          |              |                |              |                     |
| Phosphonothioic acid, methyl-, O-(4-    | 2665-30-7                    | 500                      | 500                      |              |                |              |                     |
| nitrophenyl) O-phenyl ester             |                              |                          |                          |              |                |              |                     |
| Phosphoric acid                         | 7664-38-2                    |                          |                          | 5,000        |                |              |                     |
| Phosphoric acid, 2-chloro-1-(2,3,5-     | 961-11-5                     |                          |                          |              | Х              |              |                     |
| trichlorophenyl) ethenyl dimethyl ester |                              |                          |                          |              |                |              |                     |
| Phosphoric acid, 2-dichloroethenyl      | 62-73-7                      | 1,000                    | 10                       | 10           | Х              |              |                     |
| dimethyl ester                          |                              | ,                        |                          |              |                |              |                     |
| Phosphoric acid, dimethyl 4-            | 3254-63-5                    | 500                      | 500                      |              |                |              |                     |
| (methylthio) phenyl ester               |                              |                          |                          |              |                |              |                     |
| Phosphorodithioic acid O-ethyl S,S-     | 13194-48-4                   | 1,000                    | 1,000                    |              | Х              |              |                     |
| dipropyl ester                          |                              |                          |                          |              |                |              |                     |
| Phosphorothioic acid, O,O-diethyl-O-    | 56-38-2                      | 100                      | 10                       | 10           | Х              | P089         |                     |
| (4-nitrophenyl) ester                   |                              |                          |                          |              |                |              |                     |
| Phosphorothioic acid, O,O-dimethyl-5-   | 2587-90-8                    | 500                      | 500                      |              |                |              |                     |
| (2-(methylthio)ethyl)ester              |                              |                          |                          |              |                |              |                     |
| Phosphorous trichloride                 | 7719-12-2                    | 1,000                    | 1,000                    | 1,000        |                |              | 15,000              |
| Phosphorus (yellow or white)            | 7723-14-0                    | 100                      |                          | 1            | 313            |              |                     |
| Phosphorus                              | 7723-14-0                    | 100                      | 1                        | 1            |                |              |                     |
| Phosphorus oxychloride                  | 10025-87-3                   | 500                      | 1,000                    | 1,000        |                |              | 5,000               |
| Phosphorus pentachloride                | 10026-13-8                   | 500                      | 500                      |              |                |              |                     |
| Phosphorus trichloride                  | 7719-12-2                    | 1,000                    | 1,000                    | 1,000        |                |              | 15,000              |
| Phosphoryl chloride                     | 10025-87-3                   | 500                      | 1,000                    | 1,000        |                |              | 5,000               |
| Phthalate Esters                        | N.A.                         |                          |                          | &            |                |              |                     |
| Phthalic anhydride                      | 85-44-9                      |                          |                          | 5,000        | 313            | U190         |                     |
| Physostigmine                           | 57-47-6                      | 100/10,000               | 100                      | 100          |                | P204         |                     |
| Physostigmine, salicylate (1:1)         | 57-64-7                      | 100/10,000               |                          | 100          |                | P188         |                     |
| Picloram                                | 1918-02-1                    |                          |                          |              | 313            |              |                     |
| 2-Picoline                              | 109-06-8                     |                          |                          | 5,000        | Х              | U191         |                     |
| Picric acid                             | 88-89-1                      |                          |                          | ,            | 313            |              |                     |
| Picrotoxin                              | 124-87-8                     | 500/10,000               | 500                      |              |                | 1            |                     |
| N,N'-(1,4-Piperazinediylbis(2,2,2-      | 26644-46-2                   |                          |                          |              | Х              | 1            |                     |
| trichloroethylidene)) bisformamide      |                              |                          |                          |              | -              |              |                     |
| Piperidine                              | 110-89-4                     | 1,000                    | 1,000                    |              |                |              | 15,000              |
| Piperonyl butoxide                      | 51-03-6                      |                          | ,                        |              | 313            |              | ,                   |
| Pirimifos-ethyl                         | 23505-41-1                   | 1,000                    | 1,000                    |              |                |              |                     |
| Pirimiphos methyl                       | 29232-93-7                   | .,                       | .,                       |              | 313            |              |                     |

| NAME                                 | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|--------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Plumbane, tetramethyl-               | 75-74-1                      | 100                      | 100                      |              |                |              | 10,000              |
| Polybrominated Biphenyls (PBBs)      | N575                         | 100                      | 100                      |              | 313            |              | 10,000              |
| Polychlorinated alkanes (C10 to C13) | N583                         |                          |                          |              | 313            |              |                     |
| Polychlorinated biphenyls            | 1336-36-3                    |                          |                          | 1            | 313            |              |                     |
| Polycyclic aromatic compounds        | N590                         |                          |                          |              | 313            |              |                     |
| (includes only 23 chemicals)         |                              |                          |                          |              |                |              |                     |
| Polycyclic organic matter            | N.A.                         |                          |                          | &            |                |              |                     |
| Polymeric diphenylmethane            | 9016-87-9                    |                          |                          |              | 313#           |              |                     |
| diisocyanate                         |                              |                          |                          |              |                |              |                     |
| Polynuclear Aromatic Hydrocarbons    | N.A.                         |                          |                          | &            |                |              |                     |
| Potassium arsenate                   | 7784-41-0                    |                          |                          | 1            | 313c           |              |                     |
| Potassium arsenite                   | 10124-50-2                   | 500/10,000               | 1                        | 1            | 313c           |              |                     |
| Potassium bichromate                 | 7778-50-9                    |                          |                          | 10           | 313c           |              |                     |
| Potassium bromate                    | 7758-01-2                    |                          |                          |              | 313            |              |                     |
| Potassium chromate                   | 7789-00-6                    |                          |                          | 10           | 313c           |              |                     |
| Potassium cyanide                    | 151-50-8                     | 100                      | 10                       | 10           |                | P098         |                     |
| Potassium dimethyldithiocarbamate    | 128-03-0                     |                          |                          |              | 313            |              |                     |
| Potassium hydroxide                  | 1310-58-3                    |                          |                          | 1,000        |                |              |                     |
| Potassium N-methyldithiocarbamate    | 137-41-7                     |                          |                          | ,            | 313            |              |                     |
| Potassium permanganate               | 7722-64-7                    |                          |                          | 100          | 313c           |              |                     |
| Potassium silver cyanide             | 506-61-6                     | 500                      | 1                        | 1            | 313c           | P099         |                     |
| Profenofos                           | 41198-08-7                   |                          |                          |              | 313            |              |                     |
| Promecarb                            | 2631-37-0                    | 500/10,000               | 1,000                    | 1,000        |                | P201         |                     |
| Prometryn                            | 7287-19-6                    | ,,,                      | ,                        | ,            | 313            | _            |                     |
| Pronamide                            | 23950-58-5                   |                          |                          | 5,000        |                | U192         |                     |
| Propachlor                           | 1918-16-7                    |                          |                          | -,           | 313            |              |                     |
| 1,2-Propadiene                       | 463-49-0                     |                          |                          |              |                |              | 10,000              |
| Propadiene                           | 463-49-0                     |                          |                          |              |                |              | 10,000              |
| 2-Propanamine                        | 75-31-0                      |                          |                          |              |                |              | 10,000              |
| Propane                              | 74-98-6                      |                          |                          |              |                |              | 10,000              |
| Propane, 2-chloro-                   | 75-29-6                      |                          |                          |              |                |              | 10,000              |
| Propane 1,2-dichloro-                | 78-87-5                      |                          |                          | 1,000        | Х              | U083         |                     |
| Propane, 2,2-dimethyl-               | 463-82-1                     |                          |                          | ,            |                |              | 10,000              |
| Propane, 2-methyl                    | 75-28-5                      |                          |                          |              |                |              | 10,000              |
| Propanenitrile                       | 107-12-0                     | 500                      | 10                       | 10           |                | P101         | 10,000              |
| Propanenitrile, 2-methyl-            | 78-82-0                      | 1,000                    |                          |              |                |              | 20,000              |
| Propane sultone                      | 1120-71-4                    |                          | ,                        | 10           | 313            | U193         |                     |
| 1,3-Propane sultone                  | 1120-71-4                    |                          |                          | 10           | Х              | U193         |                     |
| Propanil                             | 709-98-8                     |                          |                          |              | 313            |              |                     |
| Propargite                           | 2312-35-8                    |                          |                          | 10           | 313            |              |                     |
| Propargyl alcohol                    | 107-19-7                     |                          |                          | 1,000        |                | P102         |                     |
| Propargyl bromide                    | 106-96-7                     | 10                       | 10                       | ,            |                |              |                     |
| 2-Propenal                           | 107-02-8                     | 500                      |                          | 1            | Х              | P003         | 5,000               |
| 2-Propen-1-amine                     | 107-11-9                     | 500                      | 500                      |              | Х              |              | 10,000              |
| Propene                              | 115-07-1                     |                          |                          |              | Х              |              | 10,000              |
| 1-Propene                            | 115-07-1                     |                          |                          |              | X              |              | 10,000              |
| 1-Propene, 1-chloro-                 | 590-21-6                     |                          |                          |              |                |              | 10,000              |
| 1-Propene, 2-chloro-                 | 557-98-2                     |                          |                          |              |                |              | 10,000              |
| 1-Propene, 2-methyl-                 | 115-11-7                     |                          |                          |              |                |              | 10,000              |
| 2-Propenenitrile                     | 107-13-1                     | 10,000                   | 100                      | 100          | Х              | U009         | 20,000              |
| 2-Propenenitrile, 2-methyl-          | 126-98-7                     | 500                      |                          | 1,000        |                | U152         | 10,000              |
| 2-Propen-1-ol                        | 107-18-6                     |                          |                          | 100          | X              | P005         | 15,000              |

| NAME                                               | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|----------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 2-Propenoyl chloride                               | 814-68-6                     | 100                      |                          |              |                |              | 5,000               |
| Propetamphos                                       | 31218-83-4                   | 100                      | 100                      |              | 313            |              | 3,000               |
| Propham                                            | 122-42-9                     |                          |                          | 1,000        | 010            | U373         |                     |
| Propiconazole                                      | 60207-90-1                   |                          |                          | 1,000        | 313            | 0070         |                     |
| beta-Propiolactone                                 | 57-57-8                      | 500                      | 10                       | 10           | 313            |              |                     |
| Propionaldehyde                                    | 123-38-6                     |                          | 10                       | 1,000        | 313            |              |                     |
| Propionic acid                                     | 79-09-4                      |                          |                          | 5,000        |                |              |                     |
| Propionic anhydride                                | 123-62-6                     |                          |                          | 5,000        |                |              |                     |
| Propionitrile                                      | 107-12-0                     |                          | 10                       | 10           |                | P101         | 10,000              |
| Propionitrile, 3-chloro-                           | 542-76-7                     | 1,000                    |                          | 1,000        | Х              | P027         | 10,000              |
| Propiophenone, 4'-amino                            | 70-69-9                      | ,                        |                          | 1,000        | ~              | 1 027        |                     |
| Propoxur                                           | 114-26-1                     | 100/10,000               | 100                      | 100          | 313            | U411         |                     |
| n-Propylamine                                      | 107-10-8                     |                          |                          | 5,000        |                | U194         |                     |
| Propyl chloroformate                               | 109-61-5                     |                          | 500                      | 5,000        |                | 0134         | 15,000              |
| Propylene                                          | 115-07-1                     | 500                      | 500                      |              | 313            |              | 10,000              |
| Propyleneimine                                     | 75-55-8                      | 10,000                   | 1                        | 1            | 313            | P067         | 10,000              |
| Propylene oxide                                    | 75-56-9                      | ,                        |                          | 100          | 313            | F 007        | 10,000              |
| 1-Propyne                                          | 74-99-7                      | 10,000                   | 100                      | 100          | 515            |              | 10,000              |
| Propyne                                            | 74-99-7                      |                          |                          |              |                |              | 10,000              |
| Prothoate                                          | 2275-18-5                    | 100/10,000               | 100                      |              |                |              | 10,000              |
| Pyrene                                             |                              | 1,000/10,000             |                          | 5,000        |                |              |                     |
| Pyrethrins                                         | 129-00-0                     | 1,000/10,000             | 5,000                    | 5,000        |                |              |                     |
| Pyrethrins                                         | 121-29-9                     |                          |                          | 1            |                |              |                     |
|                                                    | 8003-34-7                    |                          |                          | 1            |                |              |                     |
| Pyrethrins<br>Pyridine                             | 110-86-1                     |                          |                          | 1,000        | 313            | U196         |                     |
| Pyridine, 4-amino-                                 | 504-24-5                     | 500/10,000               | 1,000                    | 1,000        |                | P008         |                     |
| Pyridine, 3-(1-methyl-2-pyrrolidinyl)-<br>,(S)-    | 54-11-5                      |                          | -                        | 100          |                | P008         |                     |
| Pyridine, 2-methyl-5-vinyl-                        | 140-76-1                     | 500                      | 500                      |              |                |              |                     |
| Pyridine, 4-nitro-, 1-oxide                        | 1124-33-0                    |                          |                          |              |                |              |                     |
| 2,4-(1H,3H)-Pyrimidinedione, 5-                    | 53404-19-6                   | ,                        | 000                      |              | Х              |              |                     |
| bromo-6-methyl-3-(1-methylpropyl),<br>lithium salt | 00404-10-0                   |                          |                          |              | ~              |              |                     |
| Pyriminil                                          | 53558-25-1                   | 100/10,000               | 100                      |              |                |              |                     |
| Quinoline                                          | 91-22-5                      |                          |                          | 5,000        | 313            |              |                     |
| Quinone                                            | 106-51-4                     |                          |                          | 10           | 313            | U197         |                     |
| Quintozene                                         | 82-68-8                      |                          |                          | 100          | 313            | U185         |                     |
| Quizalofop-ethyl                                   | 76578-14-8                   |                          |                          |              | 313            |              |                     |
| Reserpine                                          | 50-55-5                      |                          |                          | 5,000        |                | U200         |                     |
| Resmethrin                                         | 10453-86-8                   |                          |                          |              | 313            |              |                     |
| Resorcinol                                         | 108-46-3                     |                          |                          | 5,000        |                | U201         |                     |
| Saccharin (manufacturing)                          | 81-07-2                      |                          |                          | 100          | 313            | U202         |                     |
| Saccharin and salts                                | 81-07-2                      |                          |                          | 100          |                | U202         |                     |
| Safrole                                            | 94-59-7                      |                          |                          | 100          | 313            | U203         |                     |
| Salcomine                                          | 14167-18-1                   |                          | 500                      | -            |                |              |                     |
| Sarin                                              | 107-44-8                     |                          |                          |              |                |              |                     |
| Selenious acid                                     |                              | 1,000/10,000             |                          | 10           | 313c           | U204         |                     |
| Selenious acid, dithallium(1+) salt                | 12039-52-0                   |                          |                          | 1,000        |                | P114         | 1                   |
| Selenium                                           | 7782-49-2                    |                          |                          | 100          | 313            |              | 1                   |
| Selenium Compounds                                 | N725                         |                          |                          | &            |                |              |                     |
| Selenium dioxide                                   | 7446-08-4                    |                          |                          | 10           |                |              |                     |
| Selenium oxychloride                               | 7791-23-3                    |                          | 500                      | .0           | 313c           |              |                     |

| NAME                                  | CAS/313<br>Category   | Section 302<br>(EHS) TPQ | 304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r) |
|---------------------------------------|-----------------------|--------------------------|---------|--------------|----------------|--------------|---------------|
|                                       | Codes                 |                          | RQ      |              |                |              | ΤQ            |
| Selenium sulfide                      | 7488-56-4             |                          |         | 10           | 313c           | U205         |               |
| Selenourea                            | 630-10-4              |                          |         | 1,000        |                | P103         |               |
| Semicarbazide hydrochloride           |                       | 1,000/10,000             | 1,000   |              |                |              |               |
| Sethoxydim                            | 74051-80-2            |                          |         |              | 313            |              |               |
| Silane                                | 7803-62-5             |                          |         |              |                |              | 10,000        |
| Silane, (4-aminobutyl)diethoxymethyl- | 3037-72-7             | 1,000                    | 1,000   |              |                |              |               |
| Silane, chlorotrimethyl-              | 75-77-4               | 1,000                    | 1,000   |              |                |              | 10,000        |
| Silane, dichloro-                     | 4109-96-0             |                          |         |              |                |              | 10,000        |
| Silane, dichlorodimethyl-             | 75-78-5               | 500                      | 500     |              |                |              | 5,000         |
| Silane, tetramethyl-                  | 75-76-3               |                          |         |              |                |              | 10,000        |
| Silane, trichloro-                    | 10025-78-2            |                          |         |              |                |              | 10,000        |
| Silane, trichloromethyl-              | 75-79-6               | 500                      | 500     |              |                |              | 5,000         |
| Silver                                | 7440-22-4             |                          |         | 1,000        | 313            |              |               |
| Silver Compounds                      | N740                  |                          |         | &            | 313            |              |               |
| Silver cyanide                        | 506-64-9              |                          |         | 1            | 313c           | P104         |               |
| Silver nitrate                        | 7761-88-8             |                          |         | 1            | 313c           |              |               |
| Silvex (2,4,5-TP)                     | 93-72-1               |                          |         | 100          |                |              |               |
| Simazine                              | 122-34-9              |                          |         |              | 313            |              |               |
| Sodium                                | 7440-23-5             |                          |         | 10           |                |              |               |
| Sodium arsenate                       |                       | 1,000/10,000             | 1       | 1            | 313c           |              |               |
| Sodium arsenite                       | 7784-46-5             |                          |         | 1            | 313c           |              |               |
| Sodium azide (Na(N3))                 | 26628-22-8            | ,                        | 1,000   |              | 313            | P105         |               |
| Sodium bichromate                     | 10588-01-9            |                          | 1,000   | 1,000        | 313c           | 1 100        |               |
| Sodium bifluoride                     | 1333-83-1             |                          |         | 100          | 0100           |              |               |
| Sodium bisulfite                      | 7631-90-5             |                          |         | 5,000        |                |              |               |
| Sodium cacodylate                     | 124-65-2              |                          | 100     | 0,000        |                |              |               |
| Sodium chromate                       | 7775-11-3             |                          | 100     | 10           | 313c           |              |               |
| Sodium cyanide (Na(CN))               | 143-33-9              |                          | 10      | 10           | 313c           | P106         |               |
| Sodium dicamba                        | 1982-69-0             | 100                      | 10      | 10           | 313            | 1 100        |               |
| Sodium dimethyldithiocarbamate        | 128-04-1              |                          |         |              | 313            |              |               |
| Sodium dodecylbenzenesulfonate        | 25155-30-0            |                          |         | 1,000        | 515            |              |               |
| Sodium fluoride                       | 7681-49-4             |                          |         | 1,000        |                |              |               |
| Sodium fluoroacetate                  | 62-74-8               |                          | 10      |              | 313            | P058         |               |
| Sodium hydrosulfide                   | 16721-80-5            | ,                        | 10      | 5,000        | 515            | F 030        |               |
| Sodium hydroxide                      | 1310-73-2             |                          |         | 1,000        |                |              |               |
| Sodium hypochlorite                   | 7681-52-9             |                          |         | 1,000        |                |              |               |
| Sodium hypochlorite                   | 10022-70-5            |                          |         | 100          |                |              |               |
| Sodium methylate                      | 124-41-4              |                          |         | 1,000        |                |              |               |
| Sodium methyldithiocarbamate          | 137-42-8              |                          |         | 1,000        | Х              |              |               |
|                                       |                       |                          |         | 100          |                |              |               |
| Sodium nitrite                        | 7632-00-0<br>131-52-2 |                          |         | 100          | 313<br>313     |              |               |
| Sodium pentachlorophenate             |                       |                          |         |              |                |              |               |
| Sodium o-phenylphenoxide              | 132-27-4              |                          |         | E 000        | 313            |              |               |
| Sodium phosphate, dibasic             | 7558-79-4             |                          |         | 5,000        |                |              |               |
| Sodium phosphate, dibasic             | 10039-32-4            |                          |         | 5,000        |                |              |               |
| Sodium phosphate, dibasic             | 10140-65-5            |                          |         | 5,000        |                |              |               |
| Sodium phosphate, tribasic            | 7601-54-9             |                          |         | 5,000        |                |              |               |
| Sodium phosphate, tribasic            | 10101-89-0            |                          |         | 5,000        |                |              |               |
| Sodium phosphate, tribasic            | 10361-89-4            |                          |         | 5,000        |                |              |               |
| Sodium selenate                       | 13410-01-0            |                          | 100     |              | 313c           |              |               |
| Sodium selenite                       | 7782-82-3             |                          |         | 100          | 313c           |              |               |
| Sodium selenite                       | 10102-18-8            | 100/10,000               | 100     | 100          | 313c           |              |               |

| NAME                                        | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|---------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Sodium tellurite                            | 10102-20-2                   | 500/10,000               | 500                      |              |                |              |                     |
| Stannane, acetoxytriphenyl-                 | 900-95-8                     |                          |                          |              |                |              |                     |
| Streptozotocin                              | 18883-66-4                   | , i                      |                          | 1            |                | U206         |                     |
| Strontium chromate                          | 7789-06-2                    |                          |                          | 10           | 313c           |              |                     |
| Strychnine and salts                        | N746                         |                          |                          | _            | 313            |              |                     |
| Strychnine                                  | 57-24-9                      |                          | 10                       | 10           | 313c           | P108         |                     |
| Strychnine, and salts                       | 57-24-9                      |                          |                          | 10           |                | P108         |                     |
| Strychnine, sulfate                         | 60-41-3                      |                          | 10                       |              |                |              |                     |
| Styrene                                     | 100-42-5                     | ,                        |                          | 1,000        |                |              |                     |
| Styrene oxide                               | 96-09-3                      |                          |                          | 100          |                |              |                     |
| Sulfotep                                    | 3689-24-5                    |                          | 100                      |              | 010            | P109         |                     |
| Sulfoxide, 3-chloropropyl octyl             | 3569-57-1                    | 500                      |                          |              |                | 1 100        |                     |
| Sulfur dioxide                              | 7446-09-5                    |                          |                          |              |                |              |                     |
| Sulfur dioxide (anhydrous)                  | 7446-09-5                    |                          |                          |              |                |              | 5,000               |
| Sulfur fluoride (SF4), (T-4)-               | 7783-60-0                    |                          |                          |              |                |              | 2,500               |
| Sulfuric acid (aerosol forms only)          | 7664-93-9                    |                          |                          |              | 313            |              | 2,300               |
| Sulfuric acid                               | 7664-93-9                    |                          | ,                        | ,            | 313            |              |                     |
|                                             | 8014-95-7                    |                          | 1,000                    | ,            |                |              | 10.000              |
| Sulfuric acid (fuming)                      | 8014-95-7                    |                          |                          | 1,000        |                |              | 10,000              |
| Sulfuric acid, mixture with sulfur trioxide |                              |                          |                          | 1,000        |                |              | 10,000              |
| Sulfur monochloride                         | <sup>1</sup> 12771-08-3      |                          |                          | 1,000        |                |              |                     |
| Sulfur monochloride                         | <sup>2</sup> 10025-67-9      |                          |                          | 1,000        |                |              |                     |
| Sulfur phosphide                            | 1314-80-3                    |                          |                          | 100          |                | U189         |                     |
| Sulfur tetrafluoride                        | 7783-60-0                    | 100                      | 100                      |              |                |              | 2,500               |
| Sulfur trioxide                             | 7446-11-9                    | 100                      | 100                      |              |                |              | 10,000              |
| Sulfuryl fluoride                           | 2699-79-8                    |                          |                          |              | 313            |              |                     |
| Sulprofos                                   | 35400-43-2                   |                          |                          |              | 313            |              |                     |
| 2,4,5-T acid                                | 93-76-5                      |                          |                          | 1,000        |                |              |                     |
| 2,4,5-T amines                              | 1319-72-8                    |                          |                          | 5,000        |                |              |                     |
| 2,4,5-T amines                              | 2008-46-0                    |                          |                          | 5,000        |                |              |                     |
| 2,4,5-T amines                              | 3813-14-7                    |                          |                          | 5,000        |                |              |                     |
| 2,4,5-T amines                              | 6369-96-6                    |                          |                          | 5,000        |                |              |                     |
| 2,4,5-T amines                              | 6369-97-7                    |                          |                          | 5,000        |                |              |                     |
| 2,4,5-T esters                              | 93-79-8                      |                          |                          | 1,000        |                |              |                     |
| 2,4,5-T esters                              | 1928-47-8                    |                          |                          | 1,000        |                |              |                     |
| 2,4,5-T esters                              | 2545-59-7                    |                          |                          | 1,000        |                |              |                     |
| 2,4,5-T esters                              | 25168-15-4                   |                          |                          | 1,000        |                |              |                     |
| 2,4,5-T esters                              | 61792-07-2                   |                          |                          | 1,000        |                |              |                     |
| 2,4,5-T salts                               | 13560-99-1                   |                          |                          | 1,000        |                |              |                     |
| Tabun                                       | 77-81-6                      | 10                       | 10                       | ,            |                |              |                     |
| Tebuthiuron                                 | 34014-18-1                   |                          | 10                       |              | 313            |              |                     |
| Tellurium hexafluoride                      | 7783-80-4                    |                          | 100                      |              | 010            |              |                     |
| Temephos                                    | 3383-96-8                    |                          | 100                      |              | 313            |              |                     |
| TEPP                                        | 107-49-3                     |                          | 10                       | 10           | 515            | P111         |                     |
| Terbacil                                    | 5902-51-2                    |                          | 10                       | 10           | 313            | r 111        |                     |
|                                             |                              |                          | 400                      |              | 515            |              |                     |
| Terbufos                                    | 13071-79-9                   |                          | 100                      |              | 240            |              |                     |
| Tetrabromobisphenol A                       | 79-94-7                      |                          |                          |              | 313            |              |                     |

 <sup>&</sup>lt;sup>1</sup> CAS Number should be 10025-67-9. See Introduction for further explanation.
 <sup>2</sup> This is correct CAS number but not the same CAS number used on the CERCLA list. See Introduction for further explanation.

| NAME                                                                                                                                                        | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| 1,2,4,5-Tetrachlorobenzene                                                                                                                                  | 95-94-3                      |                          |                          | 5,000        |                | U207         |                     |
| 2,3,7,8-tetrachlorodibenzofuran                                                                                                                             | 51207-31-9                   |                          |                          |              | 313!           |              |                     |
| 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)                                                                                                                  | 1746-01-6                    |                          |                          | 1            | 313!           |              |                     |
| 1,1,2,2-Tetrachloroethane                                                                                                                                   | 79-34-5                      |                          |                          | 100          | 313            | U209         |                     |
| 1,1,1,2-Tetrachloroethane                                                                                                                                   | 630-20-6                     |                          |                          | 100          | 313            | U208         |                     |
| Tetrachloroethylene                                                                                                                                         | 127-18-4                     |                          |                          | 100          | 313            | U210         |                     |
| 1,1,2,2-Tetrachloro-1-fluoroethane                                                                                                                          | 354-14-3                     |                          |                          |              | 313            |              |                     |
| 1,1,1,2-Tetrachloro-2-fluoroethane                                                                                                                          | 354-11-0                     |                          |                          |              | 313            |              |                     |
| 2,3,4,6-Tetrachlorophenol                                                                                                                                   | 58-90-2                      |                          |                          | 10           | 313c           |              |                     |
| Tetrachlorvinphos                                                                                                                                           | 961-11-5                     |                          |                          |              | 313            |              |                     |
| Tetracycline hydrochloride                                                                                                                                  | 64-75-5                      |                          |                          |              | 313            |              |                     |
| Tetraethyldithiopyrophosphate                                                                                                                               | 3689-24-5                    |                          | 100                      | 100          |                | P109         |                     |
| Tetraethyl lead                                                                                                                                             | 78-00-2                      | 100                      | 10                       | 10           | 313c           | P110         |                     |
| Tetraethyl pyrophosphate                                                                                                                                    | 107-49-3                     |                          | 10                       | 10           |                | P111         |                     |
| Tetraethyltin                                                                                                                                               | 597-64-8                     |                          | 100                      |              |                |              |                     |
| Tetrafluoroethylene                                                                                                                                         | 116-14-3                     |                          | 100                      |              | 313            |              | 10,000              |
| Tetrahydro-5,5-dimethyl-2(1H)-<br>pyrimidinone(3-(4-<br>(trifluoromethyl)phenyl)-1-(2-(4-<br>(trifluoromethyl)phenyl)ethenyl)-2-<br>propenylidene)hydrazone | 67485-29-4                   |                          |                          |              | X              |              |                     |
| Tetrahydro-3,5-dimethyl-2H-1,3,5-<br>thiadiazine-2-thione                                                                                                   | 533-74-4                     |                          |                          |              | Х              |              |                     |
| Tetrahydro-3,5-dimethyl-2H-1,3,5-<br>thiadiazine-2-thione, ion(1-), sodium                                                                                  | 53404-60-7                   |                          |                          |              | Х              |              |                     |
| Tetramethrin                                                                                                                                                | 7696-12-0                    |                          |                          |              | 313            |              |                     |
| 2,2,3,3-Tetramethylcyclopropane<br>carboxylic acid cyano(3-<br>phenoxyphenyl)methyl ester                                                                   | 39515-41-8                   |                          |                          |              | Х              |              |                     |
| Tetramethyllead                                                                                                                                             | 75-74-1                      | 100                      | 100                      |              | 313c           |              | 10,000              |
| Tetramethylsilane                                                                                                                                           | 75-76-3                      |                          |                          |              |                |              | 10,000              |
| Tetranitromethane                                                                                                                                           | 509-14-8                     | 500                      | 10                       | 10           | 313            | P112         | 10,000              |
| Thallic oxide                                                                                                                                               | 1314-32-5                    |                          |                          | 100          | 313c           | P113         |                     |
| Thallium                                                                                                                                                    | 7440-28-0                    |                          |                          | 1,000        |                |              |                     |
| Thallium(I) acetate                                                                                                                                         | 563-68-8                     |                          |                          | 100          | 313c           | U214         |                     |
| Thallium(I) carbonate                                                                                                                                       | 6533-73-9                    | 100/10,000               | 100                      | 100          | 313c           | U215         |                     |
| Thallium chloride TICI                                                                                                                                      | 7791-12-0                    | 100/10,000               | 100                      | 100          | 313c           | U216         |                     |
| Thallium Compounds                                                                                                                                          | N760                         |                          |                          | &            | 313            |              |                     |
| Thallium(I) nitrate                                                                                                                                         | 10102-45-1                   |                          |                          | 100          | 313c           | U217         |                     |
| Thallium(I) sulfate                                                                                                                                         | 7446-18-6                    | 100/10,000               | 100                      | 100          | 313c           | P115         |                     |
| Thallium sulfate                                                                                                                                            | 10031-59-1                   | 100/10,000               | 100                      | 100          | 313c           |              |                     |
| Thallous carbonate                                                                                                                                          | 6533-73-9                    | ,                        |                          | 100          |                | U215         |                     |
| Thallous chloride                                                                                                                                           | 7791-12-0                    | ,                        |                          | 100          |                | U216         |                     |
| Thallous malonate                                                                                                                                           | 2757-18-8                    | ,                        | 100                      |              |                |              |                     |
| Thallous sulfate                                                                                                                                            | 7446-18-6                    |                          |                          | 100          | 313c           | P115         |                     |
| Thiabendazole                                                                                                                                               | 148-79-8                     | ,                        |                          | -            | 313            |              |                     |
| 2-(4-Thiazolyl)-1H-benzimidazole                                                                                                                            | 148-79-8                     |                          |                          |              | X              |              |                     |
| Thioacetamide                                                                                                                                               | 62-55-5                      |                          |                          | 10           | 313            | U218         |                     |
| Thiobencarb                                                                                                                                                 | 28249-77-6                   |                          |                          |              | 313            |              |                     |
| Thiocarbazide                                                                                                                                               |                              | 1,000/10,000             | 1,000                    |              |                |              |                     |
| Thiocyanic acid, methyl ester                                                                                                                               | 556-64-9                     |                          |                          |              |                |              | 20,000              |

| NAME                                | CAS/313<br>Category | Section 302<br>(EHS) TPQ | Section<br>304 EHS | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r) |
|-------------------------------------|---------------------|--------------------------|--------------------|--------------|----------------|--------------|---------------|
|                                     | Codes               |                          | RQ                 | i voz        | 010            | CODE         | TQ            |
| 4,4'-Thiodianiline                  | 139-65-1            |                          |                    |              | 313            |              |               |
| Thiodicarb                          | 59669-26-0          |                          |                    | 100          | 313            | U410         |               |
| Thiofanox                           | 39196-18-4          | 100/10,000               | 100                | 100          |                | P045         |               |
| Thiomethanol                        | 74-93-1             | 500                      | 100                | 100          | Х              | U153         | 10,000        |
| Thionazin                           | 297-97-2            | 500                      | 100                | 100          |                | P040         |               |
| Thiophanate ethyl                   | 23564-06-9          |                          |                    |              | 313            |              |               |
| Thiophanate-methyl                  | 23564-05-8          |                          |                    | 10           | 313            | U409         |               |
| Thiophenol                          | 108-98-5            | 500                      | 100                | 100          |                | P014         |               |
| Thiosemicarbazide                   | 79-19-6             | 100/10,000               | 100                | 100          | 313            | P116         |               |
| Thiourea                            | 62-56-6             |                          |                    | 10           | 313            | U219         |               |
| Thiourea, (2-chlorophenyl)-         | 5344-82-1           | 100/10,000               | 100                | 100          |                | P026         |               |
| Thiourea, (2-methylphenyl)-         | 614-78-8            |                          | 500                |              |                |              |               |
| Thiourea, 1-naphthalenyl-           | 86-88-4             |                          |                    | 100          |                | P072         |               |
| Thiram                              | 137-26-8            |                          |                    | 10           | 313            | U244         |               |
| Thorium dioxide                     | 1314-20-1           |                          |                    |              | 313            |              |               |
| Titanium chloride (TiCl4) (T-4)-    | 7550-45-0           | 100                      | 1,000              | 1,000        | X              | 1            | 2,500         |
| Titanium tetrachloride              | 7550-45-0           |                          | ,                  | ,            | 313            |              | 2,500         |
| o-Tolidine                          | 119-93-7            |                          | .,                 | 10           | X              | U095         | .,            |
| o-Tolidine dihydrochloride          | 612-82-8            |                          |                    |              | X              |              |               |
| o-Tolidine dihydrofluoride          | 41766-75-0          |                          |                    |              | X              |              |               |
| Toluene                             | 108-88-3            |                          |                    | 1,000        | 313            | U220         |               |
| Toluenediamine                      | 25376-45-8          |                          |                    | 10           | X              | U221         |               |
| Toluene-2,4-diisocyanate            | 584-84-9            |                          | 100                | 100          | 313            |              | 10,000        |
| Toluene-2,6-diisocyanate            | 91-08-7             | 100                      |                    |              | 313            |              | 10,000        |
| Toluenediisocyanate (mixed isomers) | 26471-62-5          |                          |                    | 100          | 313            | U223         | 10,000        |
| Toluene diisocyanate (unspecified   | 26471-62-5          |                          |                    | 100          | X              | U223         | 10,000        |
| isomer)                             |                     |                          |                    |              |                |              | -,            |
| o-Toluídine                         | 95-53-4             |                          |                    | 100          | 313            | U328         |               |
| p-Toluidine                         | 106-49-0            |                          |                    | 100          |                | U353         |               |
| o-Toluidine hydrochloride           | 636-21-5            |                          |                    | 100          | 313            | U222         |               |
| Toxaphene                           | 8001-35-2           | 500/10,000               | 1                  | 1            | 313            | P123         |               |
| 2,4,5-TP esters                     | 32534-95-5          |                          |                    | 100          |                |              |               |
| Triadimefon                         | 43121-43-3          |                          |                    |              | 313            |              |               |
| Triallate                           | 2303-17-5           |                          |                    | 100          | 313            | U389         |               |
| Triamiphos                          | 1031-47-6           | 500/10,000               | 500                |              |                |              |               |
| Triaziquone                         | 68-76-8             |                          |                    |              | 313            |              |               |
| Triazofos                           | 24017-47-8          | 500                      | 500                |              |                |              |               |
| Tribenuron methyl                   | 101200-48-0         |                          |                    |              | 313            |              |               |
| Tribromomethane                     | 75-25-2             |                          |                    | 100          | Х              | U225         |               |
| Tributyltin fluoride                | 1983-10-4           |                          |                    |              | 313            |              |               |
| Tributyltin methacrylate            | 2155-70-6           |                          |                    |              | 313            |              |               |
| S,S,S-Tributyltrithiophosphate      | 78-48-8             |                          |                    |              | 313            |              |               |
| Trichlorfon                         | 52-68-6             |                          |                    | 100          | 313            |              |               |
| Trichloroacetyl chloride            | 76-02-8             | 500                      | 500                |              | 313            |              |               |
| 1,2,4-Trichlorobenzene              | 120-82-1            |                          |                    | 100          | 313            |              |               |
| Trichloro(chloromethyl)silane       | 1558-25-4           |                          |                    |              |                |              |               |
| Trichloro(dichlorophenyl)silane     | 27137-85-5          |                          | 500                |              |                |              |               |
| 1,1,1-Trichloroethane               | 71-55-6             |                          |                    | 1,000        | 313            | U226         |               |
| 1,1,2-Trichloroethane               | 79-00-5             |                          |                    | 100          | 313            | U227         |               |
| Trichloroethylene                   | 79-01-6             |                          |                    | 100          | 313            | U228         |               |
| Trichloroethylsilane                | 115-21-9            |                          | 500                |              |                |              |               |
| Trichlorofluoromethane              | 75-69-4             |                          |                    | 5,000        | 313            | U121         |               |

| NAME                              | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|-----------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Trichloromethanesulfenyl chloride | 594-42-3                     | 500                      |                          | 100          | Х              |              | 10,000              |
| Trichloromonofluoromethane        | 75-69-4                      |                          | 100                      | 5,000        |                | U121         | 10,000              |
| Trichloronate                     | 327-98-0                     | 500                      | 500                      | 0,000        | ~              | 0.2.         |                     |
| Trichlorophenol                   | 25167-82-2                   |                          |                          | 10           | 313c           |              |                     |
| 2,3,4-Trichlorophenol             | 15950-66-0                   |                          |                          | 10           |                |              |                     |
| 2,3,5-Trichlorophenol             | 933-78-8                     |                          |                          | 10           |                |              |                     |
| 2,3,6-Trichlorophenol             | 933-75-5                     |                          |                          | 10           |                |              |                     |
| 2,4,5-Trichlorophenol             | 95-95-4                      |                          |                          | 10           |                |              |                     |
| 2,4,6-Trichlorophenol             | 88-06-2                      |                          |                          | 10           |                |              |                     |
| 3,4,5-Trichlorophenol             | 609-19-8                     |                          |                          | 10           |                |              |                     |
| Trichlorophenylsilane             | 98-13-5                      | 500                      | 500                      |              |                |              |                     |
| 1,2,3-Trichloropropane            | 96-18-4                      |                          |                          |              | 313            |              |                     |
| Trichlorosilane                   | 10025-78-2                   |                          |                          |              |                |              | 10,000              |
| Triclopyr triethylammonium salt   | 57213-69-1                   |                          |                          |              | 313            |              | ,                   |
| Triethanolamine dodecylbenzene    | 27323-41-7                   |                          |                          | 1,000        |                |              |                     |
| sulfonate                         |                              |                          |                          | .,           |                |              |                     |
| Triethoxysilane                   | 998-30-1                     | 500                      | 500                      |              |                |              |                     |
| Triethylamine                     | 121-44-8                     |                          |                          | 5,000        | 313            | U404         |                     |
| Trifluorochloroethylene           | 79-38-9                      |                          |                          | -,           |                |              | 10,000              |
| 2-(4-((5-(Trifluoromethyl)-2-     | 69806-50-4                   |                          |                          |              | Х              |              | -,                  |
| pyridinyl)oxy)-phenoxy)propanoic  |                              |                          |                          |              |                |              |                     |
| acid, butyl ester                 |                              |                          |                          |              |                |              |                     |
| Trifluralin                       | 1582-09-8                    |                          |                          | 10           | 313            |              |                     |
| Triforine                         | 26644-46-2                   |                          |                          |              | 313            |              |                     |
| Trimethylamine                    | 75-50-3                      |                          |                          | 100          |                |              | 10,000              |
| 1,2,4-Trimethylbenzene            | 95-63-6                      |                          |                          |              | 313            |              |                     |
| Trimethylchlorosilane             | 75-77-4                      | 1,000                    | 1,000                    |              |                |              | 10,000              |
| 2,4,4-Trimethylhexamethylene      | 15646-96-5                   |                          |                          |              | 313#           |              |                     |
| diisocyanate                      |                              |                          |                          |              |                |              |                     |
| 2,2,4-Trimethylhexamethylene      | 16938-22-0                   |                          |                          |              | 313#           |              |                     |
| diisocyanate                      |                              |                          |                          |              |                |              |                     |
| Trimethylolpropane phosphite      | 824-11-3                     | 100/10,000               | 100                      |              |                |              |                     |
| 2,2,4-Trimethylpentane            | 540-84-1                     |                          |                          | 1,000        |                |              |                     |
| 2,3,5-Trimethylphenyl             | 2655-15-4                    |                          |                          |              | 313            |              |                     |
| methylcarbamate                   |                              |                          |                          |              |                |              |                     |
| Trimethyltin chloride             | 1066-45-1                    | 500/10,000               | 500                      |              |                |              |                     |
| 1,3,5-Trinitrobenzene             | 99-35-4                      |                          |                          | 10           |                | U234         |                     |
| Triphenyltin chloride             | 639-58-7                     | 500/10,000               | 500                      |              | 313            |              |                     |
| Triphenyltin hydroxide            | 76-87-9                      |                          |                          |              | 313            |              |                     |
| Tris(2-chloroethyl)amine          | 555-77-1                     | 100                      | 100                      |              |                |              |                     |
| Tris(2,3-dibromopropyl) phosphate | 126-72-7                     |                          |                          | 10           |                | U235         |                     |
| Tris(dimethylcarbamodithioato-    | 14484-64-1                   |                          |                          |              | Х              |              |                     |
| S,S')iron                         | 70 57 4                      |                          |                          | 40           | 0.10           | 1.1000       |                     |
| Trypan blue                       | 72-57-1                      |                          |                          | 10           | 313            | U236         |                     |
| Uracil mustard                    | 66-75-1                      |                          |                          | 10           |                | U237         |                     |
| Uranyl acetate                    | 541-09-3                     |                          |                          | 100          |                |              |                     |
| Uranyl nitrate                    | 10102-06-4                   |                          |                          | 100          |                |              |                     |
| Uranyl nitrate                    | 36478-76-9                   |                          |                          | 100          |                |              |                     |
| Urea, N,N-dimethyl-N'-[3-         | 2164-17-2                    |                          |                          |              | Х              |              |                     |
| (trifluoromethyl)phenyl]-         | E4 70 0                      |                          |                          | 400          | 040            | 11000        |                     |
|                                   | 51-79-6                      |                          | 4 000                    | 100          | 313            | U238         |                     |
| Valinomycin                       | 2001-95-8                    | 1,000/10,000             | 1,000                    |              |                |              |                     |

| NAME                                 | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ | CERCLA<br>RQ | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|--------------------------------------|------------------------------|--------------------------|--------------------------|--------------|----------------|--------------|---------------------|
| Vanadium (except when contained in   | 7440-62-2                    |                          |                          |              | 313            |              |                     |
| an alloy)                            |                              |                          |                          |              |                |              |                     |
| Vanadium Compounds                   | N770                         |                          |                          |              | 313            |              |                     |
| Vanadium pentoxide                   | 1314-62-1                    | 100/10,000               | 1,000                    | 1,000        | 313c           | P120         |                     |
| Vanadyl sulfate                      | 27774-13-6                   |                          |                          | 1,000        | 313c           |              |                     |
| Vikane                               | 2699-79-8                    |                          |                          |              | Х              |              |                     |
| Vinclozolin                          | 50471-44-8                   |                          |                          |              | 313            |              |                     |
| Vinyl acetate                        | 108-05-4                     | 1,000                    | 5,000                    | 5,000        | 313            |              | 15,000              |
| Vinyl acetate monomer                | 108-05-4                     | 1,000                    | 5,000                    | 5,000        | Х              |              | 15,000              |
| Vinyl acetylene                      | 689-97-4                     |                          |                          |              |                |              | 10,000              |
| Vinyl bromide                        | 593-60-2                     |                          |                          | 100          | 313            |              |                     |
| Vinyl chloride                       | 75-01-4                      |                          |                          | 1            | 313            | U043         | 10,000              |
| Vinyl ethyl ether                    | 109-92-2                     |                          |                          |              |                |              | 10,000              |
| Vinyl fluoride                       | 75-02-5                      |                          |                          |              | 313            |              | 10,000              |
| Vinylidene chloride                  | 75-35-4                      |                          |                          | 100          | 313            | U078         | 10,000              |
| Vinylidene fluoride                  | 75-38-7                      |                          |                          |              |                |              | 10,000              |
| Vinyl methyl ether                   | 107-25-5                     |                          |                          |              |                |              | 10,000              |
| Warfarin                             | 81-81-2                      | 500/10,000               | 100                      | 100          | X 313c         | P001         |                     |
| Warfarin and salts                   | N874                         |                          |                          |              | 313            |              |                     |
| Warfarin, & salts, conc.>0.3%        | 81-81-2                      |                          |                          | 100          | X 313c         | P001         |                     |
| Warfarin sodium                      | 129-06-6                     | 100/10,000               | 100                      | 100          | 313c           |              |                     |
| m-Xylene                             | 108-38-3                     |                          |                          | 1,000        | 313            | U239         |                     |
| o-Xylene                             | 95-47-6                      |                          |                          | 1,000        | 313            | U239         |                     |
| p-Xylene                             | 106-42-3                     |                          |                          | 100          | 313            | U239         |                     |
| Xylene (mixed isomers)               | 1330-20-7                    |                          |                          | 100          | 313            | U239         |                     |
| Xylenol                              | 1300-71-6                    |                          |                          | 1,000        |                |              |                     |
| 2,6-Xylidine                         | 87-62-7                      |                          |                          |              | 313            |              |                     |
| Xylylene dichloride                  | 28347-13-9                   | 100/10,000               | 100                      |              |                |              |                     |
| Zinc (fume or dust)                  | 7440-66-6                    |                          |                          | 1,000        | 313            |              |                     |
| Zinc                                 | 7440-66-6                    |                          |                          | 1,000        |                |              |                     |
| Zinc acetate                         | 557-34-6                     |                          |                          | 1,000        | 313c           |              |                     |
| Zinc ammonium chloride               | 14639-97-5                   |                          |                          | 1,000        | 313c           |              |                     |
| Zinc ammonium chloride               | 14639-98-6                   |                          |                          | 1,000        |                |              |                     |
| Zinc ammonium chloride               | 52628-25-8                   |                          |                          | 1,000        | 313c           |              |                     |
| Zinc borate                          | 1332-07-6                    |                          |                          | 1,000        | 313c           |              |                     |
| Zinc bromide                         | 7699-45-8                    |                          |                          | 1,000        | 313c           |              |                     |
| Zinc carbonate                       | 3486-35-9                    |                          |                          | 1,000        | 313c           |              |                     |
| Zinc chloride                        | 7646-85-7                    |                          |                          | 1,000        | 313c           |              |                     |
| Zinc Compounds                       | N982                         |                          |                          | &            | 313            |              |                     |
| Zinc cyanide                         | 557-21-1                     |                          |                          | 10           |                | P121         |                     |
| Zinc, dichloro(4,4-dimethyl-         | 58270-08-9                   | 100/10,000               | 100                      |              | 313c           |              |                     |
| 5((((methylamino)carbonyl)oxy)imino) |                              | ,                        |                          |              |                |              |                     |
| pentanenitrile)-, (T-4)-             |                              |                          |                          |              |                |              |                     |
| Zinc fluoride                        | 7783-49-5                    |                          |                          | 1,000        | 313c           |              |                     |
| Zinc formate                         | 557-41-5                     |                          |                          | 1,000        | 313c           |              |                     |
| Zinc hydrosulfite                    | 7779-86-4                    |                          |                          | 1,000        | 313c           |              |                     |
| Zinc nitrate                         | 7779-88-6                    |                          |                          | 1,000        | 313c           |              |                     |
| Zinc phenolsulfonate                 | 127-82-2                     |                          |                          | 5,000        | 313c           |              |                     |
| Zinc phosphide                       | 1314-84-7                    | 500                      | 100                      | 100          | 313c           | P122         |                     |
| Zinc phosphide (conc. <= 10%)        | 1314-84-7                    | 500                      |                          |              |                | U249         |                     |
| Zinc phosphide (conc. > 10%)         | 1314-84-7                    | 500                      | 100                      | 100          | 313c           | P122         |                     |
| Zinc silicofluoride                  | 16871-71-9                   |                          |                          | 5,000        | 313c           |              |                     |

| NAME                         | CAS/313<br>Category<br>Codes | Section 302<br>(EHS) TPQ | Section<br>304 EHS<br>RQ |       | Section<br>313 | RCRA<br>CODE | CAA<br>112(r)<br>TQ |
|------------------------------|------------------------------|--------------------------|--------------------------|-------|----------------|--------------|---------------------|
| Zinc sulfate                 | 7733-02-0                    |                          |                          | 1,000 | 313c           |              |                     |
| Zineb                        | 12122-67-7                   |                          |                          |       | 313            |              |                     |
| Ziram                        | 137-30-4                     |                          |                          | 10    |                | P205         |                     |
| Zirconium nitrate            | 13746-89-9                   |                          |                          | 5,000 |                |              |                     |
| Zirconium potassium fluoride | 16923-95-8                   |                          |                          | 1,000 |                |              |                     |
| Zirconium sulfate            | 14644-61-2                   |                          |                          | 5,000 |                |              |                     |
| Zirconium tetrachloride      | 10026-11-6                   |                          |                          | 5,000 |                |              |                     |

A-40

# **APPENDIX B**

#### **RADIONUCLIDES LISTED UNDER CERCLA** FOR REFERENCE ONLY, NOT FOR REGULATORY COMPLIANCE SEE CFR PART 302, TABLE 302.4, APPENDIX B., FOR MORE INFORMATION

| Radionuclide               | Atomic | Final RQ Curies |
|----------------------------|--------|-----------------|
| Name                       | Number | (Bq)            |
| Radionuclides@             |        | 1&(3.7E 10)     |
| Actinium-224               | 89     | 100 (3.7E 12)   |
| Actinium-225               | 89     | 1 (3.7E 10)     |
| Actinium-226               | 89     | 10 (3.7E 11)    |
| Actinium-227               | 89     | 0.001 (3.7E 7)  |
| Actinium-228               | 89     | 10 (3.7E 11)    |
| Aluminum-26                | 13     | 10 (3.7E 11)    |
| Americium-237              | 95     | 1000 (3.7E 13)  |
| Americium-238              | 95     | 100 (3.7E 12)   |
| Americium-239              | 95     | 100 (3.7E 12)   |
| Americium-240              | 95     | 10 (3.7E 11)    |
| Americium-241              | 95     | 0.01 (3.7E 8)   |
| Americium-242m             | 95     | 0.01 (3.7E 8)   |
| Americium-242              | 95     | 100 (3.7E 12)   |
| Americium-243              | 95     | 0.01 (3.7E 8)   |
| Americium-244m             | 95     | 1000 (3.7E 13)  |
| Americium-244              | 95     | 10 (3.7E 11)    |
| Americium-245              | 95     | 1000 (3.7E 13)  |
| Americium-246m             | 95     | 1000 (3.7E 13)  |
| Americium-246              | 95     | 1000 (3.7E 13)  |
| Antimony-115               | 51     | 1000 (3.7E 13)  |
| Antimony-116m              | 51     | 100 (3.7E 12)   |
| Antimony-116               | 51     | 1000 (3.7E 13)  |
| Antimony-117               | 51     | 1000 (3.7E 13)  |
| Antimony-118m              | 51     | 10 (3.7E 11)    |
| Antimony-119               | 51     | 1000 (3.7E 13)  |
| Antimony-120<br>(16 min)   | 51     | 1000 (3.7E 13)  |
| Antimony-120<br>(5.76 day) | 51     | 10 (3.7E 11)    |

| Radionuclide<br>Name       | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------------|------------------|-------------------------|
| Antimony-122               | 51               | 10 (3.7E 11)            |
| Antimony-124m              | 51               | 1000 (3.7E 13)          |
| Antimony-124               | 51               | 10 (3.7E 11)            |
| Antimony-125               | 51               | 10 (3.7E 11)            |
| Antimony-126m              | 51               | 1000 (3.7E 13)          |
| Antimony-126               | 51               | 10 (3.7E 11)            |
| Antimony-127               | 51               | 10 (3.7E 11)            |
| Antimony-128<br>(10.4 min) | 51               | 1000 (3.7E 13)          |
| Antimony-128<br>(9.01 hr)  | 51               | 10 (3.7E 11)            |
| Antimony-129               | 51               | 100 (3.7E 12)           |
| Antimony-130               | 51               | 100 (3.7E 12)           |
| Antimony-131               | 51               | 1000 (3.7E 13)          |
| Argon-39                   | 18               | 1000 (3.7E 13)          |
| Argon-41                   | 18               | 10 (3.7E 11)            |
| Arsenic-69                 | 33               | 1000 (3.7E 13)          |
| Arsenic-70                 | 33               | 100 (3.7E 12)           |
| Arsenic-71                 | 33               | 100 (3.7E 12)           |
| Arsenic-72                 | 33               | 10 (3.7E 11)            |
| Arsenic-73                 | 33               | 100 (3.7E 12)           |
| Arsenic-74                 | 33               | 10 (3.7E 11)            |
| Arsenic-76                 | 33               | 100 (3.7E 12)           |
| Arsenic-77                 | 33               | 1000 (3.7E 13)          |
| Arsenic-78                 | 33               | 100 (3.7E 12)           |
| Astatine-207               | 85               | 100 (3.7E 12)           |
| Astatine-211               | 85               | 100 (3.7E 12)           |
| Barium-126                 | 56               | 1000 (3.7E 13)          |
| Barium-128                 | 56               | 10 (3.7E 11)            |
| Barium-131m                | 56               | 1000 (3.7E 13)          |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Barium-131           | 56               | 10 (3.7E 11)            |
| Barium-133m          | 56               | 100 (3.7E 12)           |
| Barium-133           | 56               | 10 (3.7E 11)            |
| Barium-135m          | 56               | 1000 (3.7E 13)          |
| Barium-139           | 56               | 1000 (3.7E 13)          |
| Barium-140           | 56               | 10 (3.7E 11)            |
| Barium-141           | 56               | 1000 (3.7E 13)          |
| Barium-142           | 56               | 1000 (3.7E 13)          |
| Berkelium-245        | 97               | 100 (3.7E 12)           |
| Berkelium-246        | 97               | 10 (3.7E 11)            |
| Berkelium-247        | 97               | 0.01 (3.7E 8)           |
| Berkelium-249        | 97               | 1 (3.7E 10)             |
| Berkelium-250        | 97               | 100 (3.7E 12)           |
| Beryllium-7          | 4                | 100 (3.7E 12)           |
| Beryllium-10         | 4                | 1 (3.7E 10)             |
| Bismuth-200          | 83               | 100 (3.7E 12)           |
| Bismuth-201          | 83               | 100 (3.7E 12)           |
| Bismuth-202          | 83               | 1000 (3.7E 13)          |
| Bismuth-203          | 83               | 10 (3.7E 11)            |
| Bismuth-205          | 83               | 10 (3.7E 11)            |
| Bismuth-206          | 83               | 10 (3.7E 11)            |
| Bismuth-207          | 83               | 10 (3.7E 11)            |
| Bismuth-210m         | 83               | 0.1 (3.7E 9)            |
| Bismuth-210          | 83               | 10 (3.7E 11)            |
| Bismuth-212          | 83               | 100 (3.7E 12)           |
| Bismuth-213          | 83               | 100 (3.7E 12)           |
| Bismuth-214          | 83               | 100 (3.7E 12)           |
| Bromine-74m          | 35               | 100 (3.7E 12)           |
| Bromine-74           | 35               | 100 (3.7E 12)           |
| Bromine-75           | 35               | 100 (3.7E 12)           |
| Bromine-76           | 35               | 10 (3.7E 11)            |
| Bromine-77           | 35               | 100 (3.7E 12)           |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Bromine-80m          | 35               | 1000 (3.7E 13)          |
| Bromine-80           | 35               | 1000 (3.7E 13)          |
| Bromine-82           | 35               | 10 (3.7E 11)            |
| Bromine-83           | 35               | 1000 (3.7E 13)          |
| Bromine-84           | 35               | 100 (3.7E 12)           |
| Cadmium-104          | 48               | 1000 (3.7E 13)          |
| Cadmium-107          | 48               | 1000 (3.7E 13)          |
| Cadmium-109          | 48               | 1 (3.7E 10)             |
| Cadmium-113m         | 48               | 0.1 (3.7E 9)            |
| Cadmium-113          | 48               | 0.1 (3.7E 9)            |
| Cadmium-115m         | 48               | 10 (3.7E 11)            |
| Cadmium-115          | 48               | 100 (3.7E 12)           |
| Cadmium-117m         | 48               | 10 (3.7E 11)            |
| Cadmium-117          | 48               | 100 (3.7E 12)           |
| Calcium-41           | 20               | 10 (3.7E 11)            |
| Calcium-45           | 20               | 10 (3.7E 11)            |
| Calcium-47           | 20               | 10 (3.7E 11)            |
| Californium-244      | 98               | 1000 (3.7E 13)          |
| Californium-246      | 98               | 10 (3.7E 11)            |
| Californium-248      | 98               | 0.1 (3.7E 9)            |
| Californium-249      | 98               | 0.01 (3.7E 8)           |
| Californium-250      | 98               | 0.01 (3.7E 8)           |
| Californium-251      | 98               | 0.01 (3.7E 8)           |
| Californium-252      | 98               | 0.1 (3.7E 9)            |
| Californium-253      | 98               | 10 (3.7E 11)            |
| Californium-254      | 98               | 0.1 (3.7E 9)            |
| Carbon-11            | 6                | 1000 (3.7E 13)          |
| Carbon-14            | 6                | 10 (3.7E 11)            |
| Cerium-134           | 58               | 10 (3.7E 11)            |
| Cerium-135           | 58               | 10 (3.7E 11)            |
| Cerium-137m          | 58               | 100 (3.7E 12)           |
| Cerium-137           | 58               | 1000 (3.7E 13)          |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Cerium-139           | 58               | 100 (3.7E 12)           |
| Cerium-141           | 58               | 10 (3.7E 11)            |
| Cerium-143           | 58               | 100 (3.7E 12)           |
| Cerium-144           | 58               | 1 (3.7E 10)             |
| Cesium-125           | 55               | 1000 (3.7E 13)          |
| Cesium-127           | 55               | 100 (3.7E 12)           |
| Cesium-129           | 55               | 100 (3.7E 12)           |
| Cesium-130           | 55               | 1000 (3.7E 13)          |
| Cesium-131           | 55               | 1000 (3.7E 13)          |
| Cesium-132           | 55               | 10 (3.7E 11)            |
| Cesium-134m          | 55               | 1000 (3.7E 13)          |
| Cesium-134           | 55               | 1 (3.7E 10)             |
| Cesium-135m          | 55               | 100 (3.7E 12)           |
| Cesium-135           | 55               | 10 (3.7E 11)            |
| Cesium-136           | 55               | 10 (3.7E 11)            |
| Cesium-137           | 55               | 1 (3.7E 10)             |
| Cesium-138           | 55               | 100 (3.7E 12)           |
| Chlorine-36          | 17               | 10 (3.7E 11)            |
| Chlorine-38          | 17               | 100 (3.7E 12)           |
| Chlorine-39          | 17               | 100 (3.7E 12)           |
| Chromium-48          | 24               | 100 (3.7E 12)           |
| Chromium-49          | 24               | 1000 (3.7E 13)          |
| Chromium-51          | 24               | 1000 (3.7E 13)          |
| Cobalt-55            | 27               | 10 (3.7E 11)            |
| Cobalt-56            | 27               | 10 (3.7E 11)            |
| Cobalt-57            | 27               | 100 (3.7E 12)           |
| Cobalt-58m           | 27               | 1000 (3.7E 13)          |
| Cobalt-58            | 27               | 10 (3.7E 11)            |
| Cobalt-60m           | 27               | 1000 (3.7E 13)          |
| Cobalt-60            | 27               | 10 (3.7E 11)            |
| Cobalt-61            | 27               | 1000 (3.7E 13)          |
| Cobalt-62m           | 27               | 1000 (3.7E 13)          |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Copper-60            | 29               | 100 (3.7E 12)           |
| Copper-61            | 29               | 100 (3.7E 12)           |
| Copper-64            | 29               | 1000 (3.7E 13)          |
| Copper-67            | 29               | 100 (3.7E 12)           |
| Curium-238           | 96               | 1000 (3.7E 13)          |
| Curium-240           | 96               | 1 (3.7E 10)             |
| Curium-241           | 96               | 10 (3.7E 11)            |
| Curium-242           | 96               | 1 (3.7E 10)             |
| Curium-243           | 96               | 0.01 (3.7E 8)           |
| Curium-244           | 96               | 0.01 (3.7E 8)           |
| Curium-245           | 96               | 0.01 (3.7E 8)           |
| Curium-246           | 96               | 0.01 (3.7E 8)           |
| Curium-247           | 96               | 0.01 (3.7E 8)           |
| Curium-248           | 96               | 0.001 (3.7E 7)          |
| Curium-249           | 96               | 1000 (3.7E 13)          |
| Dysprosium-155       | 66               | 100 (3.7E 12)           |
| Dysprosium-157       | 66               | 100 (3.7E 12)           |
| Dysprosium-159       | 66               | 100 (3.7E 12)           |
| Dysprosium-165       | 66               | 1000 (3.7E 13)          |
| Dysprosium-166       | 66               | 10 (3.7E 11)            |
| Einsteinium-250      | 99               | 10 (3.7E 11)            |
| Einsteinium-251      | 99               | 1000 (3.7E 13)          |
| Einsteinium-253      | 99               | 10 (3.7E 11)            |
| Einsteinium-254m     | 99               | 1 (3.7E 10)             |
| Einsteinium-254      | 99               | 0.1 (3.7E 9)            |
| Erbium-161           | 68               | 100 (3.7E 12)           |
| Erbium-165           | 68               | 1000 (3.7E 13)          |
| Erbium-169           | 68               | 100 (3.7E 12)           |
| Erbium-171           | 68               | 100 (3.7E 12)           |
| Erbium-172           | 68               | 10 (3.7E 11)            |
| Europium-145         | 63               | 10 (3.7E 11)            |
| Europium-146         | 63               | 10 (3.7E 11)            |

| Radionuclide<br>Name      | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|---------------------------|------------------|-------------------------|
| Europium-147              | 63               | 10 (3.7E 11)            |
| Europium-148              | 63               | 10 (3.7E 11)            |
| Europium-149              | 63               | 100 (3.7E 12)           |
| Europium-150<br>(12.6 hr) | 63               | 1000 (3.7E 13)          |
| Europium-150<br>(34.2 yr) | 63               | 10 (3.7E 11)            |
| Europium-152m             | 63               | 100 (3.7E 12)           |
| Europium-152              | 63               | 10 (3.7E 11)            |
| Europium-154              | 63               | 10 (3.7E 11)            |
| Europium-155              | 63               | 10 (3.7E 11)            |
| Europium-156              | 63               | 10 (3.7E 11)            |
| Europium-157              | 63               | 10 (3.7E 11)            |
| Europium-158              | 63               | 1000 (3.7E 13)          |
| Fermium-252               | 100              | 10 (3.7E 11)            |
| Fermium-253               | 100              | 10 (3.7E 11)            |
| Fermium-254               | 100              | 100 (3.7E 12)           |
| Fermium-255               | 100              | 100 (3.7E 12)           |
| Fermium-257               | 100              | 1 (3.7E 10)             |
| Fluorine-18               | 9                | 1000 (3.7E 13)          |
| Francium-222              | 87               | 100 (3.7E 12)           |
| Francium-223              | 87               | 100 (3.7E 12)           |
| Gadolinium-145            | 64               | 100 (3.7E 12)           |
| Gadolinium-146            | 64               | 10 (3.7E 11)            |
| Gadolinium-147            | 64               | 10 (3.7E 11)            |
| Gadolinium-148            | 64               | 0.001 (3.7E7)           |
| Gadolinium-149            | 64               | 100 (3.7E 12)           |
| Gadolinium-151            | 64               | 100 (3.7E 12)           |
| Gadolinium-152            | 64               | 0.001 (3.7E 7)          |
| Gadolinium-153            | 64               | 10 (3.7E 11)            |
| Gadolinium-159            | 64               | 1000 (3.7E 13)          |
| Gallium-65                | 31               | 1000 (3.7E 13)          |
| Gallium-66                | 31               | 10 (3.7E 11)            |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Gallium-67           | 31               | 100 (3.7E 12)           |
| Gallium-68           | 31               | 1000 (3.7E 13)          |
| Gallium-70           | 31               | 1000 (3.7E 13)          |
| Gallium-72           | 31               | 10 (3.7E 11)            |
| Gallium-73           | 31               | 100 (3.7E 12)           |
| Germanium-66         | 32               | 100 (3.7E 12)           |
| Germanium-67         | 32               | 1000 (3.7E 13)          |
| Germanium-68         | 32               | 10 (3.7E 11)            |
| Germanium-69         | 32               | 10 (3.7E 11)            |
| Germanium-71         | 32               | 1000 (3.7E 13)          |
| Germanium-75         | 32               | 1000 (3.7E 13)          |
| Germanium-77         | 32               | 10 (3.7E 11)            |
| Germanium-78         | 32               | 1000 (3.7E 13)          |
| Gold-193             | 79               | 100 (3.7E 12)           |
| Gold-194             | 79               | 10 (3.7E 11)            |
| Gold-195             | 79               | 100 (3.7E 12)           |
| Gold-198m            | 79               | 10 (3.7E 11)            |
| Gold-198             | 79               | 100 (3.7E 12)           |
| Gold-199             | 79               | 100 (3.7E 12)           |
| Gold-200m            | 79               | 10 (3.7E 11)            |
| Gold-200             | 79               | 1000 (3.7E 13)          |
| Gold-201             | 79               | 1000 (3.7E 13)          |
| Hafnium-170          | 72               | 100 (3.7E 12)           |
| Hafnium-172          | 72               | 1 (3.7E 10)             |
| Hafnium-173          | 72               | 100 (3.7E 12)           |
| Hafnium-175          | 72               | 100 (3.7E 12)           |
| Hafnium-177m         | 72               | 1000 (3.7E 13)          |
| Hafnium-178m         | 72               | 0.1 (3.7E 9)            |
| Hafnium-179m         | 72               | 100 (3.7E 12)           |
| Hafnium-180m         | 72               | 100 (3.7E 12)           |
| Hafnium-181          | 72               | 10 (3.7E 11)            |
| Hafnium-182m         | 72               | 100 (3.7E 12)           |

| Radionuclide<br>Name     | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|--------------------------|------------------|-------------------------|
| Hafnium-182              | 72               | 0.1 (3.7E 9)            |
| Hafnium-183              | 72               | 100 (3.7E 12)           |
| Hafnium-184              | 72               | 100 (3.7E 12)           |
| Holmium-155              | 67               | 1000 (3.7E 13)          |
| Holmium-157              | 67               | 1000 (3.7E 13)          |
| Holmium-159              | 67               | 1000 (3.7E 13)          |
| Holmium-161              | 67               | 1000 (3.7E 13)          |
| Holmium-162m             | 67               | 1000 (3.7E 13)          |
| Holmium-162              | 67               | 1000 (3.7E 13)          |
| Holmium-164m             | 67               | 1000 (3.7E 13)          |
| Holmium-164              | 67               | 1000 (3.7E 13)          |
| Holmium-166m             | 67               | 1 (3.7E 10)             |
| Holmium-166              | 67               | 100 (3.7E 12)           |
| Holmium-167              | 67               | 100 (3.7E 12)           |
| Hydrogen-3               | 1                | 100 (3.7E 12)           |
| Indium-109               | 49               | 100 (3.7E 12)           |
| Indium-110 (69.1<br>min) | 49               | 100 (3.7E 12)           |
| Indium-110 (4.9<br>hr)   | 49               | 10 (3.7E 11)            |
| Indium-111               | 49               | 100 (3.7E 12)           |
| Indium-112               | 49               | 1000 (3.7E 13)          |
| Indium-113m              | 49               | 1000 (3.7E 13)          |
| Indium-114m              | 49               | 10 (3.7E 11)            |
| Indium-115m              | 49               | 100 (3.7E 12)           |
| Indium-115               | 49               | 0.1 (3.7E 9)            |
| Indium-116m              | 49               | 100 (3.7E 12)           |
| Indium-117m              | 49               | 100 (3.7E 12)           |
| Indium-117               | 49               | 1000 (3.7E 13)          |
| Indium-119m              | 49               | 1000 (3.7E 13)          |
| Iodine-120m              | 53               | 100 (3.7E 12)           |
| Iodine-120               | 53               | 10 (3.7E 11)            |
| Iodine-121               | 53               | 100 (3.7E 12)           |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Iodine-123           | 53               | 10 (3.7E 11)            |
| Iodine-124           | 53               | 0.1 (3.7E 9)            |
| Iodine-125           | 53               | 0.01 (3.7E 8)           |
| Iodine-126           | 53               | 0.01 (3.7E 8)           |
| Iodine-128           | 53               | 1000 (3.7E 13)          |
| Iodine-129           | 53               | 0.001 (3.7E 7)          |
| Iodine-130           | 53               | 1 (3.7E 10)             |
| Iodine-131           | 53               | 0.01 (3.7E 8)           |
| Iodine-132m          | 53               | 10 (3.7E 11)            |
| Iodine-132           | 53               | 10 (3.7E 11)            |
| Iodine-133           | 53               | 0.1 (3.7E 9)            |
| Iodine-134           | 53               | 100 (3.7E 12)           |
| Iodine-135           | 53               | 10 (3.7E 11)            |
| Iridium-182          | 77               | 1000 (3.7E 13)          |
| Iridium-184          | 77               | 100 (3.7E 12)           |
| Iridium-185          | 77               | 100 (3.7E 12)           |
| Iridium-186          | 77               | 10 (3.7E 11)            |
| Iridium-187          | 77               | 100 (3.7E 12)           |
| Iridium-188          | 77               | 10 (3.7E 11)            |
| Iridium-189          | 77               | 100 (3.7E 12)           |
| Iridium-190m         | 77               | 1000 (3.7E 13)          |
| Iridium-190          | 77               | 10 (3.7E 11)            |
| Iridium-192m         | 77               | 100 (3.7E 12)           |
| Iridium-192          | 77               | 10 (3.7E 11)            |
| Iridium-194m         | 77               | 10 (3.7E 11)            |
| Iridium-194          | 77               | 100 (3.7E 12)           |
| Iridium-195m         | 77               | 100 (3.7E 12)           |
| Iridium-195          | 77               | 1000 (3.7E 13)          |
| Iron-52              | 26               | 100 (3.7E 12)           |
| Iron-55              | 26               | 100 (3.7E 12)           |
| Iron-59              | 26               | 10 (3.7E 11)            |
| Iron-60              | 26               | 0.1 (3.7E 9)            |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Krypton-74           | 36               | 10 (3.7E 11)            |
| Krypton-76           | 36               | 10 (3.7E 11)            |
| Krypton-77           | 36               | 10 (3.7E 11)            |
| Krypton-79           | 36               | 100 (3.7E 12)           |
| Krypton-81           | 36               | 1000 (3.7E 13)          |
| Krypton-83m          | 36               | 1000 (3.7E 13)          |
| Krypton-85m          | 36               | 100 (3.7E 12)           |
| Krypton-85           | 36               | 1000 (3.7E 13)          |
| Krypton-87           | 36               | 10 (3.7E 11)            |
| Krypton-88           | 36               | 10 (3.7E 11)            |
| Lanthanum-131        | 57               | 1000 (3.7E 13)          |
| Lanthanum-132        | 57               | 100 (3.7E 12)           |
| Lanthanum-135        | 57               | 1000 (3.7E 13)          |
| Lanthanum-137        | 57               | 10 (3.7E 11)            |
| Lanthanum-138        | 57               | 1 (3.7E 10)             |
| Lanthanum-140        | 57               | 10 (3.7E 11)            |
| Lanthanum-141        | 57               | 1000 (3.7E 13)          |
| Lanthanum-142        | 57               | 100 (3.7E 12)           |
| Lanthanum-143        | 57               | 1000 (3.7E 13)          |
| Lead-195m            | 82               | 1000 (3.7E 13)          |
| Lead-198             | 82               | 100 (3.7E 12)           |
| Lead-199             | 82               | 100 (3.7E 12)           |
| Lead-200             | 82               | 100 (3.7E 12)           |
| Lead-201             | 82               | 100 (3.7E 12)           |
| Lead-202m            | 82               | 10 (3.7E 11)            |
| Lead-202             | 82               | 1 (3.7E 10)             |
| Lead-203             | 82               | 100 (3.7E 12)           |
| Lead-205             | 82               | 100 (3.7E 12)           |
| Lead-209             | 82               | 1000 (3.7E 13)          |
| Lead-210             | 82               | 0.01 (3.7E 8)           |
| Lead-211             | 82               | 100 (3.7E 12)           |
| Lead-212             | 82               | 10 (3.7E 11)            |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Lead-214             | 82               | 100 (3.7E 12)           |
| Lutetium-169         | 71               | 10 (3.7E 11)            |
| Lutetium-170         | 71               | 10 (3.7E 11)            |
| Lutetium-171         | 71               | 10 (3.7E 11)            |
| Lutetium-172         | 71               | 10 (3.7E 11)            |
| Lutetium-173         | 71               | 100 (3.7E 12)           |
| Lutetium-174m        | 71               | 10 (3.7E 11)            |
| Lutetium-174         | 71               | 10 (3.7E 11)            |
| Lutetium-176m        | 71               | 1000 (3.7E 13)          |
| Lutetium-176         | 71               | 1 (3.7E 10)             |
| Lutetium-177m        | 71               | 10 (3.7E 11)            |
| Lutetium-177         | 71               | 100 (3.7E 12)           |
| Lutetium-178m        | 71               | 1000 (3.7E 13)          |
| Lutetium-178         | 71               | 1000 (3.7E 13)          |
| Lutetium-179         | 71               | 1000 (3.7E 13)          |
| Magnesium-28         | 12               | 10 (3.7E 11)            |
| Manganese-51         | 25               | 1000 (3.7E 13)          |
| Manganese-52m        | 25               | 1000 (3.7E 13)          |
| Manganese-52         | 25               | 10 (3.7E 11)            |
| Manganese-53         | 25               | 1000 (3.7E 13)          |
| Manganese-54         | 25               | 10 (3.7E 11)            |
| Manganese-56         | 25               | 100 (3.7E 12)           |
| Mendelevium-257      | 101              | 100 (3.7E 12)           |
| Mendelevium-258      | 101              | 1 (3.7E 10)             |
| Mercury-193m         | 80               | 10 (3.7E 11)            |
| Mercury-193          | 80               | 100 (3.7E 12)           |
| Mercury-194          | 80               | 0.1 (3.7E 9)            |
| Mercury-195m         | 80               | 100 (3.7E 12)           |
| Mercury-195          | 80               | 100 (3.7E 12)           |
| Mercury-197m         | 80               | 1000 (3.7E 13)          |
| Mercury-197          | 80               | 1000 (3.7E 13)          |
| Mercury-199m         | 80               | 1000 (3.7E 13)          |

| Radionuclide<br>Name          | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|-------------------------------|------------------|-------------------------|
| Mercury-203                   | 80               | 10 (3.7E 11)            |
| Molybdenum-90                 | 42               | 100 (3.7E 12)           |
| Molybdenum-<br>93m            | 42               | 10 (3.7E 11)            |
| Molybdenum-93                 | 42               | 100 (3.7E 12)           |
| Molybdenum-99                 | 42               | 100 (3.7E 12)           |
| Molybdenum-101                | 42               | 1000 (3.7E 13)          |
| Neodymium-136                 | 60               | 1000 (3.7E 13)          |
| Neodymium-138                 | 60               | 1000 (3.7E 13)          |
| Neodymium-<br>139m            | 60               | 100 (3.7E 12)           |
| Neodymium-139                 | 60               | 1000 (3.7E 13)          |
| Neodymium-141                 | 60               | 1000 (3.7E 13)          |
| Neodymium-147                 | 60               | 10 (3.7E 11)            |
| Neodymium-149                 | 60               | 100 (3.7E 12)           |
| Neodymium-151                 | 60               | 1000 (3.7E 13)          |
| Neptunium-232                 | 93               | 1000 (3.7E 13)          |
| Neptunium-233                 | 93               | 1000 (3.7E 13)          |
| Neptunium-234                 | 93               | 10 (3.7E 11)            |
| Neptunium-235                 | 93               | 1000 (3.7E 13)          |
| Neptunium-236<br>(1.2 E 5 yr) | 93               | 0.1 (3.7E 9)            |
| Neptunium-236<br>(22.5 hr)    | 93               | 100 (3.7E 12)           |
| Neptunium-237                 | 93               | 0.01 (3.7E 8)           |
| Neptunium-238                 | 93               | 10 (3.7E 11)            |
| Neptunium-239                 | 93               | 100 (3.7E 12)           |
| Neptunium-240                 | 93               | 100 (3.7E 12)           |
| Nickel-56                     | 28               | 10 (3.7E 11)            |
| Nickel-57                     | 28               | 10 (3.7E 11)            |
| Nickel-59                     | 28               | 100 (3.7E 12)           |
| Nickel-63                     | 28               | 100 (3.7E 12)           |
| Nickel-65                     | 28               | 100 (3.7E 12)           |
| Nickel-66                     | 28               | 10 (3.7E 11)            |

| Radionuclide<br>Name    | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|-------------------------|------------------|-------------------------|
| Niobium-88              | 41               | 100 (3.7E 12)           |
| Niobium-89 (66<br>min)  | 41               | 100 (3.7E 12)           |
| Niobium-89 (122<br>min) | 41               | 100 (3.7E 12)           |
| Niobium-90              | 41               | 10 (3.7E 11)            |
| Niobium-93m             | 41               | 100 (3.7E 12)           |
| Niobium-94              | 41               | 10 (3.7E 11)            |
| Niobium-95m             | 41               | 100 (3.7E 12)           |
| Niobium-95              | 41               | 10 (3.7E 11)            |
| Niobium-96              | 41               | 10 (3.7E 11)            |
| Niobium-97              | 41               | 100 (3.7E 12)           |
| Niobium-98              | 41               | 1000 (3.7E 13)          |
| Osmium-180              | 76               | 1000 (3.7E 13)          |
| Osmium-181              | 76               | 100 (3.7E 12)           |
| Osmium-182              | 76               | 100 (3.7E 12)           |
| Osmium-185              | 76               | 10 (3.7E 11)            |
| Osmium-189m             | 76               | 1000 (3.7E 13)          |
| Osmium-191m             | 76               | 1000 (3.7E 13)          |
| Osmium-191              | 76               | 100 (3.7E 12            |
| Osmium-193              | 76               | 100 (3.7E 12            |
| Osmium-194              | 76               | 1 (3.7E 10              |
| Palladium-100           | 46               | 100 (3.7E 12)           |
| Palladium-101           | 46               | 100 (3.7E 12)           |
| Palladium-103           | 46               | 100 (3.7E 12            |
| Palladium-107           | 46               | 100 (3.7E 12)           |
| Palladium-109           | 46               | 1000 (3.7E 13           |
| Phosphorus-32           | 15               | 0.1 (3.7E 9             |
| Phosphorus-33           | 15               | 1 (3.7E 10              |
| Platinum-186            | 78               | 100 (3.7E 12            |
| Platinum-188            | 78               | 100 (3.7E 12            |
| Platinum-189            | 78               | 100 (3.7E 12            |
| Platinum-191            | 78               | 100 (3.7E 12            |

| Radionuclide          | Atomic | Final RQ Curies |
|-----------------------|--------|-----------------|
| Name                  | Number | (Bq)            |
| Platinum-193m         | 78     | 100 (3.7E 12)   |
| Platinum-193          | 78     | 1000 (3.7E 13)  |
| Platinum-195m         | 78     | 100 (3.7E 12)   |
| Platinum-197m         | 78     | 1000 (3.7E 13)  |
| Platinum-197          | 78     | 1000 (3.7E 13)  |
| Platinum-199          | 78     | 1000 (3.7E 13)  |
| Platinum-200          | 78     | 100 (3.7E 12)   |
| Plutonium-234         | 94     | 1000 (3.7E 13)  |
| Plutonium-235         | 94     | 1000 (3.7E 13)  |
| Plutonium-236         | 94     | 0.1 (3.7E 9)    |
| Plutonium-237         | 94     | 1000 (3.7E 13)  |
| Plutonium-238         | 94     | 0.01 (3.7E 8)   |
| Plutonium-239         | 94     | 0.01 (3.7E 8)   |
| Plutonium-240         | 94     | 0.01 (3.7E 8)   |
| Plutonium-241         | 94     | 1 (3.7E 10)     |
| Plutonium-242         | 94     | 0.01 (3.7E 8)   |
| Plutonium-243         | 94     | 1000 (3.7E 13)  |
| Plutonium-244         | 94     | 0.01 (3.7E 8)   |
| Plutonium-245         | 94     | 100 (3.7E 12)   |
| Polonium-203          | 84     | 100 (3.7E 12)   |
| Polonium-205          | 84     | 100 (3.7E 12)   |
| Polonium-207          | 84     | 10 (3.7E 11)    |
| Polonium-210          | 84     | 0.01 (3.7E 8)   |
| Potassium-40          | 19     | 1 (3.7E 10)     |
| Potassium-42          | 19     | 100 (3.7E 12)   |
| Potassium-43          | 19     | 10 (3.7E 11)    |
| Potassium-44          | 19     | 100 (3.7E 12)   |
| Potassium-45          | 19     | 1000 (3.7E 13)  |
| Praseodymium-<br>136  | 59     | 1000 (3.7E 13)  |
| Praseodymium-<br>137  | 59     | 1000 (3.7E 13)  |
| Praseodymium-<br>138m | 59     | 100 (3.7E 12)   |

| Radionuclide<br>Name  | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|-----------------------|------------------|-------------------------|
| Praseodymium-<br>139  | 59               | 1000 (3.7E 13)          |
| Praseodymium-<br>142m | 59               | 1000 (3.7E 13)          |
| Praseodymium-<br>142  | 59               | 100 (3.7E 12)           |
| Praseodymium-<br>143  | 59               | 10 (3.7E 11)            |
| Praseodymium-<br>144  | 59               | 1000 (3.7E 13)          |
| Praseodymium-<br>145  | 59               | 1000 (3.7E 13)          |
| Praseodymium-<br>147  | 59               | 1000 (3.7E 13)          |
| Promethium-141        | 61               | 1000 (3.7E 13)          |
| Promethium-143        | 61               | 100 (3.7E 12)           |
| Promethium-144        | 61               | 10 (3.7E 11)            |
| Promethium-145        | 61               | 100 (3.7E 12            |
| Promethium-146        | 61               | 10 (3.7E 11)            |
| Promethium-147        | 61               | 10 (3.7E 11             |
| Promethium-<br>148m   | 61               | 10 (3.7E 11             |
| Promethium-148        | 61               | 10 (3.7E 11             |
| Promethium-149        | 61               | 100 (3.7E 12            |
| Promethium-150        | 61               | 100 (3.7E 12            |
| Promethium-151        | 61               | 100 (3.7E 12            |
| Protactinium-227      | 91               | 100 (3.7E 12            |
| Protactinium-228      | 91               | 10 (3.7E 11             |
| Protactinium-230      | 91               | 10 (3.7E 11             |
| Protactinium-231      | 91               | 0.01 (3.7E 8            |
| Protactinium-232      | 91               | 10 (3.7E 11             |
| Protactinium-233      | 91               | 100 (3.7E 12            |
| Protactinium-234      | 91               | 10 (3.7E 11             |
| Radium-223            | 88               | 1 (3.7E 10              |
| Radium-224            | 88               | 10 (3.7E 11             |

| Radionuclide<br>Name     | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|--------------------------|------------------|-------------------------|
| Radium-225               | 88               | 1 (3.7E 10)             |
| Radium-226Ф              | 88               | 0.1 (3.7E 9)            |
| Radium-227               | 88               | 1000 (3.7E 13)          |
| Radium-228               | 88               | 0.1 (3.7E 9)            |
| Radon-220                | 86               | 0.1 (3.7E 9)            |
| Radon-222                | 86               | 0.1 (3.7E 9)            |
| Rhenium-177              | 75               | 1000 (3.7E 13)          |
| Rhenium-178              | 75               | 1000 (3.7E 13)          |
| Rhenium-181              | 75               | 100 (3.7E 12)           |
| Rhenium-182<br>(12.7 hr) | 75               | 10 (3.7E 11)            |
| Rhenium-182<br>(64.0 hr) | 75               | 10 (3.7E 11)            |
| Rhenium-184m             | 75               | 10 (3.7E 11)            |
| Rhenium-184              | 75               | 10 (3.7E 11)            |
| Rhenium-186m             | 75               | 10 (3.7E 11)            |
| Rhenium-186              | 75               | 100 (3.7E 12)           |
| Rhenium-187              | 75               | 1000 (3.7E 13)          |
| Rhenium-188m             | 75               | 1000 (3.7E 13)          |
| Rhenium-188              | 75               | 1000 (3.7E 13)          |
| Rhenium-189              | 75               | 1000 (3.7E 13)          |
| Rhodium-99m              | 45               | 100 (3.7E 12)           |
| Rhodium-99               | 45               | 10 (3.7E 11)            |
| Rhodium-100              | 45               | 10 (3.7E 11)            |
| Rhodium-101m             | 45               | 100 (3.7E 12)           |
| Rhodium-101              | 45               | 10 (3.7E 11)            |
| Rhodium-102m             | 45               | 10 (3.7E 11)            |
| Rhodium-102              | 45               | 10 (3.7E 11)            |
| Rhodium-103m             | 45               | 1000 (3.7E 13)          |
| Rhodium-105              | 45               | 100 (3.7E 12)           |
| Rhodium-106m             | 45               | 10 (3.7E 11)            |
| Rhodium-107              | 45               | 1000 (3.7E 13)          |
| Rubidium-79              | 37               | 1000 (3.7E 13)          |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Rubidium-81m         | 37               | 1000 (3.7E 13)          |
| Rubidium-81          | 37               | 100 (3.7E 12)           |
| Rubidium-82m         | 37               | 10 (3.7E 11)            |
| Rubidium-83          | 37               | 10 (3.7E 11)            |
| Rubidium-84          | 37               | 10 (3.7E 11)            |
| Rubidium-86          | 37               | 10 (3.7E 11)            |
| Rubidium-88          | 37               | 1000 (3.7E 13)          |
| Rubidium-89          | 37               | 1000 (3.7E 13)          |
| Rubidium-87          | 37               | 10 (3.7E 11)            |
| Ruthenium-94         | 44               | 1000 (3.7E 13)          |
| Ruthenium-97         | 44               | 100 (3.7E 12)           |
| Ruthenium-103        | 44               | 10 (3.7E 11)            |
| Ruthenium-105        | 44               | 100 (3.7E 12)           |
| Ruthenium-106        | 44               | 1 (3.7E 10)             |
| Samarium-141m        | 62               | 1000 (3.7E 13)          |
| Samarium-141         | 62               | 1000 (3.7E 13)          |
| Samarium-142         | 62               | 1000 (3.7E 13)          |
| Samarium-145         | 62               | 100 (3.7E 12)           |
| Samarium-146         | 62               | 0.01 (3.7E 8)           |
| Samarium-147         | 62               | 0.01 (3.7E 8)           |
| Samarium-151         | 62               | 10 (3.7E 11)            |
| Samarium-153         | 62               | 100 (3.7E 12)           |
| Samarium-155         | 62               | 1000 (3.7E 13)          |
| Samarium-156         | 62               | 100 (3.7E 12)           |
| Scandium-43          | 21               | 1000 (3.7E 13)          |
| Scandium-44m         | 21               | 10 (3.7E 11)            |
| Scandium-44          | 21               | 100 (3.7E 12)           |
| Scandium-46          | 21               | 10 (3.7E 11)            |
| Scandium-47          | 21               | 100 (3.7E 12)           |
| Scandium-48          | 21               | 10 (3.7E 11)            |
| Scandium-49          | 21               | 1000 (3.7E 13)          |
| Selenium-70          | 34               | 1000 (3.7E 13)          |

| Radionuclide  | Atomic | <b>Final RQ Curies</b> |
|---------------|--------|------------------------|
| Name          | Number | (Bq)                   |
| Selenium-73m  | 34     | 100 (3.7E 12)          |
| Selenium-73   | 34     | 10 (3.7E 11)           |
| Selenium-75   | 34     | 10 (3.7E 11)           |
| Selenium-79   | 34     | 10 (3.7E 11)           |
| Selenium-81m  | 34     | 1000 (3.7E 13)         |
| Selenium-81   | 34     | 1000 (3.7E 13)         |
| Selenium-83   | 34     | 1000 (3.7E 13)         |
| Silicon-31    | 14     | 1000 (3.7E 13)         |
| Silicon-32    | 14     | 1 (3.7E 10)            |
| Silver-102    | 47     | 100 (3.7E 12)          |
| Silver-103    | 47     | 1000 (3.7E 13)         |
| Silver-104m   | 47     | 1000 (3.7E 13)         |
| Silver-104    | 47     | 1000 (3.7E 13)         |
| Silver-105    | 47     | 10 (3.7E 11)           |
| Silver-106m   | 47     | 10 (3.7E 11)           |
| Silver-106    | 47     | 1000 (3.7E 13)         |
| Silver-108m   | 47     | 10 (3.7E 11)           |
| Silver-110m   | 47     | 10 (3.7E 11)           |
| Silver-111    | 47     | 10 (3.7E 11)           |
| Silver-112    | 47     | 100 (3.7E 12)          |
| Silver-115    | 47     | 1000 (3.7E 13)         |
| Sodium-22     | 11     | 10 (3.7E 11)           |
| Sodium-24     | 11     | 10 (3.7E 11)           |
| Strontium-80  | 38     | 100 (3.7E 12)          |
| Strontium-81  | 38     | 1000 (3.7E 13)         |
| Strontium-83  | 38     | 100 (3.7E 12)          |
| Strontium-85m | 38     | 1000 (3.7E 13)         |
| Strontium-85  | 38     | 10 (3.7E 11)           |
| Strontium-87m | 38     | 100 (3.7E 12)          |
| Strontium-89  | 38     | 10 (3.7E 11)           |
| Strontium-90  | 38     | 0.1 (3.7E 9)           |
| Strontium-91  | 38     | 10 (3.7E 11)           |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Strontium-92         | 38               | 100 (3.7E 12)           |
| Sulfur-35            | 16               | 1 (3.7E 10)             |
| Tantalum-172         | 73               | 100 (3.7E 12)           |
| Tantalum-173         | 73               | 100 (3.7E 12)           |
| Tantalum-174         | 73               | 100 (3.7E 12)           |
| Tantalum-175         | 73               | 100 (3.7E 12)           |
| Tantalum-176         | 73               | 10 (3.7E 11)            |
| Tantalum-177         | 73               | 1000 (3.7E 13)          |
| Tantalum-178         | 73               | 1000 (3.7E 13)          |
| Tantalum-179         | 73               | 1000 (3.7E 13)          |
| Tantalum-180m        | 73               | 1000 (3.7E 13)          |
| Tantalum-180         | 73               | 100 (3.7E 12)           |
| Tantalum-182m        | 73               | 1000 (3.7E 13)          |
| Tantalum-182         | 73               | 10 (3.7E 11)            |
| Tantalum-183         | 73               | 100 (3.7E 12)           |
| Tantalum-184         | 73               | 10 (3.7E 11)            |
| Tantalum-185         | 73               | 1000 (3.7E 13)          |
| Tantalum-186         | 73               | 1000 (3.7E 13)          |
| Technetium-93m       | 43               | 1000 (3.7E 13)          |
| Technetium-93        | 43               | 100 (3.7E 12)           |
| Technetium-94m       | 43               | 100 (3.7E 12)           |
| Technetium-94        | 43               | 10 (3.7E 11)            |
| Technetium-96m       | 43               | 1000 (3.7E 13)          |
| Technetium-96        | 43               | 10 (3.7E 11)            |
| Technetium-97m       | 43               | 100 (3.7E 12)           |
| Technetium-97        | 43               | 100 (3.7E 12)           |
| Technetium-98        | 43               | 10 (3.7E 11)            |
| Technetium-99m       | 43               | 100 (3.7E 12)           |
| Technetium-99        | 43               | 10 (3.7E 11)            |
| Technetium-101       | 43               | 1000 (3.7E 13)          |
| Technetium-104       | 43               | 1000 (3.7E 13)          |
| Tellurium-116        | 52               | 1000 (3.7E 13)          |

| Radionuclide<br>Name      | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|---------------------------|------------------|-------------------------|
| Tellurium-121m            | 52               | 10 (3.7E 11)            |
| Tellurium-121             | 52               | 10 (3.7E 11)            |
| Tellurium-123m            | 52               | 10 (3.7E 11)            |
| Tellurium-123             | 52               | 10 (3.7E 11)            |
| Tellurium-125m            | 52               | 10 (3.7E 11)            |
| Tellurium-127m            | 52               | 10 (3.7E 11)            |
| Tellurium-127             | 52               | 1000 (3.7E 13)          |
| Tellurium-129m            | 52               | 10 (3.7E 11)            |
| Tellurium-129             | 52               | 1000 (3.7E 13)          |
| Tellurium-131m            | 52               | 10 (3.7E 11)            |
| Tellurium-131             | 52               | 1000 (3.7E 13)          |
| Tellurium-132             | 52               | 10 (3.7E 11)            |
| Tellurium-133m            | 52               | 1000 (3.7E 13)          |
| Tellurium-133             | 52               | 1000 (3.7E 13)          |
| Tellurium-134             | 52               | 1000 (3.7E 13)          |
| Terbium-147               | 65               | 100 (3.7E 12)           |
| Terbium-149               | 65               | 100 (3.7E 12)           |
| Terbium-150               | 65               | 100 (3.7E 12)           |
| Terbium-151               | 65               | 10 (3.7E 11)            |
| Terbium-153               | 65               | 100 (3.7E 12)           |
| Terbium-154               | 65               | 10 (3.7E 11)            |
| Terbium-155               | 65               | 100 (3.7E 12)           |
| Terbium-156m<br>(5.0 hr)  | 65               | 1000 (3.7E 13)          |
| Terbium-156m<br>(24.4 hr) | 65               | 1000 (3.7E 13)          |
| Terbium-156               | 65               | 10 (3.7E 11)            |
| Terbium-157               | 65               | 100 (3.7E 12)           |
| Terbium-158               | 65               | 10 (3.7E 11)            |
| Terbium-160               | 65               | 10 (3.7E 11)            |
| Terbium-161               | 65               | 100 (3.7E 12)           |
| Thallium-194m             | 81               | 100 (3.7E 12)           |
| Thallium-194              | 81               | 1000 (3.7E 13)          |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Thallium-195         | 81               | 100 (3.7E 12)           |
| Thallium-197         | 81               | 100 (3.7E 12)           |
| Thallium-198m        | 81               | 100 (3.7E 12)           |
| Thallium-198         | 81               | 10 (3.7E 11)            |
| Thallium-199         | 81               | 100 (3.7E 12)           |
| Thallium-200         | 81               | 10 (3.7E 11)            |
| Thallium-201         | 81               | 1000 (3.7E 13)          |
| Thallium-202         | 81               | 10 (3.7E 11)            |
| Thallium-204         | 81               | 10 (3.7E 11)            |
| Thorium-226          | 90               | 100 (3.7E 12)           |
| Thorium-227          | 90               | 1 (3.7E 10)             |
| Thorium-228          | 90               | 0.01 (3.7E 8)           |
| Thorium-229          | 90               | 0.001 (3.7E 7)          |
| Thorium-230          | 90               | 0.01 (3.7E 8)           |
| Thorium-231          | 90               | 100 (3.7E 12)           |
| Thorium-232 $\Phi$   | 90               | 0.001 (3.7E 7)          |
| Thorium-234          | 90               | 100 (3.7E 12)           |
| Thulium-162          | 69               | 1000 (3.7E 13)          |
| Thulium-166          | 69               | 10 (3.7E 11)            |
| Thulium-167          | 69               | 100 (3.7E 12)           |
| Thulium-170          | 69               | 10 (3.7E 11)            |
| Thulium-171          | 69               | 100 (3.7E 12)           |
| Thulium-172          | 69               | 100 (3.7E 12)           |
| Thulium-173          | 69               | 100 (3.7E 12)           |
| Thulium-175          | 69               | 1000 (3.7E 13)          |
| Tin-110              | 50               | 100 (3.7E 12)           |
| Tin-111              | 50               | 1000 (3.7E 13)          |
| Tin-113              | 50               | 10 (3.7E 11)            |
| Tin-117m             | 50               | 100 (3.7E 12)           |
| Tin-119m             | 50               | 10 (3.7E 11)            |
| Tin-121m             | 50               | 10 (3.7E 11)            |
| Tin-121              | 50               | 1000 (3.7E 13)          |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |  |
|----------------------|------------------|-------------------------|--|
| Tin-123m             | 50               | 1000 (3.7E 13)          |  |
| Tin-123              | 50               | 10 (3.7E 11)            |  |
| Tin-125              | 50               | 10 (3.7E 11)            |  |
| Tin-126              | 50               | 1 (3.7E 10)             |  |
| Tin-127              | 50               | 100 (3.7E 12)           |  |
| Tin-128              | 50               | 1000 (3.7E 13)          |  |
| Titanium-44          | 22               | 1 (3.7E 10)             |  |
| Titanium-45          | 22               | 1000 (3.7E 13)          |  |
| Tungsten-176         | 74               | 1000 (3.7E 13)          |  |
| Tungsten-177         | 74               | 100 (3.7E 12)           |  |
| Tungsten-178         | 74               | 100 (3.7E 12)           |  |
| Tungsten-179         | 74               | 1000 (3.7E 13)          |  |
| Tungsten-181         | 74               | 100 (3.7E 12)           |  |
| Tungsten-185         | 74               | 10 (3.7E 11)            |  |
| Tungsten-187         | 74               | 100 (3.7E 12)           |  |
| Tungsten-188         | 74               | 10 (3.7E 11)            |  |
| Uranium-230          | 92               | 1 (3.7E 10)             |  |
| Uranium-231          | 92               | 1000 (3.7E 13)          |  |
| Uranium-232          | 92               | 0.01 (3.7E 8)           |  |
| Uranium-233          | 92               | 0.1 (3.7E 9)            |  |
| Uranium-234φ         | 92               | 0.1 (3.7E 9)            |  |
| Uranium-235φ         | 92               | 0.1 (3.7E 9)            |  |
| Uranium-236          | 92               | 0.1 (3.7E 9)            |  |
| Uranium-237          | 92               | 100 (3.7E 12)           |  |
| Uranium-238φ         | 92               | 0.1& (3.7E 9)           |  |
| Uranium-239          | 92               | 1000 (3.7E 13)          |  |
| Uranium-240          | 92               | 1000 (3.7E 13)          |  |
| Vanadium-47          | 23               | 1000 (3.7E 13)          |  |
| Vanadium-48          | 23               | 10 (3.7E 11)            |  |
| Vanadium-49          | 23               | 1000 (3.7E 13)          |  |
| Xenon-120            | 54               | 100 (3.7E 12)           |  |
| Xenon-121            | 54               | 10 (3.7E 11)            |  |

| Radionuclide  | Atomic | Final RQ Curies |  |
|---------------|--------|-----------------|--|
| Name          | Number | (Bq)            |  |
| Xenon-122     | 54     | 100 (3.7E 12)   |  |
| Xenon-123     | 54     | 10 (3.7E 11)    |  |
| Xenon-125     | 54     | 100 (3.7E 12)   |  |
| Xenon-127     | 54     | 100 (3.7E 12)   |  |
| Xenon-129m    | 54     | 1000 (3.7E 13)  |  |
| Xenon-131m    | 54     | 1000 (3.7E 13)  |  |
| Xenon-133m    | 54     | 1000 (3.7E 13)  |  |
| Xenon-133     | 54     | 1000 (3.7E 13)  |  |
| Xenon-135m    | 54     | 10 (3.7E 11)    |  |
| Xenon-135     | 54     | 100 (3.7E 12)   |  |
| Xenon-138     | 54     | 10 (3.7E 11)    |  |
| Ytterbium-162 | 70     | 1000 (3.7E 13)  |  |
| Ytterbium-166 | 70     | 10 (3.7E 11)    |  |
| Ytterbium-167 | 70     | 1000 (3.7E 13)  |  |
| Ytterbium-169 | 70     | 10 (3.7E 11)    |  |
| Ytterbium-175 | 70     | 100 (3.7E 12)   |  |
| Ytterbium-177 | 70     | 1000 (3.7E 13)  |  |
| Ytterbium-178 | 70     | 1000 (3.7E 13)  |  |
| Yttrium-86m   | 39     | 1000 (3.7E 13)  |  |
| Yttrium-86    | 39     | 10 (3.7E 11)    |  |
| Yttrium-87    | 39     | 10 (3.7E 11)    |  |
| Yttrium-88    | 39     | 10 (3.7E 11)    |  |
| Yttrium-90m   | 39     | 100 (3.7E 12)   |  |
| Yttrium-90    | 39     | 10 (3.7E 11)    |  |
| Yttrium-91m   | 39     | 1000 (3.7E 13)  |  |
| Yttrium-91    | 39     | 10 (3.7E 11)    |  |
| Yttrium-92    | 39     | 100 (3.7E 12)   |  |
| Yttrium-93    | 39     | 100 (3.7E 12)   |  |
| Yttrium-94    | 39     | 1000 (3.7E 13)  |  |
| Yttrium-95    | 39     | 1000 (3.7E 13)  |  |
| Zinc-62       | 30     | 100 (3.7E 12)   |  |
| Zinc-63       | 30     | 1000 (3.7E 13)  |  |

| Radionuclide<br>Name | Atomic<br>Number | Final RQ Curies<br>(Bq) |
|----------------------|------------------|-------------------------|
| Zinc-65              | 30               | 10 (3.7E 11)            |
| Zinc-69m             | 30               | 100 (3.7E 12)           |
| Zinc-69              | 30               | 1000 (3.7E 13)          |
| Zinc-71m             | 30               | 100 (3.7E 12)           |
| Zinc-72              | 30               | 100 (3.7E 12)           |
| Zirconium-86         | 40               | 100 (3.7E 12)           |
| Zirconium-88         | 40               | 10 (3.7E 11)            |
| Zirconium-89         | 40               | 100 (3.7E 12)           |
| Zirconium-93         | 40               | 1 (3.7E 10)             |
| Zirconium-95         | 40               | 10 (3.7E 11)            |
| Zirconium-97         | 40               | 10 (3.7E 11)            |

#### NOTES:

Ci—Curie. The curie represents a rate of radioactive decay. One curie is the quantity of any radioactive nuclide which undergoes 3.7E 10 disintegrations per second.

Bq—Becquerel. The becquerel represents a rate of radioactive decay. One becquerel is the quantity of any radioactive nuclide which undergoes one disintegration per second. One curie is equal to 3.7E 10 becquerel.

@—Final RQs for all radionuclides apply to chemical compounds containing the radionuclides and elemental forms regardless of the diameter of pieces of solid material.

&—The adjusted RQ of one curie applies to all radionuclides not otherwise listed. Whenever the RQs in the Consolidated List of Chemicals subject to EPCRA, CERCLA and Section 112(r) of CAA and this Appendix B are in conflict, the lowest RQ shall apply. For example, uranyl acetate and uranyl nitrate have adjusted RQs shown in the CAS number ordered chemical list and the alphabetical chemical list (Appendix A) of 100 pounds, equivalent to about one-tenth the RQ level for uranium-238 listed in this appendix.

E—Exponent to the base 10. For example, 1.3E 2 is equal to 130 while 1.3E 3 is equal to 1300.

m—Signifies a nuclear isomer which is a radionuclide in a higher energy metastable state relative to the parent isotope.

 $\varphi$ —Notification requirements for releases of mixtures or solutions of radionuclides can be found in 40 CFR §302.6(b)(2). Final RQs for the following four common radionuclide mixtures are provided: radium-226 in secular equilibrium with its daughters (0.053 curie); natural uranium (0.1 curie); natural uranium in secular equilibrium with its daughters (0.052 curie); and natural thorium in secular equilibrium with its daughters (0.011 curie).

# **APPENDIX C**

#### THE LIST BELOW CONTAINS RCRA WASTE STREAMS AND UNLISTED HAZARDOUS WASTES. THE DESCRIPTIONS OF THE WASTE STREAMS HAVE BEEN TRUNCATED. THE LIST SHOULD BE USED FOR REFERENCE ONLY. COMPLIANCE INFORMATION CAN BE FOUND IN 40 CFR PART 302 AND TABLE 302.4

RCRA RQ NAME CODE F001 10 The following spent halogenated solvents used in degreasing: 100 (a) Tetrachloroethylene (CAS No. 127-18-4, RCRA Waste No. U210) 100 (b) Trichloroethylene (CAS No. 79-01-6, RCRA Waste No. U228) 1,000 (c) Methylene chloride (CAS No. 75-09-2, RCRA Waste No. U080) 1,000 (d) 1,1,1-Trichloroethane (CAS No. 71-55-6, RCRA Waste No. U226) 10 (e) Carbon tetrachloride (CAS No. 56-23-5, RCRA Waste No. U211) 5.000 (f) Chlorinated fluorocarbons F002 10 The following spent halogenated solvents: 100 (a) Tetrachloroethylene (CAS No. 127-18-4, RCRA Waste No. U210) 1,000 (b) Methylene chloride (CAS No. 75-09-2, RCRA Waste No. U080) 100 (c) Trichloroethylene (CAS No. 79-01-6, RCRA Waste No. U228) 1,000 (d) 1,1,1-Trichloroethane (CAS No. 71-55-6, RCRA Waste No. U226) 100 (e) Chlorobenzene (CAS No. 108-90-7, RCRA Waste No. U037) 5,000 (f) 1,1,2-Trichloro-1,2,2-trifluoroethane (CAS No. 76-13-1) (g) o-Dichlorobenzene (CAS No. 95-50-1, RCRA Waste No. U070) 100 5,000 (h) Trichlorofluoromethane (CAS No. 75-69-4, RCRA Waste No. U121) 100 (i) 1,1,2-Trichloroethane (CAS No. 79-00-5, RCRA Waste No. U227) F003 100 The following spent non-halogenated solvents and still bottoms from recovery: 1,000 (a) Xylene (CAS No. 1330-20-7, RCRA Waste No. U239) 5,000 (b) Acetone (CAS No. 67-64-1, RCRA Waste No. U002) 5.000 (c) Ethyl acetate (CAS No. 141-78-6, RCRA Waste No. U112) 1,000 (d) Ethylbenzene (CAS No. 100-41-4) 100 (e) Ethyl ether (CAS No. 60-29-7, RCRA Waste No. U117) 5,000 (f) Methyl isobutyl ketone (CAS No. 108-10-1, RCRA Waste No. U161) 5.000 (g) n-Butyl alcohol (CAS No. 71-36-3, RCRA Waste No. U031) 5,000 (h) Cyclohexanone (CAS No. 108-94-1, RCRA Waste No. U057) 5,000 (i) Methanol (CAS No. 67-56-1, RCRA Waste No. U154) F004 100 The following spent non-halogenated solvents and still bottoms from recovery: 100 (a) Cresols/cresylic acid (CAS No. 1319-77-3, RCRA Waste No. U052) 1,000 (b) Nitrobenzene (CAS No. 98-95-3, RCRA Waste No. U169) F005 100 The following spent non-halogenated solvents and still bottoms from recovery: 1,000 (a) Toluene (CAS No. 108-88-3, RCRA Waste No. U220) 5,000 (b) Methyl ethyl ketone (CAS No. 78-93-3, RCRA Waste No. U159) 100 (c) Carbon disulfide (CAS No. 75-15-0, RCRA Waste No. P022) 5,000 (d) Isobutanol (CAS No. 78-83-1, RCRA Waste No. U140) 1,000 (e) Pyridine (CAS No. 110-86-1, RCRA Waste No. U196)

| RCRA<br>CODE | RQ    | NAME                                                                                |
|--------------|-------|-------------------------------------------------------------------------------------|
| F006         | 10    | Wastewater treatment sludges from electroplating operations (w/some exceptions)     |
| F007         | 10    | Spent cyanide plating bath solns. from electroplating                               |
| F008         | 10    | Plating bath residues from electroplating where cyanides are used                   |
| F009         | 10    | Spent stripping/cleaning bath solns. from electroplating where cyanides are used    |
| F010         | 10    | Quenching bath residues from metal heat treating where cyanides are used            |
| F011         | 10    | Spent cyanide soln. from salt bath pot cleaning from metal heat treating            |
| F012         | 10    | Quenching wastewater sludges from metal heat treating where cyanides are used       |
| F019         | 10    | Wastewater treatment sludges from chemical conversion aluminum coating              |
| F020         | 1     | Wastes from production or use of tri/tetrachlorophenol or derivative intermediates  |
| F021         | 1     | Wastes from production or use of pentachlorophenol or intermediates for derivatives |
| F022         | 1     | Wastes from use of tetra/penta/hexachlorobenzenes under alkaline conditions         |
| F023         | 1     | Wastes from mat. production on equipment previously used for tri\tetrachlorophenol  |
| F024         | 1     | Wastes from production of chlorinated aliphatic hydrocarbons (C1-C5)                |
| F025         | 1     | Lights ends, filters from production of chlorinated aliphatic hydrocarbons (C1-C5)  |
| F026         | 1     | Waste from equipment previously used to production tetra/penta/hexachlorobenzenes   |
| F027         | 1     | Discarded formulations containing tri/tetra/pentachlorophenols or derivatives       |
| F028         | 1     | Residues from incineration of soil contaminated w/ F020,F021,F022,F023,F026,F027    |
| F032         | 1     | Wastewaters, process residuals from wood preserving using chlorophenolic solns.     |
| F034         | 1     | Wastewaters, process residuals from wood preserving using creosote formulations     |
| F035         | 1     | Wastewaters, process residuals from wood preserving using arsenic or chromium       |
| F037         | 1     | Petroleum refinery primary oil/water/solids separation sludge                       |
| F038         | 1     | Petroleum refinery secondary (emulsified) oil/water/solids separation sludge        |
| F039         | 1     | Multisource leachate                                                                |
| K001         | 1     | Wastewater treatment sludge from creosote/pentachlorophenol wood preserving         |
| K002         | 10    | Wastewater treatment sludge from production of chrome yellow and orange pigments    |
| K003         | 10    | Wastewater treatment sludge from production of molybdate orange pigments            |
| K004         | 10    | Wastewater treatment sludge from production of zinc yellow pigments                 |
| K005         | 10    | Wastewater treatment sludge from production of chrome green pigments                |
| K006         | 10    | Wastewater treatment sludge from production of chrome oxide green pigments          |
| K007         | 10    | Wastewater treatment sludge from production of iron blue pigments                   |
| K008         | 10    | Oven residue from production of chrome oxide green pigments                         |
| K009         | 10    | Dist. bottoms from production of acetaldehyde from ethylene                         |
| K010         | 10    | Dist. side cuts from production of acetaldehyde from ethylene                       |
| K011         | 10    | Bottom stream from wastewater stripper in acrylonitrile production                  |
| K013         | 10    | Bottom stream from acetonitrile column in acrylonitrile production                  |
| K014         | 5,000 | Bottoms from acetonitrile purification column in acrylonitrile production           |
| K015         | 10    | Still bottoms from the dist. of benzyl chloride                                     |
| K016         | 1     | Heavy ends or dist. residues from production of carbon tetrachloride                |
| K017         | 10    | Heavy ends from the purification column in epichlorohydrin production               |
| K018         | 1     | Heavy ends from the fractionation column in ethyl chloride production               |
| K019         | 1     | Heavy ends from the dist. of ethylene dichloride during its production              |
| K020         | 1     | Heavy ends from the dist. of vinyl chloride during production of the monomer        |

| RCRA<br>CODE | RQ    | NAME                                                                                  |
|--------------|-------|---------------------------------------------------------------------------------------|
| K021         | 10    | Aqueous spent antimony catalyst waste from fluoromethanes production                  |
| K022         | 1     | Dist. bottom tars from production of phenol/acetone from cumene                       |
| K023         | 5,000 | Dist. light ends from production of phthalic anhydride from naphthalene               |
| K024         | 5,000 | Dist. bottoms from production of phthalic anhydride from naphthalene                  |
| K025         | 10    | Dist. bottoms from production of nitrobenzene by nitration of benzene                 |
| K026         | 1,000 | Stripping still tails from the production of methyl ethyl pyridines                   |
| K027         | 10    | Centrifuge/dist. residues from toluene diisocyanate production                        |
| K028         | 1     | Spent catalyst from hydrochlorinator reactor in production of 1,1,1-trichloroethane   |
| K029         | 1     | Waste from product steam stripper in production of 1,1,1-trichloroethane              |
| K030         | 1     | Column bottoms/heavy ends from production of trichloroethylene and perchloroethylene  |
| K031         | 1     | By-product salts generated in the production of MSMA and cacodylic acid               |
| K032         | 10    | Wastewater treatment sludge from the production of chlordane                          |
| K033         | 10    | Wastewaster/scrubwater from chlorination of cyclopentadiene in chlordane production   |
| K034         | 10    | Filter solids from filtration of hexachlorocyclopentadiene in chlordane production    |
| K035         | 1     | Wastewater treatment sludges from the production of creosote                          |
| K036         | 1     | Still bottoms from toluene reclamation distillation in disulfoton production          |
| K037         | 1     | Wastewater treatment sludges from the production of disulfoton                        |
| K038         | 10    | Wastewater from the washing and stripping of phorate production                       |
| K039         | 10    | Filter cake from filtration of diethylphosphorodithioic adid in phorate production    |
| K040         | 10    | Wastewater treatment sludge from the production of phorate                            |
| K041         | 1     | Wastewater treatment sludge from the production of toxaphene                          |
| K042         | 10    | Heavy ends/residues from dist. of tetrachlorobenzene in 2,4,5-T production            |
| K043         | 10    | 2,6-Dichlorophenol waste from the production of 2,4-D                                 |
| K044         | 10    | Wastewater treatment sludge from manuf. and processing of explosives                  |
| K045         | 10    | Spent carbon from treatment of wastewater containing explosives                       |
| K046         | 10    | Wastewater sludge from manuf., formulating, loading of lead-based initiating compd    |
| K047         | 10    | Pink/red water from TNT operations                                                    |
| K048         | 10    | Dissolved air flotation (DAF) float from the petroleum refining industry              |
| K049         | 10    | Slop oil emulsion solids from the petroleum refining industry                         |
| K050         | 10    | Heat exchanger bundle cleaning sludge from petroleum refining industry                |
| K051         | 10    | API separator sludge from the petroleum refining industry                             |
| K052         | 10    | Tank bottoms (leaded) from the petroleum refining industry                            |
| K060         | 1     | Ammonia still lime sludge from coking operations                                      |
| K061         | 10    | Emission control dust/sludge from primary production of steel in electric furnaces    |
| K062         | 10    | Spent pickle liquor generated by steel finishing (SIC codes 331 and 332)              |
| K064         | 10    | Acid plant blowdown slurry/sludge from blowdown slurry from primary copper production |
| K065         | 10    | Surface impoundment solids at primary lead smelting facilities                        |
| K066         | 10    | Sludge from treatment of wastewater/acid plant blowdown from primary zinc production  |
| K069         | 10    | Emission control dust/sludge from secondary lead smelting                             |
| K071         | 1     | Brine purification muds from mercury cell process in chlorine production              |
| K073         | 10    | Chlorinated hydrocarbon waste from diaphragm cell process in chlorine production      |
| K083         | 100   | Distillation bottoms from aniline extraction                                          |

| RCRA<br>CODE | RQ    | NAME                                                                                   |
|--------------|-------|----------------------------------------------------------------------------------------|
| K084         | 1     | Wastewater sludges from production of veterinary pharm. from arsenic compds.           |
| K085         | 10    | Distillation or fractionation column bottoms in production of chlorobenzenes           |
| K086         | 10    | Wastes/sludges from production of inks from chromium and lead-containing substances    |
| K087         | 100   | Decanter tank tar sludge from coking operations                                        |
| K088         | 10    | Spent potliners from primary aluminum reduction                                        |
| K090         | 10    | Emission control dust/sludge from ferrochromiumsilicon production                      |
| K091         | 10    | Emission control dust/sludge from ferrochromium production                             |
| K093         | 5,000 | Dist. light ends from production of phthalic anhydride by ortho-xylene                 |
| K094         | 5,000 | Dist. bottoms in production of phthalic anhydride by ortho-xylene                      |
| K095         | 100   | Distillation bottoms in production of 1,1,1-trichloroethane                            |
| K096         | 100   | Heavy ends from dist. column in production of 1,1,1-trichloroethane                    |
| K097         | 1     | Vacuum stripper discharge from the chlordane chlorinator in production of chlordane    |
| K098         | 1     | Untreated process wastewater from the production of toxaphene                          |
| K099         | 10    | Untreated wastewater from the production of 2,4-D                                      |
| K100         | 10    | Waste leaching soln from emission control dust/sludge in secondary lead smelting       |
| K101         | 1     | Dist. tar residue from aniline in production of veterinary pharm. from arsenic compd.  |
| K102         | 1     | Residue from activated carbon in production of veterinary pharm. from arsenic compds.  |
| K103         | 100   | Process residues from aniline extraction from the production of aniline                |
| K104         | 10    | Combined wastewater streams generated from production of nitrobenzene/aniline          |
| K105         | 10    | Aqueous stream from washing in production of chlorobenzenes                            |
| K106         | 1     | Wastewater treatment sludge from mercury cell process in chlorine production           |
| K107         | 10    | Column bottoms from separation in production of UDMH from carboxylic acid hydrazides   |
| K108         | 10    | Condensed column overheads and vent gas from production of UDMH from -COOH hydrazides  |
| K109         | 10    | Spent filter cartridges from purif. of UDMH production from carboxylic acid hydrazides |
| K110         | 10    | Condensed column overheads from separation in UDMH production from -COOH hydrazides    |
| K111         | 10    | Product washwaters from production of dinitrotoluene via nitration of toluene          |
| K112         | 10    | Reaction by-product water from drying in toluenediamine prod from dinitrotoluene       |
| K113         | 10    | Condensed liquid light ends from purification of toluenediamine during its production  |
| K114         | 10    | Vicinals from purification of toluenediamine during its production from dinitrotoluene |
| K115         | 10    | Heavy ends from toluenediamine purification during production from dinitrotoluene      |
| K116         | 10    | Organic condensate from solvent recovery system in production of toluene diisocyanate  |
| K117         | 1     | Wastewater from vent gas scrubber in ethylene bromide prod by ethene bromination       |
| K118         | 1     | Spent absorbent solids in purification of ethylene dibromide in its production         |
| K123         | 10    | Process wastewater from the production of ethylenebisdithiocarbamic acid and salts     |
| K124         | 10    | Reactor vent scrubber water from prod of ethylenebisdithiocarbamic acid and salts      |
| K125         | 10    | Filtration/other solids from production of ethylenebisdithiocarbamic acid and salts    |
| K126         | 10    | Dust/sweepings from the production of ethylenebisdithiocarbamic acid and salts         |
| K131         | 100   | Wastewater and spent sulfuric acid from the production of methyl bromide               |
| K132         | 1,000 | Spent absorbent and wastewater solids from the production of methyl bromide            |
| K136         | 1     | Still bottoms from ethylene dibromide purif. in production by ethene bromination       |
| K141         | 1     | Process residues from coal tar recovery in coking                                      |

| RCRA<br>CODE | RQ    | NAME                                                                                                                                                                                                                                                                    |
|--------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K142         | 1     | Tar storage tank residues from coke production from coal or recovery of coke by-prods                                                                                                                                                                                   |
| K143         | 1     | Process residues from recovery of light oil in coking                                                                                                                                                                                                                   |
| K144         | 1     | Wastewater residues from light oil refining in coking                                                                                                                                                                                                                   |
| K145         | 1     | Residues from naphthalene collection and recovery from coke by-products                                                                                                                                                                                                 |
| K147         | 1     | Tar storage tank residues from coal tar refining in coking                                                                                                                                                                                                              |
| K148         | 1     | Residues from coal tar distillation, including still bottoms, in coking                                                                                                                                                                                                 |
| K149         | 10    | Distillation bottoms from the production of chlorinated toluenes/benzoyl chlorides                                                                                                                                                                                      |
| K150         | 10    | Organic residuals from CI gas and HCI recovery from chlorinated toluene production                                                                                                                                                                                      |
| K151         | 10    | Wastewater treatment sludge from production of chlorotoluenes/benzoyl chlorides                                                                                                                                                                                         |
| K156         | 10    | Organic waste from production of carbamates and carbamoyl oximes                                                                                                                                                                                                        |
| K157         | 10    | Wastewaters from production of carbamates and carbamoyl oximes (not sludges)                                                                                                                                                                                            |
| K158         | 10    | Bag house dusts & filter/separation solids from prod of carbamates, carb oximes                                                                                                                                                                                         |
| K159         | 10    | Organics from treatment of thiocarbamate waste                                                                                                                                                                                                                          |
| K161         | 1     | Purif. solids/bag house dust/sweepings from prod of dithiocarbamate acids/salts                                                                                                                                                                                         |
| K169         | 10    | Crude oil storage tank sediment from refining operations                                                                                                                                                                                                                |
| K170         | 1     | Clarified slurry oil tank sediment of in-line filter/separation solids                                                                                                                                                                                                  |
| K171         | 1     | Spent hydrotreating catalyst                                                                                                                                                                                                                                            |
| K172         | 1     | Spent hydrorefining catalyst                                                                                                                                                                                                                                            |
| K174         | 1     | Wastewater treatment sludges from the production of ethylene dichloride or vinyl chloride monomer, (including sludges that result from commingled EDC or VCM wastewater and other wastewater), unless the sludges meet certain disposal conditions. (See 40 CFR 261.32) |
| K175         | 1     | Wastewater treatment sludges from the production vinyl chloride monomer using mercuric chloride catalyst in an acetylene-based process (See 40 CFR 261.32)                                                                                                              |
| K176         | 1     | Baghouse filters from the production of antimony oxide, including filters from the production of intermediates (e.g., antimony metal or crude antimony oxide)                                                                                                           |
| K177         | 5000  | Slag from the production of antimony oxide that is speculatively accumulated or disposed, including slag from the production of intermediates (e.g., antimony metal or crude antimony oxide)                                                                            |
| K178         | 1000  | Residues from manufacturing and manufacturing-site storage of ferric chloride from acids formed during the production of titanium dioxide using the chloride-ilmenite process                                                                                           |
| K181         | 1*    | Non-wastewaters generated from the production of certain dyes, pigments, and FD&C colorants, exceeding constituent mass loading levels, subject to disposal exceptions in 40 CFR 261.32                                                                                 |
| D001         | 100   | Unlisted hazardous wastes characteristic of ignitability                                                                                                                                                                                                                |
| D002         | 100   | Unlisted hazardous wastes characteristic of corrosivity                                                                                                                                                                                                                 |
| D003         | 100   | Unlisted hazardous wastes characteristic of reactivity                                                                                                                                                                                                                  |
|              |       | Unlisted hazardous wastes characteristic of toxicity:                                                                                                                                                                                                                   |
| D004         | 1     | Arsenic                                                                                                                                                                                                                                                                 |
| D005         | 1,000 | Barium                                                                                                                                                                                                                                                                  |
| D006         | 10    | Cadmium                                                                                                                                                                                                                                                                 |
| D007         | 10    | Chromium                                                                                                                                                                                                                                                                |
| D008         | 10    | Lead                                                                                                                                                                                                                                                                    |
| D009         | 1     | Mercury                                                                                                                                                                                                                                                                 |
| D010         | 10    | Selenium                                                                                                                                                                                                                                                                |
| D011         | 1     | Silver                                                                                                                                                                                                                                                                  |

| ATTACHMENT 2 |
|--------------|
|--------------|

| RCRA<br>CODE | RQ    | NAME                     |
|--------------|-------|--------------------------|
| D012         | 1     | Endrin                   |
| D013         | 1     | Lindane                  |
| D014         | 1     | Methoxychlor             |
| D015         | 1     | Toxaphene                |
| D016         | 100   | 2,4-D                    |
| D017         | 100   | 2,4,5-TP                 |
| D018         | 10    | Benzene                  |
| D019         | 10    | Carbon tetrachloride     |
| D020         | 1     | Chlordane                |
| D021         | 100   | Chlorobenzene            |
| D022         | 10    | Chloroform               |
| D023         | 100   | o-Cresol                 |
| D024         | 100   | m-Cresol                 |
| D025         | 100   | p-Cresol                 |
| D026         | 100   | Cresol                   |
| D027         | 100   | 1,4-Dichlorobenzene      |
| D028         | 100   | 1,2-Dichloroethane       |
| D029         | 100   | 1,1-Dichloroethylene     |
| D030         | 10    | 2,4-Dinitrotoluene       |
| D031         | 1     | Heptachlor (and epoxide) |
| D032         | 10    | Hexachlorobenzene        |
| D033         | 1     | Hexachlorobutadiene      |
| D034         | 100   | Hexachloroethane         |
| D035         | 5,000 | Methyl ethyl ketone      |
| D036         | 1,000 | Nitrobenzene             |
| D037         | 10    | Pentachlorophenol        |
| D038         | 1,000 | Pyridine                 |
| D039         | 100   | Tetrachloroethylene      |
| D040         | 100   | Trichloroethylene        |
| D041         | 10    | 2,4,5-Trichlorophenol    |
| D042         | 10    | 2,4,6-Trichlorophenol    |
| D043         | 1     | Vinyl chloride           |

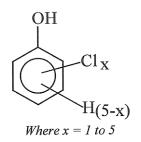
### **APPENDIX D**

#### EPCRA SECTION 313, TOXIC RELEASE INVENTORY (TRI) CHEMICAL CATEGORIES

The EPCRA Section 313, Toxic Release Inventory (TRI) has 31 chemical categories (including four categories containing 68 specifically-listed chemicals). Each chemical category is listed below with its category code and category name.

Source: <u>http://www2.epa.gov/toxics-release-inventory-tri-program/tri-listed-chemicals</u> Also see 40 CFR 372.65.

**N010 Antimony Compounds.** *Includes any unique chemical substance that contains antimony as part of that chemical's infrastructure.* 


**N020 Arsenic Compounds.** Includes any unique chemical substance that contains arsenic as part of that chemical's infrastructure.

**N040 Barium Compounds.** Includes any unique chemical substance that contains barium as part of that chemical's infrastructure. This category does not include: Barium sulfate CAS Number 7727-43-7

**N050 Beryllium Compounds.** *Includes any unique chemical substance that contains beryllium as part of that chemical's infrastructure.* 

**N078 Cadmium Compounds.** *Includes any unique chemical substance that contains cadmium as part of that chemical's infrastructure.* 

N084 Chlorophenols. Includes any chemical substance with the following chemical formula:



**N090 Chromium Compounds.** Includes any unique chemical substance that contains chromium as part of that chemical's infrastructure (except for chromite ore mined in the Transvaal Region of South Africa and the unreacted ore component of the chromite ore processing residue (COPR). COPR is the solid waste remaining after aqueous extraction of oxidized chromite ore that has been combined with soda ash and kiln roasted at approximately 2,000 deg.F.)

D-1

723

**N096 Cobalt Compounds.** Includes any unique chemical substance that contains cobalt as part of that chemical's infrastructure.

**N100 Copper Compounds.** Includes any unique chemical substance that contains copper as part of that chemical's infrastructure. This category does not include copper phthalocyanine compounds that are substituted with only hydrogen, and/or chlorine, and/or bromine.

**N106 Cyanide Compounds.** *Includes any chemical substance with the following chemical formula:* 

 $X^+ CN$  where  $X = H^+$  or any other group where a formal dissociation can be made. For example KCN or Ca(CN)<sup>2</sup>.

| CAS Number  | Diisocyanate Chemical Name                      |
|-------------|-------------------------------------------------|
| 38661-72-2  | 1,3-Bis(methylisocyanate)-cyclohexane           |
| 10347-54-3  | 1,4-Bis(methylisocyanate)-cyclohexane           |
| 2556-36-7   | 1,4-Cyclohexanediisocyanate                     |
| 134190-37-7 | Diethyldiisocyanatobenzene                      |
| 4128-73-8   | 4,4'-Diisocyanatodiphenyl ether                 |
| 75790-87-3  | 2,4'-Diisocyanatodiphenyl sulfide               |
| 91-93-0     | 3,3'-Dimethoxybenzidine-4,4'-diisocyanate       |
| 91-97-4     | 3,3'-Dimethyl-4,4'-diphenylene diisocyanate     |
| 139-25-3    | 3,3'-Dimethyldiphenyl methane-4,4'-diisocyanate |
| 822-06-0    | Hexamethylene-1,6-diisocyanate                  |
| 4098-71-9   | Isophorone diisocyanate                         |
| 75790-84-0  | 4-Methyldiphenylmethane-3,4-diisocyanate        |
| 5124-30-1   | 1,1-Methylenebis(4-isocyanatocyclohexane)       |
| 101-68-8    | Methylenebis(phenylisocyanate) (MDI)            |
| 3173-72-6   | 1,5-Naphthalene diisocyanate                    |

N120 Diisocyanates This category includes only those chemicals listed below.

| 123-61-5   | 1,3-Phenylene diisocyanate                |
|------------|-------------------------------------------|
| 104-49-4   | 1,4-Phenylene diisocyanate                |
| 9016-87-9  | Polymeric diphenylmethane diisocyanate    |
| 16938-22-0 | 2,2,4-Trimethylhexamethylenediisocyanate  |
| 15646-96-5 | 2,4,4-Trimethylhexamethylene diisocyanate |

### N150 Dioxin and Dioxin-Like Compounds

(Manufacturing; and the processing or otherwise use of dioxin and dioxin-like compounds if the dioxin and dioxin-like compounds are present as contaminants in a chemical and if they were created during the manufacturing of that chemical.) This category includes only those chemicals listed below.

| CAS        | Dioxin Chemical Name                                |
|------------|-----------------------------------------------------|
| Number     |                                                     |
| 1746-01-6  | 2,3,7,8- Tetrachlorodibenzo- <i>p</i> -dioxin       |
| 40321-76-4 | 1,2,3,7,8-Pentachlorodibenzo- <i>p</i> -dioxin      |
| 39227-28-6 | 1,2,3,4,7,8-Hexachlorodibenzo- <i>p</i> -dioxin     |
| 57653-85-7 | 1,2,3,6,7,8-Hexachlorodibenzo- <i>p</i> -dioxin     |
| 19408-74-3 | 1,2,3,7,8,9-Hexachlorodibenzo- <i>p</i> -dioxin     |
| 35822-46-9 | 1,2,3,4,6,7,8-Heptachlorodibenzo- <i>p</i> -dioxin  |
| 3268-87-9  | 1,2,3,4,6,7,8,9-Octachlorodibenzo- <i>p</i> -dioxin |
| 51207-31-9 | 2,3,7,8-Tetrachlorodibenzofuran                     |
| 57117-41-6 | 1,2,3,7,8-Pentachlorodibenzofuran                   |
| 57117-31-4 | 2,3,4,7,8-Pentachlorodibenzofuran                   |
| 70648-26-9 | 1,2,3,4,7,8-Hexachlorod-benzofuran                  |
| 57117-44-9 | 1,2,3,6,7,8-Hexachlorodibenzofuran                  |
| 72918-21-9 | 1,2,3,7,8,9-Hexachlorodibenzofuran                  |
| 60851-34-5 | 2,3,4,6,7,8-Hexachlorodibenzofuran                  |

| 67562-39-4 | 1,2,3,4,6,7,8-Heptachlorodibenzofuran  |
|------------|----------------------------------------|
| 55673-89-7 | 1,2,3,4,7,8,9-Heptachlorodibenzofuran  |
| 39001-02-0 | 1,2,3,4,6,7,8,9-Octachlorodibenzofuran |

**N171 Ethylenebisdithiocarbamic acid, salts and esters (EBDCs).** *Includes any unique chemical substance that contains an EBDC or an EBDC salt as part of that chemical's infrastructure.* 

**N230 Certain Glycol Ethers.** *Includes any chemical substance with the following chemical formula:* 

R-(OCH<sub>2</sub>CH<sub>2</sub>) n-OR'

where n = 1, 2, or 3 R = alkyl C7 or less; or R = phenyl or alkyl substituted phenyl; R' = H, or alkyl C7 or less; or OR' = consisting of carboxylic acid ester, sulfate, phosphate, nitrate, or sulfonate.

**N420 Lead Compounds.** Includes any unique chemical substance that contains lead as part of that chemical's infrastructure.

**N450 Manganese Compounds.** *Includes any unique chemical substance that contains manganese as part of that chemical's infrastructure.* 

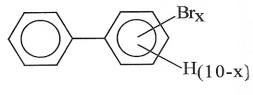
**N458 Mercury Compounds.** Includes any unique chemical substance that contains mercury as part of that chemical's infrastructure.

**N495 Nickel Compounds.** *Includes any unique chemical substance that contains nickel as part of that chemical's infrastructure.* 

**N503 Nicotine and salts.** *Includes any unique chemical substance that contains nicotine or a nicotine salt as part of that chemical's infrastructure.* 

N511 Nitrate compounds (water dissociable; reportable only when in aqueous solution)

N530 Nonylphenyol. This category includes only those chemicals listed below.


D-4

726

This category was added to the TRI chemical list in September 2014. Facilities that meet TRI reporting thresholds for nonylphenol should begin collecting release information on January 1, 2015 (reporting forms due July 1, 2016).

| CAS Number | Nonylphenol Name        |
|------------|-------------------------|
| 104-40-5   | 4-Nonylphenol           |
| 11066-49-2 | Isononylphenol          |
| 25154-52-3 | Nonylphenol             |
| 26543-97-5 | 4-Isononylphenol        |
| 84852-15-3 | 4-Nonylphenol, branched |
| 90481-04-2 | Nonylphenol, branched   |

**N575 Polybrominated Biphenyls (PBBs).** *Includes any chemical substance with the following chemical formula:* 



Where x = 1 to 10

N583 Polychlorinated alkanes (C10 to C13) (except for those members of the category that have an average chain length of 12 carbons and contain an average chlorine content of 60% by weight which are subject to the 0.1% *de minimis*). *Includes any chemical substance with the following chemical formula:* 

 $C_x H_{2x+2-y} Cl_y$ where x = 10 to 13; y = 3 to 12; and the average chlorine content ranges from 40-70% with the limiting molecular formulas C10H19Cl3 and C13H16Cl12.

**N590 Polycyclic aromatic compounds (PACs).** *This category includes the chemicals listed below.* 

| CAS Number | PAC Chemical Name    |
|------------|----------------------|
| 56-55-3    | Benz(a)anthracene    |
| 205-99-2   | Benzo(b)fluoranthene |

| 205-82-3   | Benzo(j)fluoranthene            |
|------------|---------------------------------|
| 207-08-9   | Benzo(k)fluoranthene            |
| 206-44-0   | Benzo(j,k)fluorene              |
| 189-55-9   | Benzo(r,s,t)pentaphene          |
| 218-01-9   | Benzo(a)phenanthrene            |
| 50-32-8    | Benzo(a)pyrene                  |
| 226-36-8   | Dibenz(a,h)acridine             |
| 224-42-0   | Dibenz(a,j)acridine             |
| 53-70-3    | Dibenzo(a,h)anthracene          |
| 194-59-2   | 7H-Dibenzo(c,g)carbazole        |
| 5385-75-1  | Dibenzo(a,e)fluoranthene        |
| 192-65-4   | Dibenzo(a,e)pyrene              |
| 189-64-0   | Dibenzo(a,h)pyrene              |
| 191-30-0   | Dibenzo(a,l)pyrene              |
| 57-97-6    | 7,12-Dimethylbenz(a)-anthracene |
| 42397-64-8 | 1,6-Dinitropyrene               |
| 42397-65-9 | 1,8-Dinitropyrene               |
| 193-39-5   | Indeno(1,2,3-cd)pyrene          |
| 56-49-5    | 3-Methylcholanthrene            |
| 3697-24-3  | 5-Methylchrysene                |
| 7496-02-8  | 6-Nitrochrysene                 |
| 5522-43-0  | 1-Nitropyrene                   |
| 57835-92-4 | 4-Nitropyrene                   |
|            |                                 |

D-6

**N725 Selenium Compounds.** *Includes any unique chemical substance that contains selenium as part of that chemical's infrastructure.* 

**N740 Silver Compounds.** Includes any unique chemical substance that contains silver as part of that chemical's infrastructure.

**N746 Strychnine and salts.** *Includes any unique chemical substance that contains strychnine or a strychnine salt as part of that chemical's infrastructure.* 

**N760 Thallium Compounds.** *Includes any unique chemical substance that contains thallium as part of that chemical's infrastructure.* 

**N770 Vanadium Compounds.** *Includes any unique chemical substance that contains vanadium as part of that chemical's infrastructure.* 

**N874 Warfarin and salts.** *Includes any unique chemical substance that contains warfarin or a warfarin salt as part of that chemical's infrastructure.* 

**N982 Zinc Compounds.** *Includes any unique chemical substance that contains zinc as part of that chemical's infrastructure.* 

For more details on how to report TRI chemicals and chemical categories, see <a href="http://www2.epa.gov/toxics-release-inventory-tri-program/reporting-tri-facilities">http://www2.epa.gov/toxics-release-inventory-tri-program/reporting-tri-facilities</a>

EPA has more detailed chemical-specific guidance documents for the EPCRA Section 313 chemical categories on its webpage <u>http://www2.epa.gov/toxics-release-inventory-tri-program/guidance-documents-tri-reporting#chemical\_sp.</u> Documents are available for:

- Lead and Lead Compounds
- Mercury and Mercury Compounds
- Polycyclic Aromatic Compounds
- Pesticides and Other Persistent Bioaccumulative Toxic (PBT) Chemicals
- Dioxin and Dioxin-like Compounds Category
- Aqueous Ammonia
- Nitrate compounds
- Hydrochloric acid aerosols
- Sulfuric acid aerosols
- Certain glycol ethers
- Chlorophenols
- List of Toxic Chemicals within Ethylenebisdithiocarbamic Acid, Salts and Esters Category and List of Mixtures that Contain the Individually listed Chemicals Maneb, Metiram, Nabam, and Zineb
- Nicotine and salts
- Polychlorinated alkanes
- Strychnine and salts
- Warfarin and salts

**D-**7

## **APPENDIX E**

### **CERCLA Hazardous Substances - Chemical Categories**

This appendix provides further definition or clarification, where available, of CERCLA chemical categories that are listed with N.A. as the CAS Registry Number in the consolidated list. Dichlorobenzidine and diphenylhydrazine are also included in this appendix for completeness sake because they are listed on the consolidated list with CAS No. of N.A., although technically each is not considered a category containing several chemical substances. Many chemicals that are also members of a category may also be listed separately as a CERCLA chemical with its own RQ. For example, cobaltous bromide, CAS 7789-43-7, appears on the CERCLA list separately.

Radionuclides listed under CERCLA are provided in a separate list in Appendix B of this document, with RQs in Curies. EPCRA section 313 (TRI) Chemical Category definitions are found in Appendix C.

Each CERCLA chemical category in this appendix was designated as a CERCLA hazardous substance based on a statutory source (See NOTE following 40 CFR 302.4 (b)). The statutory Codes (1), (2), (3), or (4), shown after each category name, refers to a statutory source, listed in the table below.

| Statutory | Statutory Source                      | Applicable CFR citation                 |
|-----------|---------------------------------------|-----------------------------------------|
| Code      |                                       |                                         |
| (1)       | Section 311(b)(2) of the Clean Water  | Hazardous Substances 40 CFR 116.4       |
|           | Act                                   |                                         |
| (2)       | Section 307(a) of the Clean Water Act | Priority Toxic Pollutants 40 CFR 401.15 |
| (3)       | Section 112 of the Clean Air Act      | Hazardous Air Pollutants List-          |
|           |                                       | Section 112(b)(1) of CAA                |
|           |                                       | Revisions to List 40 CFR 60.60-63       |
| (4)       | Section 3001 of RCRA                  | Hazardous Wastes 40 CFR 261.33(e) and   |
|           |                                       | (f) ("P" and "U" Haz. Waste chemicals)  |

Endnote reference letters refer to sources of information used to define or clarify the category. These endnote references appear at the end of the appendix.

### Arsenic and Compounds

(2), (3)

Unless otherwise specified, this listing is defined as including any unique chemical substance that contains arsenic as part of that chemical's infrastructure.<sup>a</sup>

Arsenic Compounds (inorganic including arsine)<sup>b</sup>

730

### E-2

731

#### ATTACHMENT 2 APPENDIX E **CERCLA HAZARDOUS SUBSTANCES -- CHEMICAL CATEGORIES**

Unless otherwise specified, this listing is defined as including any unique chemical substance that contains antimony as part of that chemical's infrastructure.<sup>a</sup> For antimony and compounds, the term compounds shall include organic and inorganic compounds. <sup>c</sup>

(2), (3)

(2), (3)

**Cadmium and Compounds** (2), (3)**Chromium and Compounds** (2), (3)**Chlorinated Benzenes** (2)Chlorobenzene<sup>d</sup> 1,2-dichlorobenzene<sup>d</sup> 1,3-dichlorobenzene<sup>d</sup> 1.4-dichlorobenzene<sup>d</sup> 1,2,4-trichlorobenzene<sup>d</sup> Hexachlorobenzene<sup>d</sup> **Chlorinated Ethanes** (2)Chloroethane<sup>d</sup> l,l-dichloroethane<sup>d</sup> 1,2-dichloroethane<sup>d</sup> 1,1,1-trichloroethane<sup>d</sup> 1,1,2-trichloroethaned 1,1,2,2-tetrachloroethane<sup>d</sup> Hexachloroethane<sup>d</sup> **Chlorinated Phenols** (2)2-chlorophenol<sup>d</sup> 2,4-dichlorophenold 2,4,6-trichlorophenol<sup>d</sup> Parametachlorocresol (4-chloro-3-methyl phenol)<sup>d</sup> **Chloroalkyl Ethers** (2)Bis(2-chloroethoxy)methane<sup>d</sup> Bis(2-chloroethyl) ether<sup>d</sup> 2-chloroethyl vinyl ether (mixed)<sup>d</sup>

## **Beryllium and Compounds**

**Antimony and Compounds** 

Unless otherwise specified, this listing is defined as including any unique chemical substance that contains beryllium as part of that chemical's infrastructure.<sup>a</sup>

Unless otherwise specified, this listing is defined as including any unique chemical substance that contains cadmium as part of that chemical's infrastructure.<sup>a</sup>

Unless otherwise specified, this listing is defined as including any unique chemical substance that contains chromium as part of that chemical's infrastructure.<sup>a</sup>

#### ATTACHMENT 2 APPENDIX E CERCLA HAZARDOUS SUBSTANCES -- CHEMICAL CATEGORIES

| <b>Cobalt and Compounds</b><br>Unless otherwise specified, this listing is d<br>substance that contains cobalt as part of the |                         |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Coke Oven Emissions                                                                                                           | (3)                     |
| Copper and Compounds                                                                                                          | (2)                     |
| Creosote<br>RCRA Toxic hazardous waste code U051                                                                              | (4)<br>40 CFR 261.33(f) |

Creosote, as defined by the American Wood Preservers Association, is a distillate derived from coal tar, derived by the high temperature carbonization of bituminous coal. Creosote consists primarily of liquid, solid polycyclic aromatic hydrocarbons (PAHs), other heteronuclear aromatic substances, and some tar acids and bases. Creosote Oil (Common Name) has the following active ingredients:

| Coal Tar          | CAS Number 8007-45-2  |
|-------------------|-----------------------|
| Creosote Oil      | CAS Number 61789-28-4 |
| Coal Tar Creosote | CAS No. 8001-58-9     |

Currently there are thirteen creosote industrial wood preservative products registered as pesticides with USEPA under FIFRA. All have "creosote" as part of the product name.<sup>e</sup>

### Cyanides

(2), (3)

# Cyanide and Compounds (2), (3) X'CN where X = H' or any other group where a formal dissociation may occur. For example KCN or Ca(CN)<sub>2</sub>.<sup>f</sup>

### Cyanides (soluble salts and complexes, not otherwise specified) P030 Haz. Waste (4)

### **DDT and Metabolites**

(2)

4,4-DDT<sup>d</sup> 4.4-DDE (p,p-DDX)<sup>d</sup> 4,4-DDD (p,p-TDE)<sup>d</sup>

*DDT* means the compounds DDT, DDD, and DDE as identified by the chemical names:(DDT)-1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane and some o,p'-isomers; (DDD) or (TDE)-1,1-dichloro-2,2-bis(p-chlorophenyl) ethane and some o,p'-isomers; (DDE)-1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene.<sup>g</sup>

### Dichlorobenzidine

(2)

3,3-dichlorobenzidine<sup>d</sup>

732

#### ATTACHMENT 2 APPENDIX E CERCLA HAZARDOUS SUBSTANCES -- CHEMICAL CATEGORIES

| <b>Diphenylhydrazine</b><br>1,1-diphenylhydrazine <sup>d</sup>                                                                                                                                                              | (2)                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| <b>Endosulfan and Metabolites</b><br>Alpha-endosulfan <sup>d</sup><br>Beta-endosulfan <sup>d</sup><br>Endosulfan sulfate <sup>d</sup>                                                                                       | (2)                                                                                                                |  |
| <b>Endrin and metabolites</b><br>Endrin <sup>d</sup><br>Endrin aldehyde <sup>d</sup>                                                                                                                                        | (2)                                                                                                                |  |
| <i>Endrin</i> means the compound endrin as ident<br>hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octa<br>endodimethanonaphthalene. <sup>g</sup>                                                                                   | •                                                                                                                  |  |
|                                                                                                                                                                                                                             | (3)<br>ties manufacturing or processing glass, rock,<br>rs) of average diameter 1 micrometer or less. <sup>f</sup> |  |
| <b>Glycol Ethers</b><br>Glycol ethers include mono- and di-ethers o<br>triethylene glycol R-(OCH <sub>2</sub> CH <sub>2</sub> ) <sub>n</sub> -OR'. Whe                                                                      |                                                                                                                    |  |
| n = 1, 2, or 3;<br>R = alkyl C7 or less; or<br>R = phenyl or alkyl substituted phenyl;<br>R'= H or alkyl C7 or less; or<br>OR' consisting of carboxylic acid ester, sulf                                                    | ate, phosphate, nitrate, or sulfonate. <sup>h</sup>                                                                |  |
| The substance ethylene glycol monobutyl ether (EGBE,2-Butoxyethanol) (CAS Number 111–76–2) is deleted from the list of hazardous air pollutants established by 42 U.S.C. 7412(b)(1)[Section 112(b)(1) of CAA]. <sup>i</sup> |                                                                                                                    |  |
| Haloethers                                                                                                                                                                                                                  | (2)                                                                                                                |  |

4-chlorophenyl phenyl ether<sup>d</sup> 2-bromophenyl phenyl ether<sup>d</sup> Bis(2-chloroisopropyl) ether<sup>d</sup>

Haloethers (other than those listed elsewhere; includes chlorophenylphenyl ethers, bromophenylphenyl ether, bis(dichloroisopropyl) ether, bis-(chloroethoxy) methane and polychlorinated diphenyl ethers).<sup>j</sup>

734

#### ATTACHMENT 2 APPENDIX E **CERCLA HAZARDOUS SUBSTANCES -- CHEMICAL CATEGORIES**

(2)

### Halomethanes

Methylene chloride (dichloromethane)<sup>d</sup> Methyl chloride (chloromethane)<sup>d</sup> Methyl Bromide (bromomethane)<sup>d</sup> Bromoform (tribromomethane)<sup>d</sup> Dichlorobromomethane<sup>d</sup> Chlorodibromomethane<sup>d</sup>

Halomethanes (other than those listed elsewhere; includes methylene chloride, methylchloride, methylbromide, bromoform, dichlorobromomethane.<sup>j</sup>

### **Heptachlor and Metabolites**

Heptachlor<sup>d</sup> Heptachlor epoxide (BHC-hexachlorocyclohexane)<sup>d</sup>

### Lead and Compounds

Unless otherwise specified, this listing is defined as including any unique chemical substance that contains lead as part of that chemical's infrastructure.<sup>a</sup>

### **Manganese and Compounds**

Unless otherwise specified, this listing is defined as including any unique chemical substance that contains manganese as part of that chemical's infrastructure.<sup>a</sup>

### **Mercury and Compounds**

Unless otherwise specified, this listing is defined as including any unique chemical substance that contains mercury as part of that chemical's infrastructure.<sup>a</sup>

### Nickel and Compounds

Unless otherwise specified, this listing is defined as including any unique chemical substance that contains nickel as part of that chemical's infrastructure.<sup>a</sup>

### Nitrosamines

N-nitrosodimethylamine<sup>d</sup> N-nitrosodiphenylamine<sup>d</sup> N-nitrosodi-n-propylamine<sup>d</sup>

### Nitrophenols (other than chlorinated)

2-nitrophenol<sup>d</sup> 4-nitrophenol<sup>d</sup> 2,4-dinitrophenold 4,6-dinitro-o-cresol (4,6-dinitro-2-methylphenol)<sup>d</sup> Pentachlorophenold Phenol<sup>d</sup> 2,4-dimethylphenol<sup>d</sup> Nitrophenols (including 2,4-dinitrophenol, dinitrocresol).<sup>j</sup>

# (2), (3)

# (2), (3)

# (2)

(2)

# (2)

# (3)

(2), (3)

#### ATTACHMENT 2 APPENDIX E CERCLA HAZARDOUS SUBSTANCES -- CHEMICAL CATEGORIES

(2)

#### **Phthalate Esters**

Bis(2-ethylhexyl)phthalate<sup>d</sup> Butyl benzyl phthalate<sup>d</sup> Di-N-butyl phthalate<sup>d</sup> Di-n-octyl phthalate<sup>d</sup> Diethyl phthalate<sup>d</sup> Dimethyl phthalate<sup>d</sup>

#### **Polychlorinated Biphenyls (PCBs)**

PCB-1242 (Arochlor 1242)<sup>d</sup> PCB-1254 (Arochlor 1254)<sup>d</sup> PCB-1221 (Arochlor 1221)<sup>d</sup> PCB-1232 (Arochlor 1232)<sup>d</sup> PCB-1248 (Arochlor 1248)<sup>d</sup> PCB-1260 (Arochlor 1260)<sup>d</sup> PCB-1016 (Arochlor 1016)<sup>d</sup>

Polychlorinated Biphenyls (PCBs) means a mixture of compounds composed of the biphenyl molecule which has been chlorinated to varying degrees.<sup>g</sup>

#### **Polycyclic Organic Matter**

Includes organic compounds with more than one benzene ring, and which have a boiling point greater than or equal to 100° C.<sup>f</sup>

### **Polynuclear Aromatic Hydrocarbons (PAHs)** (2)

Acenaphthene<sup>d</sup> 1,2-benzanthracene (benzo(a) anthracene)<sup>d</sup> Benzo(a)pyrene (3,4-benzo-pyrene)<sup>d</sup> 3,4-benzofluoranthene (benzo(b) fluoranthene)<sup>d</sup> 11,12-benzofluoranthene (benzo(k) fluoranthene)<sup>d</sup> Chrysene<sup>d</sup> Acenaphthalene<sup>d</sup> Acenaphthalene<sup>d</sup> Anthracene<sup>d</sup> 1,12-benzoperylene (benzo (ghi) perylene)<sup>d</sup> Fluorene<sup>d</sup> Fluoranthene<sup>d</sup> Phenanthrene<sup>d</sup> 1,2,5,6-bibenzanthracene (dibenzo(ah) anthracene)<sup>d</sup> Indeno (1,2,3-cd) pyrene (2,3-o-phenylene pyrene)<sup>d</sup> Pyrene<sup>d</sup>

Polynuclear aromatic hydrocarbons (including benzanthracenes, benzopyrenes, benzofluoranthene, chrysenes, dibenz-anthracenes, and indenopyrenes).<sup>j</sup>

### Radionuclides

(3) See Appendix B in this document.

A type of atom which spontaneously undergoes radioactive decay.<sup>f</sup>

735

(1), (2), (3)

(3)

#### ATTACHMENT 2 APPENDIX E CERCLA HAZARDOUS SUBSTANCES -- CHEMICAL CATEGORIES

| Selenium and Compounds<br>Unless otherwise specified, this listing is de<br>substance that contains selenium as part of t |     |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| Silver and Compounds<br>Unless otherwise specified, this listing is de<br>substance that contains silver as part of that  |     |
| Thallium and Compounds                                                                                                    | (2) |
| Zinc and Compounds                                                                                                        | (2) |

Endnote References

<sup>a</sup> 42 U.S.C. 7412(b)(1)-[Section 112(b)(1) of CAA] "NOTE" after the Initial List of Pollutants: For all listings above which contain the word "compounds" ... the following applies: Unless otherwise specified, these listings are defined as including any unique chemical substance that contains the named chemical (i.e., antimony, arsenic, etc.) as part of that chemical's infrastructure.

<sup>b</sup> 42 U.S.C. 7412(b)(1)-[Section 112(b)(1) of CAA] Initial List of Pollutants.

<sup>c</sup> 40 CFR 401.15 footnote 2 (for antimony and compounds only).

<sup>d</sup> USEPA. 1994. Water Quality Standards Handbook, Second Edition, Appendix P- List of 126 CWA Section 307(a) Priority Toxic Pollutants. <u>http://water.epa.gov/scitech/swguidance/standards/handbook/</u>

<sup>e</sup> USEPA. Sept 2008. Reregistration Eligibility Decision for Creosote (Case 0139). <u>http://www.epa.gov/oppsrrd1/reregistration/REDs/creosote\_red.pdf</u>

<sup>f</sup> 42 U.S.C. 7412(b)(1)-[Section 112(b)(1) of CAA] Footnotes after Initial List of Pollutants.

<sup>g</sup> 40 CFR 129.4 Toxic Pollutants.

<sup>h</sup> 40 CFR 63.62 Redefinition of glycol ethers.

<sup>i</sup> 40 CFR 63.63 Hazardous Air Pollutants.

<sup>1</sup>40 CFR 401.15 Toxic Pollutants List.

736

# Appendix $\underline{EG}$

Aquaculture Gear Monitoring & Marine Debris, and Wildlife Entanglement Plan for the Ventura Shellfish Enterprise Project\*

\* Any revisions to the management plans will be updated after receiving comments from relevant regulatory agencies.

# AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN

FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### PREPARED FOR: VENTURA PORT DISTRICT

1603 Anchors Way Ventura, California 93001 Contact: Brian Pendleton

PREPARED BY:

# DUDEK

621 Chapala Street Santa Barbara, California 93101 Contact: John H. Davis IV, Senior Coastal Ecologist jdavis@dudek.com 805.252.7996

# AUGUST 2019

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# TABLE OF CONTENTS

# SECTION

# PAGE

| 1 | TRODUCTION                                                                                                                                                                                                                                                 | 1                |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 2 | TE DESCRIPTION         1       Project Description         2       Project Location                                                                                                                                                                        | 3                |
| 3 | AN GOALS & OBJECTIVES         1       Marine Debris and Wildlife Entanglement         2       Best Management Practices for Entanglement Prevention                                                                                                        | 7                |
| 4 | ETHODS         1       Equipment         2       Monitoring Frequency and Protocols         3       Derelict Gear Search and Removal Protocols         4       Wildlife Entanglement         5       Cleanup Events         6       Notification Protocols | 9<br>9<br>0<br>0 |
| 5 | DAPTIVE MANAGEMENT & REPORTING 1                                                                                                                                                                                                                           | 5                |
| 6 | EFERENCES 1                                                                                                                                                                                                                                                | 7                |

# APPENDIX

# FIGURES

| 1 | Project Location       | ; |
|---|------------------------|---|
| 2 | Notification Protocols | L |

A Reporting Protocols

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# INTNTIONALLY LEFT BLANK

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 1 INTRODUCTION

The Aquaculture Gear Monitoring, Escapement, and Entanglement Plan defines the Ventura Shellfish Enterprise (VSE) permittee obligations with respect to regular aquaculture gear monitoring, managing marine debris, and wildlife entanglement protocols. This plan was developed in consultation with National Oceanic and Atmospheric Administration (NOAA) Fisheries, the Ventura Shellfish Enterprise (VSE) Project Management Team, and Project Stakeholders. The VSE project will establish a commercial offshore bivalve aquaculture operation in federal waters based from the Ventura Harbor in Ventura, California, focused on the cultivation of Mediterranean mussels (*Mytilus galloprovincialis*).

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# INTENTIONALLY LEFT BLANK

# 2 SITE DESCRIPTION

# 2.1 Project Description

The project consists of twenty 100-acre plots (total of 2,000 acres) located in open federal waters of the Santa Barbara Channel (Channel) in the Southern California Bight (SCB), northwest of Ventura Harbor, with approximate depths at the project site ranging from 80 to 114 feet Mean Lower-Low Water (MLLW), with an average depth of 98 feet MLLW. The plot locations are shown in Figure 1, with latitude and longitude coordinates for the outer corners indicated. Each of the 20 plots are 2,299.50 feet by 1,899.50 feet, for an average plot size of 100.27 acres. Each plot will contain up to 24 lines (12 end-to-end pairs), with each line consisting of 575 feet of backbone length and 250 feet of horizontal scope on each end. There will be a 50 foot setback on each end of the pairs (for a total of 100 feet of spacing between lines of adjacent parcels) and 50 foot spacing between the two center pins. Parallel lines will be spaced 150 feet apart, with a 125 foot setback at each of the long sides (for a total of 250 feet of spacing between lines of adjacent parcels). The sites will be used for growing the Mediterranean mussel via submerged long lines. The mussels will be grown and harvested by grower/producers who would sub-permit the plots from Ventura Port District (VPD), and the mussel product will be landed at Ventura Harbor.

# 2.2 Project Location

The project's twenty 100-acre plots are approximately 3.53 miles from the shore. The closest distance from the plots to the 3-mile nautical line is a minimum of 2,900 feet, with an average closest distance of over 3,000 feet. The closest distance from the growing area to the City of Ventura city limit is 4.5 miles. Ventura Harbor is 4.1 miles from the closest plot (8 miles from the most distant plot). The sub-permit sites are located on sandy bottom habitat outside of any rocky reef habitat, as evaluated in Gentry et al. 2017 and illustrated by NOAA United States West Coast nautical charts (NOAA 2017a).

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# INTENTIONALLY LEFT BLANK



DATE OF PREPARATION: 8/30/2018

DUDEK

6,250

12,500

Feet

**Project Location** Ventura Shellfish Enterprise Project

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# INTENTIONALLY LEFT BLANK

# 3 PLAN GOALS & OBJECTIVES

This plan addresses potential species entanglement issues, set protocols for aquaculture gear checks, provide clear notification pathways for personnel with gear issues, and define action thresholds. The plan goal is to keep aquaculture arrays in good working condition by following best management practices and account for any lost gear; to provide a clear way of handling incidents with derelict marine debris; and provide protocols to follow in the unlikely case of marine wildlife entanglement.

# 3.1 Marine Debris and Wildlife Entanglement

The project has the potential to create marine debris if aquaculture gear breaks free through poor maintenance or damage from storm or wave activity. Entanglement may occur if aquaculture gear comes loose, washes away, or otherwise escapes into the environment because of tide, wind, or wave action. Additional risk may occur if derelict fishing gear, lines, and other materials become entangled in the longline arrays of this project, which could compromise structural integrity and/or exacerbate the risk of marine wildlife entanglements. There is also a risk that marine debris could be ingested by marine wildlife.

Mussel aquaculture utilizes various ropes in the water column that may pose an entanglement risk to cetaceans and sea turtles. In contrast to fishing gear, however, there are far fewer documented entanglement cases in mussel aquaculture gear. Interactions and entanglements with longline aquaculture gear worldwide are rare, and close approaches by protected species are seldom documented (Price et al. 2016). West coast entanglement summaries for 2015 and 2016 report no entanglements from mussel aquaculture fisheries (NOAA 2017b). There have been no reported marine mammal entanglements associated with Santa Barbara Mariculture, which has operated a 25-acre mussel aquaculture farm in the Santa Barbara Channel, using similar cultivation techniques, for over a decade (CFGC 2018).

Reported entanglements are predominantly from crab, gillnet and spiny lobster fisheries. Fixed fisheries gear (e.g., pot and trap gear) is the most commonly recognized and reported gear type causing entanglements since 2000. Documented entangled animals and disentanglement efforts in the Pacific Northwest have mostly involved gray whales and humpback whales and have involved both gill nets and crab gear. While not as common, both fin and blue whales are sometimes entangled in gill nets and crab gear based on a few stranded animals and scarring on live animals (NOAA 2014). More recently, from 2014 to 2017, the majority of the whale entanglements involved humpback whales and most of the entanglements were from commercial Californian and Washington Dungeness crab traps, and gillnet fisheries (NOAA 2017b). Large whale species appear to be more vulnerable to entanglement than smaller cetacean species, such as dolphins and porpoises, which are more prone to be caught as bycatch in nets due to their smaller size (Benjamins et al. 2014). Furthermore, juveniles are more likely to be entangled due to their inquisitive nature and inexperience. The proposed mussel culture techniques have some significant differences as compared to crab and fishing gear that reduce the potential for marine mammal entanglement. As opposed to fishery gear, the mussel aquaculture gear is stationary, the lines are larger, and the gear is not designed to catch or ensnare fish. Further, as described below, the lines will be highly tensioned, which reduces the risk of marine mammals being caught in slack lines. Therefore, the project design is expected to pose a much smaller risk to marine mammal entanglement compared to longline fishing methods or crab traps.

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

Ocean-based sources of debris, including fishing and aquaculture gear, contribute to the problem of ocean debris along the West Coast (Sheavly 2007). Lost or abandoned fishing and aquaculture gear can result in ghost fishing and habitat impacts, causing ongoing harm to marine ecosystems. "Ghost fishing" is a part of the global marine debris issue that impacts marine organisms and the environment. Lost or discarded fishing gear that is no longer under a fisherman's control becomes known as derelict fishing gear, and it can continue to trap and kill fish, crustaceans, marine mammals, sea turtles, and seabirds. Factors that cause gear to become derelict gear include poor weather conditions, gear conflicts with other vessels or bottom topography, gear overuse, and too much gear being used. Economic impact studies show fisheries can be negatively affected by a variety of factors, including costs of replacing lost gear, and costs of buying new gear to comply with new regulations.

# 3.2 Best Management Practices for Entanglement Prevention

The mussel grow-out ropes for the VSE project are typically planted with seed 3-inches thick and may grow to be stiff with byssus at diameters of 10-inches or more at harvest, thus making them very unlikely sources of entanglement. As an additional precaution, grow ropes will be attached to the headrope with a low-breaking-strength twine (4-millimeter (0.16-inch diameter), which will facilitate rapid detachment in the unlikely event of any interaction with the longline. To further minimize entanglement potential, a 1,100 pound breakaway link will be installed between the surface buoys and vertical lines, similar to strategies used to mitigate potential entanglement in trap fisheries in the northeastern United States (NOAA 2008). Buoy lines between the surface and headrope are generally under tension partially equivalent (0 to 10 kilograms (0 to 22 pounds)) to their full buoyancy (42 kilograms (93 pounds)). Lines with spat or mature mussels will be freely hanging or single continuous grow ropes, thereby allowing wildlife to traverse through the area. These lines will likely be heavy enough and are designed and operate under sufficient tension to prevent loose lines from becoming entangled and forming loops or knots along the longline. In addition, it is anticipated that when mussels are harvested, the lines will either be removed from the water or re-seeded with spat. All mussel spat will be provided by land-based hatcheries certified by the California Department of Fish and Wildlife (CDFW) (or collected from grow-out lines) and spat collector ropes, which carry a greater risk of entanglement, are prohibited. Project design specifications are also proposed to minimize protected marine mammal and sea turtle entanglement.

Prior to installation, all buoys and other floating equipment will have permanent markers or an attached metal or plastic tag with the name and contact information of the grower/producer. Markings shall be securely attached and robust enough to remain attached and legible after an extended period in the marine environment (e.g. heat transfer, hot stamp, etching, painted on, etc.). Markers on gear aid in returning lost gear and helps the general public to understand that lost aquaculture gear is not trash, it can be retrieved and given back to the owner. It also helps identify and track any grower/producers having difficulty properly maintaining their gear.

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 4 METHODS

# 4.1 Equipment

Growers/operators will utilize a remote operated vehicle (ROV), certified SCUBA divers, and/or fish/depth finders for the detection of derelict gear. ROVs, if utilized, will be equipped with a video camera for all deployments, and a manipulator skid, grabber arm, and rotary disc cutter or other cutting device for gear removal deployments. Successful removal of deep-water fishing gear using ROVs has been documented (NRC 2013). Alternatively, removal of derelict gear can be performed by certified SCUBA divers equipped with cameras to document removal efforts.

# 4.2 Monitoring Frequency and Protocols

The extent and frequency of maintenance operations necessary to minimize the loss of materials and equipment to the marine environment resulting from breakages and structural failures, as well as monitoring for wildlife entanglement issues, is on a monthly basis. No less than twice per month, each grower/producer operating on a VSE site shall visually inspect all ropes, cables, and equipment via depth/fish finders, ROV surveys, and/or monitoring performed by SCUBA divers in order to determine if any entanglement of a marine mammal has occurred and to ensure that:

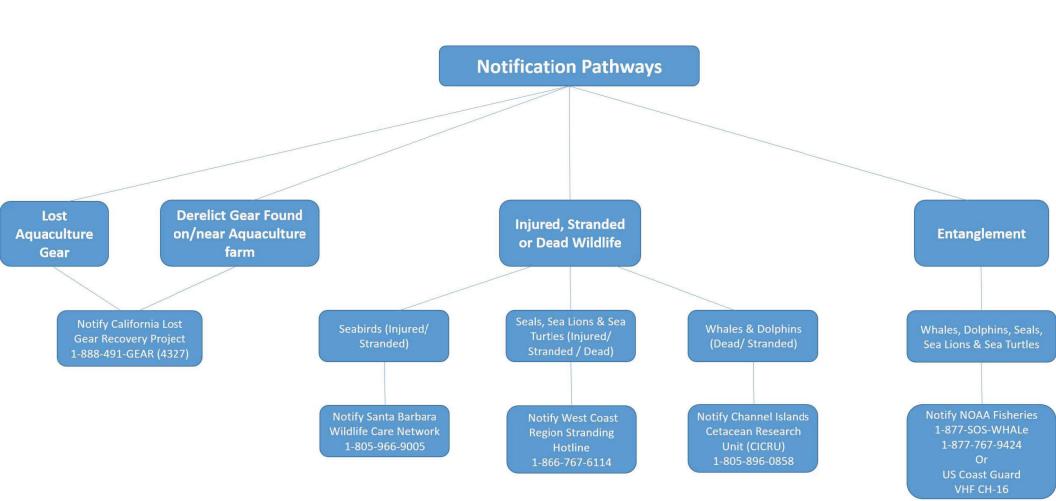
- a) No lines have been broken, lost or removed;
- b) Gear deployed is in permit compliance: all longlines, anchor lines, and buoy lines remain taught and in good working condition;
- c) Any derelict fishing gear or marine debris that collects in the growing gear is removed and disposed of at an identified onshore facility;

Gear shall also be checked after significant swell events when wave heights reach greater than 2.44 meters (8.0 feet) at the NOAA Station 46217 - Anacapa Passage, CA (111), located approximately 6.5 miles southwest from the project site. Monitoring shall occur monthly for the first two years following deployment and, in the event that there are no marine wildlife entanglements or significant marine debris generated by the project within the first two years, upon concurrence by NOAA Fisheries and the U.S. Army Corps of Engineers (USACE), monitoring may be reduced to quarterly inspections thereafter. Recorded video, if any, shall be provided to USACE, NOAA Fisheries, and California Coastal Commission (CCC) along with an annual report detailing any marine mammal entanglements and/or marine debris. Any maintenance issues recorded during the inspection whether by ROV, SCUBA divers, or visual observations, including wear, loosening, or fatigue of materials shall be remedied as soon as possible. Marine debris and any other fouling organisms that have a potential to cover the sea floor below will be removed and disposed of at an identified upland facility. All grower/producer employees associated with cultivation, harvesting, and maintenance operations, as well as any contractors hired to conduct the monitoring described herein, will first be provided training regarding the marine debris issues described herein, including how to identify culture gear or associated materials that are loose or at

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

risk of becoming loose, proper gear repair methods, how to identify and remove invasive species, and how to completely remove gear if gear becomes dislodged or is otherwise taken out of production.

# 4.3 Derelict Gear Search and Removal Protocols


All equipment and materials accidentally released or found to be missing from the aquaculture facility during monthly inspections, including buoys, floats, lines, ropes, and chains shall be searched for, collected, and either repaired or properly disposed of onshore, and documented in the annual inspection report. If the grower/producer discovers that aquaculture gear has broken loose, as soon as it is safe to do so (in the event of storm conditions), it will conduct a search of its aquaculture farm and the surrounding area to find the lost gear using the same methods described in Section 4.1 above. Gear removal will utilize "live boat" techniques and therefore will not require anchors. Upon removal, the derelict gear will be examined by a marine biologist. Species, size, and number of any trapped or entangled marine life observed by video and from observations of gear brought to surface will be recorded and reported to the VPD and other regulatory agencies, as described in Figure 2. Live mobile species entrapped within the derelict gear will be disentangled and returned to the ocean promptly, to the extent feasible. All equipment that cannot be repaired and placed back into service shall be properly recycled or properly disposed of at a certified onshore waste disposal facility. Grower/producers shall retrieve any escaped or damaged aquaculture equipment they encounter, even if such gear is not their own. If persistent discoveries of certain gear types are made, the grower/producer shall evaluate (and if feasible, implement use of) alternative gear types or practices that would reduce persistent sources of debris.

# 4.4 Wildlife Entanglement

All incidents of observed whale entanglement shall be immediately reported to SOS WHALe. Any other marine wildlife (i.e., other marine mammals, turtles) observed to be entangled will be immediately reported to NOAA Fisheries Marine Mammal Stranding Network Coordinator, West Coast Region, Long Beach Office. Only personnel who have been authorized by NOAA Fisheries and who have training, experience, equipment, and support will attempt to disentangle marine wildlife. If possible, the grower/producer shall document and photograph entangled wildlife and the entangling gear material so as to modify gear and avoid any future entanglements.

# 4.5 Cleanup Events

Each grower/producer will carry out quarterly cleanup events on nearby beaches between Ventura and Santa Barbara in coordination with other interested parties or organizations. Cleanup events shall include, but not be limited to, walking different beaches to pick up escaped shellfish gear and other trash (regardless of whether it is generated by the project). Cleanup events may also be organized to remove floating debris in areas where circulation patterns result in accumulation. The volume and type of shellfish gear collected, the cleanup location (marked on a map), and duration of cleanup activity shall be recorded and documented in the annual report.



### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# INTENTIONALLY LEFT BLANK

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# 4.6 Notification Protocols

The following notification protocols will be implemented in the event of wildlife entanglement or injury, if derelict gear is found on the aquaculture arrays, or if aquaculture gear is lost (Figure 2):

- For marine mammal entanglement (whale, dolphin, seal, sea lion, and sea turtle), immediately notify NOAA Fisheries by calling the 24-hour hotline: 877-SOS-WHALe (877-767-9425) or hail the US Coast Guard on VHF CH-16. Follow protocols listed in Appendix A. Notify VPD.
- For injured or entangled seabirds, call the Santa Barbara Wildlife Care Network: 805-966-9005. Notify VPD.
- If an injured, stranded, or dead marine mammal or sea turtle is observed anytime during any aspect of work (i.e. while traveling to/from the aquaculture farm, or observed near/at the aquaculture farm, etc.), immediately notify the West Coast Region Stranding Hotline: 1-866-767-6114. Notify VPD within one week. For dead stranded whales and dolphins, notify Channel Islands Cetacean Research Unit (CICRU) at (805) 896-0858.
- If derelict gear is found on the aquaculture arrays, notify California Lost Gear Recovery Project 1-888-491-GEAR and VPD within one week. Follow protocols in Appendix A.
- If aquaculture gear is lost, notify the California Lost Gear Recovery Project 1-888-491-GEAR and VPD within one week. Follow protocols in Appendix A.
- For law enforcement, harassment, and other violations of marine wildlife, call 1-800-853-1964.

### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

# INTENTIONALLY LEFT BLANK

## 5 ADAPTIVE MANAGEMENT & REPORTING

In implementing this Plan, grower/producers and the Ventura Port District will consult with USACE and NOAA Fisheries as appropriate on the technical issues described above and data interpretation associated with the monitoring. Such consultation will include consideration of results from monitoring efforts and subsequent adjustments to monitoring methods. Adaptive management and adjustments to the Plan will occur following the triggers and subsequent actions below:

Adaptive Management Trigger 1: If monitoring shows that derelict gear has become ensnared or collected on any Project structure but there was no wildlife entanglement, the grower/producers will remove the derelict gear as soon as feasible and notify VPD within one week. If monitoring shows that aquaculture gear is lost, seek to collect the lost gear as soon as feasible in compliance with Section 4.3 and notify VPD within one week. In the event that derelict gear is a persistent issue for a certain grower/producer, or a certain type of gear is frequently lost, affected grower/producers and the VPD will consult with NOAA Fisheries and USACE in order to modify the Project and/or monitoring plan as necessary.

Adaptive Management Trigger 2: If monitoring shows non-listed species found entangled or otherwise impinged at the Project site, grower/producers will remove the derelict gear as soon as feasible, provide photographic or video documentation of the entanglement, notify VPD within one week, and provide a report to VPD. VPD and the grower/producer will consult with NOAA Fisheries and USACE in order to modify the Project and/or monitoring plan if necessary.

Adaptive Management Trigger 3: If monitoring shows marine mammals that are alive, but appearing debilitated, the grower/producer will record the sighting as part of their monitoring report as highlighted below in the Reporting Protocol for Injured or Stranded Marine Mammals. VPD and the grower/producer will consult with NOAA Fisheries and USACE in order to modify the Project and/or monitoring plan if necessary.

Adaptive Management Trigger 4: If monitoring shows live marine mammals/ protected species observed entangled in fishing gear or marine debris, the grower/producer will immediately contact NOAA Fisheries by calling the 24-hour hotline: 877-SOS-WHALe as highlighted below in the Reporting Protocol for Injured or Stranded Marine Mammals, and contact VPD, giving all available information on the case as highlighted below. The grower/producer and VPD will consult with NOAA Fisheries and USACE in order to modify the Project and/or monitoring plan.

VPD will develop and file an annual report to NOAA Fisheries, the Coastal Commission, and USACE fully describing its implementation of this Plan during the previous calendar year and a list of the proposed activities during the current calendar year. The annual report will provide the following:

- A summary of the monthly monitoring results.
- A summary of the results of any derelict gear removal effort and lost gear.
- A summary of any wildlife entanglement, if applicable.

## AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

- A summary of beach cleanup efforts.
- A summary of any issues or concerns identified during the year regarding implementation of the Plan.
- A list of any changes to the Plan proposed by VPD during the year, to be implemented the following year.

#### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## 6 REFERENCES

- Benjamins, S., Harnois, V., Smith, H.C.M., Johanning, L., Greenhill, L., Carter, C., and B. Wilson. 2014. Understanding the potential for marine megafauna entanglement risk from renewable marine energy developments. Scottish Natural Heritage Commissioned Report No. 791.
- California Fish and Game Commission (CFGC). 2018. State of California, California Natural Resources Agency, California Fish and Game Commission, Mitigated Negative Declaration for Santa Barbara Mariculture Company Continued Shellfish Aquaculture Operations on State Water Bottom Lease Offshore Santa Barbara, California. 143 pp.
- Gentry R.R., S.E. Lester, C.V. Kappel, C. White, T.W. Bell, J. Stevens, and S.D. Gaines. 2017. "Offshore Aquaculture: Spatial Planning Principles for Sustainable Development." *Ecology and Evolution*. 7:733–743. doi: 10.1002/ece3.2637.
- Natural Resources Consultants, Inc. 2013. Deepwater Derelict Fishing Gear Removal Protocols. Prepared for the National Oceanic and Atmospheric Administration and Northwest Straights Marine Conservation Foundation.

Identifying and Assessing the Feasibility of Removal of Deepwater Derelict Fishing Nets from Puget Sound, Washington

- NOAA. 2019a. Report a Stranded or Injured Marine Animal. NOAA Fisheries. US Department of Commerce. Accessed February 26, 2019 from the NOAA Fisheries website: https://www.fisheries.noaa.gov/report
- NOAA. 2019b. Large Whale Entanglements. NOAA Fisheries Service. US Department of Commerce. Accessed February 26, 2019 from the National Marine Fisheries Service website: file:///C:/Users/adransfield/Downloads/whale-entanglement-factsheet-AKR.pdf
- NOAA. 2017a. United States West Coast, California. Port Hueneme to Santa Barbara. Mercator Projection. Nautical Chart. Washington, DC. U.S. Department of Commerce, NOAA, National Ocean Science, Coast Survey. 30th Ed. June 2013. Last correction 7/3/2017.
- NOAA. 2017b. 2016 West Coast Entanglement Summary. Overview of Entanglement Data. NOAA Fisheries. West Coast Region. National Oceanic and Atmospheric Administration. U.S. Department of Commerce. Accessed July 20, 2018. http://www.westcoast.fisheries.noaa.gov/mediacenter/ WCR%202016%20Whale%2 0Entanglements\_3-26-17\_Final.pdf.
- NOAA. 2014. U.S. west coast large whale entanglement information sharing workshop report. The National Marine Fisheries Service. West Coast Regional Office. National Oceanic and Atmospheric Administration. U.S. Department of Commerce. Accessed July 20, 2018. http://www.opc.ca.gov/webmaster/ftp/project\_pages/ dctf/ec-meeting-10/finalentanglementwsreport.pdf.

#### AQUACULTURE GEAR MONITORING & MARINE DEBRIS, AND WILDLIFE ENTANGLEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

- Price, C.S., E.Keane, D. Morin, C. Vaccaro, D. Bean, and J.A. Morris, Jr. 2016. Protected Species & Longline Mussel Aquaculture Interactions. NOAA Technical Memorandum NOS NCCOS 211. 85 pp.
- Sheavly, S. B. 2007. 'National marine debris monitoring program: final program report, data analysis and summary'. Prepared for U.S. Environmental Protection Agency by Ocean Conservancy, Grant Number X83053401-02. 76 pp. Retrieved February 20, 2019 from the Ocean Conservancy website: http://act.oceanconservancy.org/site/ DocServer/NMDMP\_REPORT\_Ocean\_Conservancy\_2\_.pdf?ocID=3181
- Washington Department of Fish & Wildlife (WDFW). 2019. Fishing & Shellfishing. Derelict Fishing Gear Removal Project. Accessed February 25, 2019 from the WDFW website: https://wdfw.wa.gov/fishing/derelict/

# APPENDIX A

**Reporting Protocols** 

# Appendix A Large Whale Entanglements

What to do if you find an entangled whale:

• Call - the NOAA Fisheries' Hotline at 877-SOS-WHALe (877-767-9425) to alert authorized responders .

• Monitor - if a response is possible, authorities may ask that you watch the animal from a safe distance (greater than 100 yards and not directly behind).

• Document - if possible take photos and video of animal and entanglement from a safe distance.

• Stay in the boat - never get in the water to help a whale.

• Wait for trained, authorized personnel - do not attempt to free a whale on your own. Disentangling a large whale is dangerous. Removing trailing lines and buoys may diminish the chances of freeing the animal of all gear, potentially leaving lethal wraps behind.

• For dead stranded whales and dolphins, notify Channel Islands Cetacean Research Unit (CICRU) at (805) 896-0858

## **Seals and Sea Lions**

For injured/dead seals and sea lions, notify Channel Islands Marine & Wildlife Institute (CIMWI) at their Rescue Hotline: (805) 567-1505.

## **Report Derelict Fishing Gear**

Report any derelict gear you encounter to California Lost Gear Recovery Project 1-888-491-GEAR and VSE.

#### When you encounter derelict fishing gear:

Do not attempt removal. Recreational divers are strongly cautioned to avoid the gear because of the inherent dangers.

#### Record as much information as you can while you're on-site including:

- Location GPS coordinates/chart location (latitude/longitude), water depth, distance from nearby landmarks and/or common names for the area;
- **Type of Gear** Nets (monofilament gillnet or twine-like purse seine, trawl or fish farm pens), Pots/Traps (round or square for crab or shrimp, singular or multiple), Ropes/Lines, Floats, Trawl Doors or others;
- **Details** Date and time of sighting, your activity during sighting (fishing, diving, boating), type of seabed, size of the gear, number and type of invertebrates, fish, birds or marine mammals entangled or dead in the gear, perceived level of threat to humans or passing vessels;
- **Contact Name** Your name, phone number, address, and/or email address will be very helpful should more information be needed. However, anonymous reports will be accepted;
- **Report what you see** even if you're not sure the gear is lost or abandoned.

## 

Gear Removal Management Plan for the Ventura Shellfish Enterprise Project\*

\* Any revisions to the management plans will be updated after receiving comments from relevant regulatory agencies.

## **GEAR REMOVAL MANAGEMENT PLAN** FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

PREPARED FOR:

### **VENTURA PORT DISTRICT**

1603 Anchors Way Ventura, California 93001 Contact: Brian Pendleton

PREPARED BY:

## PLAUCHÉ & CARR, LLP.

1218 3<sup>rd</sup> Avenue, Suite 2000 Seattle, Washington 98101 Contact: Robert Smith

## AUGUST 2019

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## TABLE OF CONTENTS

### SECTION

## PAGE

| 1 | INTRODUCTION                    |                                                                                                                                                                                                                                                                | 1                    |
|---|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2 | 2.1                             | ESCRIPTION<br>Project Description<br>Project Location                                                                                                                                                                                                          | .0                   |
| 3 | 3.1<br>3.2<br>3.3<br>3.4<br>3.5 | REMOVAL MANAGEMENT PLAN<br>Overview<br>Bond Requirement<br>Gear Removal in the Event of a Permit Violation or Uncured Default<br>Gear Removal in the Event of a Permit or Sub-Permit Expiration<br>Methodology for Gear Removal<br>Documentation and Reporting | .6<br>.6<br>.7<br>.7 |
| 4 | CONCLUSION                      |                                                                                                                                                                                                                                                                |                      |
| 5 | REFERENCES                      |                                                                                                                                                                                                                                                                |                      |

## FIGURES

| 1 | Project Location                      | 2 |
|---|---------------------------------------|---|
| 2 | Detailed Plan for Shellfish Longlines | 4 |

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## 1 INTRODUCTION

The Gear Removal Management Plan (GRMP) describes the requirements for the removal of aquaculture gear and other structures and personal property from the project area upon expiration and/or termination of a grower/producer's sub-permit or the overall permits associated with the VSE project. The VSE project will establish a commercial offshore bivalve aquaculture operation based from the Ventura Harbor in Ventura, California, focused on the cultivation of Mediterranean mussels (*Mytilus galloprovincialis*).

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## 2 SITE DESCRIPTION

## 2.1 Project Description

The project consists of twenty 100-acre plots (total of 2,000 acres) located in open federal waters of the Santa Barbara Channel (Channel) in the Southern California Bight (SCB), northwest of Ventura Harbor, with approximate depths at the project site ranging from 80 to 114 feet below sea level, with an average depth of 98 feet. The plot locations are shown in Figure 1, with latitude and longitude coordinates for the outer corners indicated. Each of the 20 plots are 2,299.5 feet by 1,899.5 feet, for an average plot size of 100.27 acres. Each plot will contain up to 24 lines (12 end-to-end pairs), with each line consisting of 575 feet of backbone length and 250 feet of horizontal scope on each end. There will be a 50 foot setback on each end of the pairs (for a total of 100 feet of spacing between lines of adjacent parcels) and 50 foot spacing between the two center pins. Parallel lines will be spaced 150 feet apart, with a 125 foot setback at each of the long sides (for a total of 250 feet of spacing between lines of adjacent parcels) (Figure 2). The mussels will be grown and harvested by grower/producers who would sub-permit the plots from Ventura Port District (VPD), and the mussel product will be landed at Ventura Harbor. The aquaculture gear installed for project operations will include the longlines, buoys used to maintain buoyancy and longline tension, and helical screw anchors.

### 2.2 Project Location

The project's twenty 100-acre plots are approximately 3.53 miles from the shore. The closest distance from the plots to the 3-mile nautical line is a minimum of 2,900 feet, with an average closest distance of over 3,000 feet. The closest distance from the growing area to the City of Ventura city limit is 4.5 miles. Ventura Harbor is 4.1 miles from the closest plot (8 miles from the most distant plot). The sub-permit sites are located on sandy bottom habitat outside of any rocky reef habitat, as evaluated in Gentry et al. 2017 and illustrated by NOAA United States West Coast nautical charts (NOAA 2017a).

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

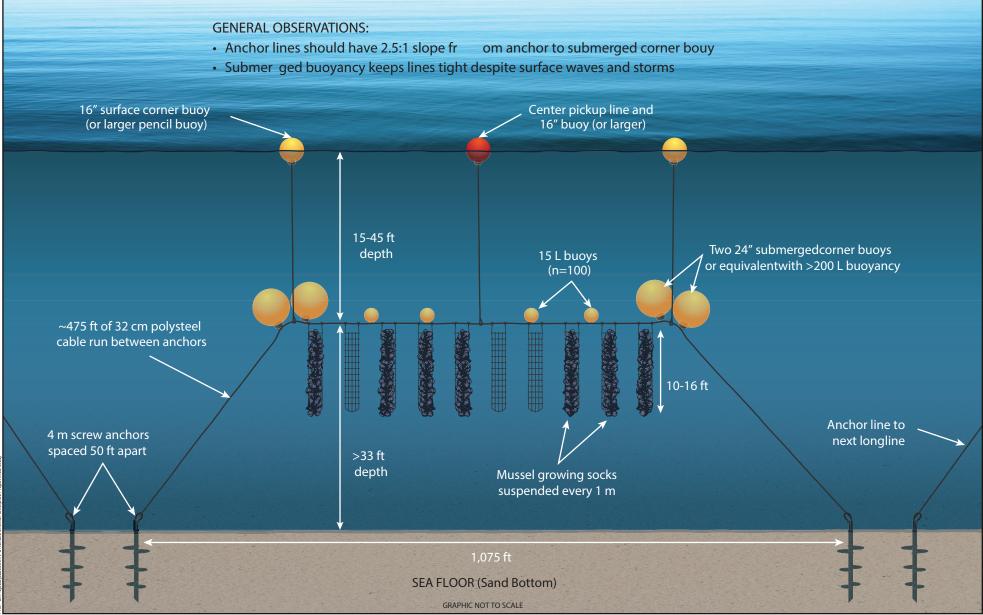


DATE OF PREPARATION: 8/30/2018

DUDEK

6,250

12,500


Feet

**Project Location** Ventura Shellfish Enterprise Project

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

## General Plan for Submerged Longlines



\* Parcel corner buoys will be lighted consistent with U.S. Coast Guard standards and regulations

## DUDEK

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## 3 GEAR REMOVAL MANAGEMENT PLAN

#### 3.1 Overview

This GRMP includes requirements for timely gear removal in the event of expiration or termination of a particular subpermit of an individual grower/producer or expiration or termination of the overall permits for the VSE project. It is intended to provide a reasonable timeframe for gear removal and site cleanup, while acknowledging that the project includes personal property, including the cultivated shellfish, that may take additional time to properly remove. Grower/producers are solely responsible for implementing the procedures described herein and are encouraged to seek additional guidance from the VPD if necessary.

### 3.2 Bond Requirement

In California state waters, the California Coastal Commission and California Department of Fish and Wildlife often require a surety bond or letter of credit to ensure that there is sufficient funding to remove all aquaculture gear and site cleanup in the event that the grower/producer fails to do so. While the project is not within state waters, the VPD believes that this requirement should be incorporated into VSE project requirements. Therefore, prior to starting construction within the project site, the grower/producer must provide a surety bond or letter of credit to the VPD for \$65,000, which is 110% of the estimated cost of gear removal and site cleanup for a 100-acre farm site. The VPD may revise the required bond amount as necessary based upon additional information regarding the actual costs of gear removal and site cleanup. The VPD can also increase or decrease the amount of the bond or letter of credit in the event that the grower/producer cultivates more, or less, than 100 acres. This requirement does not limit the VPD from seeking additional damages or reimbursement from a grower/producer who fails to remove its gear or cleanup its farm site, in the event that the bond or credit amount is insufficient to reimburse the VPD or a hired third-party for such cleanup work.

### 3.3 Gear Removal in the Event of a Permit Violation or Uncured Default

In the event that the grower/producer's gear is contributing to a permit violation or uncured default of any agreement associated with its shellfish farm, the grower/producer must immediately (provided it can be done safely) repair or remove the shellfish gear that is causing the permit violation or default. In the event that the grower/producer fails to do so, the VPD, as well as the U.S. Army Corps of Engineers and U.S. Coast Guard, reserve the right to immediately enter into the grower/producer's farm site to resolve the permit violation or uncured default and seek reimbursement from the grower/producer for any and all costs associated with such resolution. Unless it is an emergency situation, the VPD will provide notice to the grower/producer before undertaking efforts to resolve the permit violation or default.

In the event that the permit violation or uncured default is unrelated to the grower/producer's gear, but results in termination of his or her sub-permit, the grower/producer shall have 30 days to remove all gear and structures from the farm site, including but not limited to any cultivated shellfish and shellfish shells, and return the site to its original

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

condition. The grower/producer must also remove any significant shell accumulation or marine debris from the seafloor under its farm site as well as any known debris from its farm site that is located beyond the farm boundaries.

In the event that the grower/producer fails to remove its gear and structures within 30 days of notice of the violation or default, such gear and structures shall become the property of the VPD, without payment by the VPD. VPD may elect to remove such gear and structures and the grower/producer must pay for the costs of removal and disposal. Alternatively, the VPD may sell any gear and structures left on the farm site. VPD shall apply sale proceeds first to VPD's administrative costs in conducting the sale, then to payment of amount that then may be due from the grower/producer to VPD. VPD shall pay the remainder, if any, to the grower/producer.

### 3.4 Gear Removal in the Event of a Permit or Sub-Permit Expiration

Upon expiration of the overall permits for the VSE project, or individual sub-permit held by a grower/producer, the grower/producer shall commence removal of all aquaculture gear and structures within 30 days of permit expiration. Gear and structures that are not being actively used for cultivation must be removed from the farm site within 30 days. The grower/producer shall not reseed or plant any new shellfish on the site after permit expiration. If a portion of the farm site is not ready to be harvested at the time of permit expiration, the grower/producer shall have a total of 90 days after permit expiration to harvest any and all remaining shellfish, remove all aquaculture gear and structures, remove any significant shell accumulation or marine debris from the seafloor under its farm site as well as any known debris from its farm site that is located beyond the farm boundaries, and return the site to its original condition.

In the event that the grower/producer fails to remove its gear and structures within 90 days of permit expiration, such gear and structures shall become the property of the VPD, without payment by the VPD. VPD may elect to remove such gear and structures and the grower/producer must pay for the costs of removal and disposal. Alternatively, the VPD may sell any gear and structures left on the farm site. VPD shall apply sale proceeds first to VPD's administrative costs in conducting the sale, then to payment of amount that then may be due from the grower/producer to VPD. VPD shall pay the remainder, if any, to the grower/producer.

### 3.5 Methodology for Gear Removal

Both longlines and anchors shall be removed, unless the VPD waives the anchor removal requirement in the event that the farm site is to be used by another sub-permittee that plans to use the anchors and gear. Longlines may be removed either by first detaching the longlines from anchors and then pulling them up to the vessel or cutting the longline backbone in half and then pulling the line and buoys into the vessel. All components will be recycled or appropriately disposed of on land.

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## 3.6 Documentation and Reporting

The grower/producer shall provide photographic or video documentation of the site documenting its return to its original condition as well as a narrative description of its gear removal and cleanup efforts in a report submitted to the VPD and U.S. Army Corps of Engineers, within 90 days of termination or expiration of its sub-permit.

## 4 CONCLUSION

The Gear Removal Management Plan for the Ventura Shellfish Enterprise provides requirements for gear removal and site cleanup in the event of sub-permit (or master permit) termination or expiration. The individual grower/producers are solely responsible for such cleanup efforts, subject to review and confirmation by the VPD and U.S. Army Corps of Engineers. Installation of the above protocols is expected to significantly reduce the potential for shell deposition, "ghost" aquaculture gear, and marine debris.

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

## 5 REFERENCES

 NOAA. 2017a. United States West Coast, California. Port Hueneme to Santa Barbara. Mercator Projection. Nautical Chart. Washington, DC. U.S. Department of Commerce, NOAA, National Ocean Science, Coast Survey.
 30th Ed. June 2013. Last correction 7/3/2017.

#### GEAR REMOVAL MANAGEMENT PLAN FOR THE VENTURA SHELLFISH ENTERPRISE PROJECT

### INTENTIONALLY LEFT BLANK

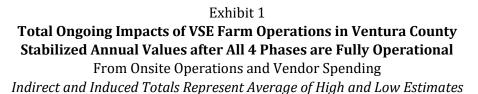


| To:      | Brian Pendleton, General Manager                                        |
|----------|-------------------------------------------------------------------------|
| From:    | Michael Wright                                                          |
| Date:    | November 13, 2020                                                       |
| Subject: | Economic and Fiscal Impacts of the Ventura Shellfish Enterprise Project |

#### Introduction

The Ventura Port District (the District) is currently seeking permits for the Ventura Shellfish Enterprise project (VSE), a multi-party initiative to permit twenty 100-acre plots for growing the Mediterranean mussel (*Mytilus galloprovincialis*) via submerged long lines in waters within the Santa Barbara Channel northwest of Ventura Harbor. Project implementation will be phased such that a maximum of 500 acres of growing are will be installed per year, provided that the project meets certain identified thresholds and standards established by regulatory agencies as part of their approval of project permits and monitoring plans. The analysis contained herein is based upon the project descriptions submitted with the District's applications, as clarified based upon further discussions with the District.

The District has been the recipient of two NOAA California Sea Grant sub-awards that provide financial support for the VSE project. The first Sea Grant issued in 2015 provided funding for preparation of a strategic permitting plan, preparation of all required permit and entitlement applications, and an educational outreach program, including eight public workshops. The second Sea Grant issued in 2018 is providing funding for coordination of a permit assignment strategy with the regulatory agencies, environmental review, a seafood safety and quality assurance plan, and a grower/producer compliance training program and information dissemination. As the District works to complete these 2018 Sea Grant tasks, the District has simultaneously engaged Illuminas Consulting to estimate the local fiscal and economic impacts associated with the VSE project.


As the shellfish aquaculture industry grows on the west coast of the United States and around the world, growers and policymakers strive for a better appreciation of the industry's economic impact on local regions. Assessing an industry's economic impact is a way to gain a deeper understanding of the role that industry plays in the local economy, thereby helping industry representatives and local policy makers to make informed decisions.

#### Summary of Results

#### **Economic Impact of VSE Project**

Economic impact measures the effects on the local economy by the introduction of new business operations to be located within the 2,000-acre VSE project area. Effects are measured as new economic output, jobs and overall growth in area wages due to this new activity.

By buildout of all four phases of the VSE project, the 20 onsite growers are projected to spend \$10.4 million annually in Ventura County to purchase supplies and services necessary to run the aquaculture farms<sup>1</sup>. This spending will support approximately 40 onsite jobs with a collective wage impact of \$2.5 million per year.



## \$18.4M

Total Economic Output Generated



<sup>1</sup> All costs are in current year 2020 dollars.

The grower business-to-business spending as well as farm employee consumer purchases will support an additional \$8.0 million in indirect (business-to-business) and induced (consumer spending) impacts throughout the Ventura County area. This spending will support an average of 13 jobs with an associated wage impact of \$1.7 million<sup>2</sup>.

In addition to the ongoing effects of annual grower expense spending, each grower will invest in startup equipment necessary to operate their business. For all four phases, one-time equipment purchases are estimated to be \$23.6 million. Equipment purchases will support an additional \$13.3 million in indirect (business-to-business) and induced (consumer spending) impacts throughout the Ventura County area at the start of each of the four project phases.

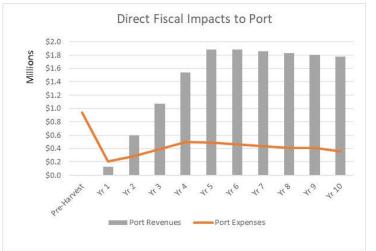
Exhibit 2 Total One-Time Impacts of VSE Farm Capital Purchases in Ventura County (All Phases)

\$23.6M+\$13.3M=\$36.9MOne-Time<br/>Spending for<br/>Startup<br/>EquipmentIndirect and<br/>Induced Output in<br/>Ventura CountyTotal Impact in<br/>Ventura County

#### Fiscal Impact of VSE Project

In addition to the economic output and job impacts associated with the VSE project, there are fiscal impacts associated with direct revenues and costs to the District as well as some indirect tax revenues that are likely to be captured by city jurisdictions located within Ventura County.

Over the first 10 years of operation, it is anticipated that all four phases of the VSE will be operational and will generate a cumulative net positive impact to the District of \$9.5 million or \$1.4 million annually by year 7. The District will collect revenues from slip and landing fees as well as payments by growers for compliance, monitoring and enforcement activities. District costs to run the VSE project include biological compliance, monitoring and enforcement; information management services; shellfish sanitation services; dedicated staff time for operations and monitoring of VSE businesses; and planning costs associated with the pre-harvest period of the VSE project.


There will be tax revenues generated for cities located in Ventura County as well<sup>3</sup>. At the beginning of each phase when VSE operators invest in startup equipment, there will be a one-time local sales tax revenue generation of \$58,930 to the city where the purchase of equipment is made<sup>4</sup>. Ongoing tax revenue impacts include sales tax and utility user's tax revenues from business supply purchases as well as consumer purchases from VSE employees. This will total \$49,100 annually by year 5. Over the first 10 years of operation, the VSE project will generate a cumulative net positive impact to surrounding cities of \$653,000.

<sup>&</sup>lt;sup>2</sup> Indirect and induced totals represent an average of high and low range estimates.

<sup>&</sup>lt;sup>3</sup> The fiscal impact analysis focuses on impacts to cities in the County of Ventura where much of the vendor spending and employee consumer purchases are projected to take place. It does not project impacts accruing to the state or federal jurisdictions.

<sup>&</sup>lt;sup>4</sup> Totals reflect point of purchase returns to the city where the sale takes place. This totals to 1.0 percent of the retail sales price.

Exhibit 3 Direct Fiscal Impact to District



#### **\$9.5M** Net Impact to Port Over Ten Years

Exhibit 4 Tax Revenue Impact to Local Cities



## \$653,000

Tax Revenue to Local Cities Over Ten Years

#### Downstream Economic Impacts

While the main focus of this analysis are the impacts directly associated with VSE grower businesses, they are only the first step in a multi-level production chain that includes seafood processors, distributors, restaurants and grocery stores.

Mussels harvested in VSE plots will be transported to Ventura Harbor for sale and distribution. Growers will individually decide how their catch will be distributed. However as seen in other areas of California as well as other states with established shellfish operations, a portion of the catch

typically winds up in local restaurants and grocery stores with the remaining portion going to local processing facilities for local or export sales.

For purposes of providing an illustration of the relative importance of capturing the downstream impacts locally, an analysis was developed to show the impacts associated with the chain of product distribution once the harvested mussels leave the Port property. Keeping production, distribution, processing and consumption "local" makes for a more sustainable system, less food miles traveled and more work for local employees.

Annual grower revenues for the VSE product are estimated to be \$29.3 million by full buildout<sup>5</sup>. Even assuming that a significant portion of economic activity in processing and wholesale operations as well as restaurant and retail market sales occur at locations outside of Ventura County, the result is that for every VSE grower job, an additional 1.4 jobs could be supported in local businesses that process, distribute and sell the resulting shellfish product<sup>6</sup>. Accounting for the full effect of downstream business activity and all resulting economic multiplier activity, **the VSE project could support 97 jobs total within the greater Ventura County economy if there is a concerted effort to develop a local infrastructure to process, distribute and sell the shellfishproduct locally.** 

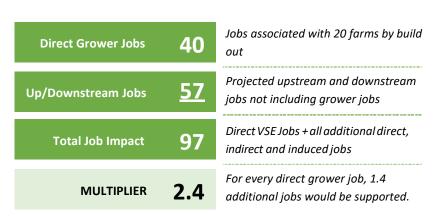



Exhibit 5 Total Impact Including Downstream Economic Effects

<sup>&</sup>lt;sup>5</sup> Estimated gross annual revenues of \$1,462,500 per grower x 20 growers = \$29.3 million.

<sup>&</sup>lt;sup>6</sup> For this analysis, it is assumed that approximately 51 percent VSE shellfish product would remain within Ventura County for processing, distribution and consumption.

### Overview of the Shellfish Aquaculture Economy in California

California has a rich history in shellfish aquaculture dating back to the 1860s. Currently, aquaculture facilities that produce food products are located up and down the coast, and in ponds and tanks inland. Although the majority of operations are

inland. Although the majority of operations are within coastal waters, there are three active land-based facilities growing shellfish and/or seaweed for commercial sale and consumption, with a fourth longstanding operation in Cayucos near Morro Bay recently closed. Currently, a total of 4,960 acres of California public tidelands are utilized for marine aquaculture.<sup>7</sup>

Additionally, the California Department of Fish and Wildlife manages 17 active state water bottom leases for marine aquaculture totaling 907 acres, of which 267 acres are currently used. Aquaculture facilities without state water bottom leases include operations within Humboldt Bay, Monterey Bay, Agua Hedionda Lagoon, and San Diego Bay. These facilities account for an additional 4,053 acres set aside for marine aquaculture in California waters. Total shellfish production reported to California Department of Fish and Wildlife in 2018 was 495.2 metric tons for all species combined. In all, the total value of commercial production in 2018 was \$15.3 million.<sup>8</sup>



Public demand for local shellfish has risen dramatically in recent decades. Worldwide, demand for farmed seafood has never been greater, as global farmed aquaculture exceeded beef production for the first time in 2012.<sup>9</sup> However, shellfish cultivation in the state has lagged far behind. While California is the third largest shellfish consuming state in the United States, state production meets less than half of this demand, contributing to a state and national seafood trade deficit and a lost opportunity for economic growth.<sup>10</sup>

California aquaculture development continues to face many challenges and opportunities, influenced by factors including rapid scientific and technical advances, global and local market forces, competing

<sup>&</sup>lt;sup>7</sup> *The Status of Commercial Marine Aquaculture in California* - California Department of Fish and Wildlife, March 2020. The map on this page indicates locations of commercial marine aquaculture facilities in California. Open circles show locations with facilities in state waters and closed circles show land-based facilities. Many facilities within state waters also have associated land-based facilities.

<sup>&</sup>lt;sup>8</sup> These totals cover commercial production of mussels, Manila Clams, Red Abalone, Kumamoto Oysters, Pacific Oysters, Olympia Oysters, European Flat Oysters, and Eastern Oysters.

<sup>&</sup>lt;sup>9</sup> National Geographic Ocean Views, "Farmed Fish Now More Popular Than Beef Worldwide", 6/19/13. <sup>10</sup> California Shellfish Initiative - *A Position Paper of the Pacific Coast Shellfish Growers Association*, August 2013

stakeholder and land-use priorities, and the expense and complexity of environmental and regulatory review and administration.

One solution to the high cost and specialized expertise now needed to successfully navigate environmental review and permitting has been proposed through a number of creative, collective solutions. Various port and harbor districts have undertaken efforts to secure entitlements for aquaculture activity within their jurisdictions, by pre-permitting and business incubation initiatives. If successful, such efforts would enable aquaculture partners and sub-lessees to get started producing sooner, with a lower cost of entry, and with repayment to the districts over time. The cost savings of quicker startup and predictable permitting can provide the needed catalyst to build local aquaculture industries, benefiting surrounding economies (from local to state and federal levels), through added jobs and business activity, tax and license revenues, and the decrease of both carbon-footprint and trade deficit provided by locally-produced seafood.

The District's VSE project is an example of a special district-initiated program to facilitate the expansion of aquaculture farms that can help to boost local supplier networks for home-grown seafood in California. An additional benefit is that, if successful, the businesses started under the VSE project will contribute to ongoing economic growth in the greater Ventura County region.

#### Estimated Economic Impact of Ventura's VSE Project

#### Economic Impact Process

As the shellfish aquaculture industry grows on the west coast of the United States and around the world, growers and policymakers strive for a deeper understanding of the industry's economic impact on local regions. Assessing this impact is a way to gain a deeper understanding of the role that the industry plays in the local economy, thereby helping industry representatives and local policy makers to make informed decisions.

Economic impact measures the effects on the local economy by the introduction of new the business operations to be located within the 2,000-acre VSE project area. Effects are measured as new economic output, jobs and overall growth in area wages due to this new activity.

For this analysis, there are two stages of economic impact that are measured:

1. **The impact of aquaculture farming operations**. This encompasses one-time startup investment purchases as well as ongoing economic activity for the growers that will occupy the plots constituting the VSE project area.

The ongoing economic activity encompasses direct business-to-business spending on supplies, utilities, fuel for vessels, repairs and maintenance, marketing, slip, landing fees and other lease fees and compliance, monitoring, enforcement costs. This business-to-business (and business-to-government) spending will largely occur within the local economy. Additionally, each operator is assumed to have full time as well as possibly part-time employees that will be paid wage incomes. It is assumed that these employees will in-turn spend a portion of their incomes at local businesses located within the County.

2. Downstream impacts associated with the sale and distribution of harvested product -Residents and tourists of West Coast communities all enjoy and benefit from the supply of fresh shellfish provided by the aquaculture industry. People purchase shellfish through retail markets, consume shellfish in restaurants, and enjoy local seafood fare at fundraisers and events.

Mussels harvested in VSE plots will be transported to Ventura Harbor for sale and distribution. Growers will individually decide how their catch will be distributed. However as seen in some other areas of California as well as other states with established shellfish operations, a portion of the catch typically winds up in local restaurants and grocery stores with the remaining portion going to local processing facilities for local or export sales.<sup>11</sup> This distribution process creates its own economic impact process as the wholesale sales by shellfish growers move down the food chain, create additional value and involve the activity of additional business and as well as associated job impacts.

#### Impacts Associated with VSE Project

According to the VSE Operations Plan, the project will consist of twenty 100-acre plots (total of 2,000 acres) to be used for growing Mediterranean mussel. Each of the 20 plots are approximately 100 acres in size. The installation of the 2,000 acres will be phased such that 500 acres per year will be installed, provided that the project meets certain identified thresholds and standards established by regulatory agencies as part of approval of project permits and monitoring plans.

The mussels will be grown and harvested by growers who operate the plots pursuant to an agreement with the District. Initial plantings of juvenile seed mussels, commonly referred to as spat, will be purchased from onshore hatcheries certified by the California Department of Fish and Wildlife (CDFW).

Once fully matured mussels have been harvested, they will be size-graded and bagged for landing as market-ready product. All mussels will be required to be landed at Ventura Harbor where they will be transported for offloading, sale, and distribution. All husbandry activities related to harvesting, grading, and restocking of mussels to cultivation lines will occur onboard the servicing vessel using specialized equipment for that purpose. Watercraft used for planting, inspections, and harvesting would likely be home ported at Ventura Harbor.

The process to estimate economic impacts from the VSE Grower project involves two generalized steps:

- 1. Estimating the direct economic output, employment and wages levels for the VSE project; and
- 2. Applying economic multipliers to each of these estimates to project the effect of new business-to-business and consumer spending on the local area.

Direct output, or business spending by a VSE grower has been estimated using information supplied by District staff. A detailed proforma was developed for the District to illustrate projected grower

<sup>&</sup>lt;sup>11</sup> Morro Bay Commercial Fisheries – 2015 Economic Impact Report by Lisa Wise Consulting; Maine Aquaculture – 2017 Economic Impact Report by the University of Maine Aquaculture Research Institute; and Massachusetts Shellfish Aquaculture Economic Impact Study (2015) by The University of Massachusetts Dartmouth and the Charlton College of Business, Center for Marketing Research

costs and revenues associated with operating a 100-acre plot in the VSE area<sup>12</sup>. A summarized copy of this proforma is attached at the back of this memorandum as Exhibit A1.

Using the details from the grower proforma, it is assumed that by a stabilized year 5, each grower will spend approximately \$600,000 in annual business expenses<sup>13</sup>. Of this amount, it is estimated that 85 percent will be spent locally within Ventura County (total of \$510,000)<sup>14</sup>. In addition to ongoing annual expenses, each grower will purchase \$877,800 in startup equipment<sup>15</sup> and will contribute to the purchase of a support vessel valued at \$1.5 million<sup>16</sup>. Exhibit 6 below summarizes these impacts.

|                                                        |                 | Im | pacts are Cum | ulative | by Phase /1 |                  |
|--------------------------------------------------------|-----------------|----|---------------|---------|-------------|------------------|
|                                                        | <br>Phase 1     |    | Phase 2       |         | Phase 3     | Phase 4          |
| One-time Capital Purchases 2/                          | \$<br>5,893,360 | \$ | 5,893,360     | \$      | 5,893,360   | \$<br>5,893,360  |
| Economic Output 3/<br>(e.g. Local Spending by Growers) | \$<br>2,597,412 | \$ | 5,194,824     | \$      | 7,792,236   | \$<br>10,389,648 |
| Direct Employment<br>(e.g. Onsite Jobs)                | 10              |    | 20            |         | 30          | 40               |
| Direct Wage Income<br>(e.g. Wages for Onsite Jobs)     | \$<br>633,750   | \$ | 1,267,500     | \$      | 1,901,250   | \$<br>2,535,000  |

### Exhibit 6 Summary of Direct Business Impacts – VSE Project by Phase

1/ Each phase consists of five plots, each occupied by one grower

2/ Startup investment for each grower includes longlines, seeding and harvesting equipment. Investment also includes the purchase of 1 Harvest Vessel for every 5 growers.

3/ Purchases shown are assumed to occur within Ventura County. Seed purchases are assumed to occur outside of the area.

It is estimated that each grower will employ nearly 2.0 full-time equivalent employees with a combined annual wage of \$126,800 (rounded). Exhibit A2 at the back of this memorandum provides a detailed estimate of the direct grower impacts by project phase.

### Multiplier Impacts Associated with the VSE Project

Aquaculture farming is a highly specialized business operation. In order to best project the local economic impacts of this type of business, it was decided to use industry specific economic multipliers developed for a research project sponsored by the Pacific Shellfish Institute (PSI) in

<sup>13</sup> Note, all costs are shown in current year 2020 dollars with no inflation assumptions applied.

<sup>&</sup>lt;sup>12</sup> Proforma developed by Scott Lindell, Research Specialist – APOE, Woods Hole Oceanographic Institution.

<sup>&</sup>lt;sup>14</sup> At this point in time, it is conservatively assumed that seed purchases by growers will occur at outlets located outside of Ventura County such as the nursery facilities located in Humboldt Bay. Should seed purchases be made within Ventura County, startup and ongoing investment in Ventura County from VSE growers would be greater than estimated here.

<sup>&</sup>lt;sup>15</sup> Longlines, seeding and harvesting equipment and a service vessel.

<sup>&</sup>lt;sup>16</sup> One support vessel is assumed to be shared by five growers.

2013<sup>17</sup>. Since the publication of this report, the PSI aquaculture grower multipliers have been referenced in conference materials and a Final Environmental Impact Report document<sup>18</sup>.

The goal of the PSI study was to collect information needed to understand the economic impacts of the west coast shellfish aquaculture industry by gathering data directly from shellfish aquaculture growers. To that end, the study team surveyed growers in Washington, Oregon and California in order to assess industry levels of spending and associated multiplier impacts in each state.

To assess the economic impact of shellfish aquaculture in the three states, the researchers used the grower survey research to develop a detailed understanding of grower business operating costs. They then conducted an input-output analysis using IMPLAN<sup>™</sup> software to estimate economic impacts to each state's economy<sup>19</sup>. Input-output analysis is a modeling tool developed to measure the economic effects of a project or industry using a matrix that tracks the flow of money between industries within a specified economic region of interest. Monetary flows include business-to-business spending as well as consumer spending generated by employee households.

An impact model measures how many times a dollar is respent in, or "ripples" through, an area's economy before it leaks out. The level of respending is captured in a multiplier number. A number greater than 1 indicates that there are a significant number of local businesses present to capture the needs of the industry in question. For example, in order to operate a shellfish farming business, the owner of the business will be need to hire employees, purchase start-up equipment and pay for ongoing supplies such as seed, gasoline for boats, repair and maintenance services, etc. Multiplier numbers that are approaching 1.7 to 2.0 in scale indicate that after the initial spending on wages and business supplies, more of that money is able to circulate among other local businesses before it "leaks" out of the area when purchases are made at businesses located in other regions.

Based on the survey data from shellfish growers and the input-output analysis of spending impacts on other local businesses, the PSI study derived the following industry-specific multipliers for California.

- Output multiplier 1.97. Example, for every \$1 in expenditures by a shellfish grower, the local economy generates \$1.97 in total economic output. (e.g., \$1 in direct spending + \$0.97 in indirect and induced spending at other businesses within the area)<sup>20</sup>.
- Job multiplier 1.40. Example, for every 10 direct jobs created by a shellfish grower, there are a total of 14 jobs generated in the local economy. (10 direct jobs + 4 indirect and induced jobs).

<sup>&</sup>lt;sup>17</sup> *The Economic Impact of Shellfish Aquaculture in Washington, Oregon and California* – Pacific Shellfish Institute April 2013, prepared by Northern Economics.

<sup>&</sup>lt;sup>18</sup> Economic Impact of West Coast Shellfish Aquaculture - Pacific Northwest Waterways Association Summer Conference (June 2013) and Analysis of Project Economic Impacts - Coast Seafoods Company Humboldt Bay Shellfish Aquaculture Permit Renewal and Expansion Project - Recirculated Draft EIR Appendices - Humboldt Bay Harbor District (July 2016).

<sup>&</sup>lt;sup>19</sup> IMPLAN is a widely accepted economic model that many public agencies use to estimate the consequences of new investments or changes in an area economy.

<sup>&</sup>lt;sup>20</sup> Direct spending in this case is by a shellfish grower for all inputs needed to run a business. Indirect spending are cost impacts associated with the grower's supply chain and induced effects are those created by the consumer spending of the directly and indirectly affected workers.

• Wage Multiplier – 1.85. Example, for \$1 in wages paid by a shellfish grower, this economic activity generates \$1.85 in total wage output. (\$1 in direct wages + \$0.85 indirect and induced income for a total of \$1.85 in overall wage growth in the region).

Note, these multipliers assume that all purchases associated with VSE operator business expenses occur within the local economy. Because it is assumed that seed purchases will occur outside of Ventura County, the multipliers have been adjusted downward to account for this. Exhibit 7 combines the direct spending and job estimates from the District's proforma analysis with the PSI impact multipliers, discussed above.

|                          |                      | Ongoi                | ng Impacts   | - All Phase  | es 1/                                |
|--------------------------|----------------------|----------------------|--------------|--------------|--------------------------------------|
|                          | OUT                  | PUT                  | EMPLOY       | (MENT        | WAGE INCOME 2/                       |
|                          | Low 3/               | High                 | Low 3/       | High         | Low 3/ High                          |
|                          |                      |                      |              |              |                                      |
| Direct                   | \$ 10,389,648        | \$ 10,389,648        | 40.0         | 40.0         | \$ 2,535,000 \$ 2,535,000            |
| Indirect                 | \$ 2,368,797         | \$ 2,661,570         | 4.5          | 5.1          | \$ 771,249 \$ 866,572                |
| Induced                  | \$ 5,195,215         | \$ 5,837,320         | 7.5          | 8.5          | \$ 845,228 \$ 949,695                |
| Total<br>Full Multiplier | \$17,953,660<br>1.73 | \$18,888,538<br>1.82 | 52.1<br>1.30 | 53.6<br>1.34 | \$4,151,477 \$4,351,266<br>1.64 1.72 |

### Exhibit 7 Ongoing Economic Impact of VSE Project

### Notes

1/ Source for multipliers: "The Economic Impact of Shellfish Aquaculture in Washington, Oregon and California" – Pacific Shellfish Institute April 2013. PSI multipliers have been adjusted to account for some out of area purchases by growers.

2/ Wage income is a subset of Output.

3/ A deflator value of 0.89 was applied to the low end estimates to reflect the differences in purchasing power between 2013 and 2020.

Due to the age of the multipliers derived for the PSI study, it was decided to employ range estimates for the indirect and induced impacts. The high end of the range is the result of directly applying the PSI multipliers (adjusted for out-of-area seed purchases) to the direct output, job and wage projections. A low-end estimate was derived by using a deflator value of 0.89 to represent the difference in purchasing power between 2013 and 2020<sup>21</sup>.

By buildout of all four phases, the 20 onsite growers are projected to spend \$12.3 million annually to run their businesses, with \$10.4 million of this total spent locally within Ventura County.<sup>22</sup> This spending will support approximately 40 onsite jobs with a collective wage impact of \$2.5 million per year. The grower spending will support an additional average indirect (business-to-business) and induced (consumer spending) impact of \$8.0 million throughout the Ventura County area. This

<sup>&</sup>lt;sup>21</sup> Bureau of Labor Statistics - CPI Inflation Calculator

<sup>&</sup>lt;sup>22</sup> All costs are shown in year 2020 dollars and are not inflated. Seed cost assumed to be spent outside County.

spending will support approximately 13 ongoing jobs with an associated average wage impact of \$1.7 million.<sup>23</sup>

In addition to the ongoing effects of annual grower expense spending, each grower will invest in startup equipment necessary to operate their business. Exhibit 8 illustrates this impact. For all four phases, one-time equipment purchases are estimated to be \$23.6 million. Equipment purchases will support an additional \$13.3 million in indirect (business-to-business) and induced (consumer spending) impacts throughout the Ventura County area.

|                 | One                | <b>Onetime Investments - All Phases</b> |                         |  |  |  |  |  |  |
|-----------------|--------------------|-----------------------------------------|-------------------------|--|--|--|--|--|--|
|                 |                    | Long Lines and                          |                         |  |  |  |  |  |  |
|                 | Support<br>Vessels | Seed/Harvest<br>Equipment               | Total Output<br>Impacts |  |  |  |  |  |  |
| Direct          | \$ 12,000,000      | \$ 11,573,440                           | \$ 23,573,440           |  |  |  |  |  |  |
| Indirect        | \$ 4,440,000       | \$ 3,356,300                            | \$ 7,796,300            |  |  |  |  |  |  |
| Induced         | \$ 2,880,000       | \$ 2,661,890                            | \$ 5,541,890            |  |  |  |  |  |  |
| Total           | \$ 19,320,000      | \$ 17,591,630                           | \$ 36,911,630           |  |  |  |  |  |  |
| Full Multiplier | 1.61               | 1.52                                    | 1.57                    |  |  |  |  |  |  |
|                 |                    |                                         |                         |  |  |  |  |  |  |

### Exhibit 8 One-Time Impacts for Startup Equipment Purchases by VSE Project

Notes

1/ Multipliers for capital investment are derived from IMPLAN. Support vessel purchases use multipliers for Boat Building. Long lines and Seeding/Harvesting Equipment use multipliers for Commercial Service Industrial Machinery Manufacturing.

## Fiscal Impacts of Ventura's VSE Project

In addition to the economic output and job impacts associated with the VSE project, there are fiscal impacts associated with direct revenues and costs to the District as well as some indirect tax revenues that are likely to be captured by city jurisdictions located within Ventura County.

### **District Related Costs and Revenues**

Based on information derived from the illustrative grower proforma<sup>24</sup>, the District will collect revenues from VSE growers for slip and landing fees as well as payments associated with compliance, monitoring, enforcement. In turn, the District will incur a number of costs associated with VSE startup activities as well as ongoing operations. These include biological monitoring and information management services, as well as staff time dedicated to operations and monitoring of VSE

<sup>&</sup>lt;sup>23</sup> Economic output, jobs and wage impacts represents the averages of indirect and induced range values shown in Exhibit 7.

<sup>&</sup>lt;sup>24</sup> See Exhibit A1.

businesses<sup>25</sup>. Finally, District planning and development costs not otherwise covered by grant awards have been allocated as a cost item as well.

Over the first 10 years of operation, it is anticipated that all four phases of the VSE project will be operational and will generate a cumulative net positive impact to the District of \$9.5 million or \$1.4 million annually by year 7 (see Exhibit 9).

### Tax Revenue Impact in Surrounding Jurisdictions

For this analysis the focus of tax revenues impacts are at the local city-level and constitute taxes collected by cities for activities involved in running a business operation as well as sales and use taxes associated with business and consumer purchases.

The purchase of startup equipment as well as ongoing purchases of supplies will generate retail sales in the local area. These sales will be subject to local sales taxes<sup>26</sup>, of which 1.0 percent of the retail sales value is reimbursed to the location where the sale occurs. Retail purchases by employee households will also generate sales tax revenues for local cities such as Ventura and Oxnard.

Over the first 10 years of operation, it is anticipated that all four phases of the VSE will be operational and will generate a cumulative net positive impact to surrounding cities of \$653,000. At the beginning of each phase when VSE operators invest in startup equipment, there will be a one-time local sales tax revenue generation of \$58,934 to the city where the purchase of equipment is made. Ongoing tax revenue impacts include sales tax and utility user's tax revenues from business supply purchases as well as consumer purchases from VSE employees. This will total \$49,100 annually by year 5.

 <sup>&</sup>lt;sup>25</sup> This includes staff time for the following job classifications: Business Operations Manager, Marina Manager, Harbor Patrol II, Courtesy Patrol and Accounting Manager.
 <sup>26</sup> Ventura County sales tax rate is currently at 7.75 percent.

#### ATTACHMENT 3 Fiscal Impacts from VSE Operations

Captured within Ventura County

Year 2020 dollars (no inflation)

|                                           |      |             | F    | Phase 1    |    |           |    |           |    |           |    |               |    |           |     |            |     |           |    |           |    |           |
|-------------------------------------------|------|-------------|------|------------|----|-----------|----|-----------|----|-----------|----|---------------|----|-----------|-----|------------|-----|-----------|----|-----------|----|-----------|
|                                           |      |             |      |            | 1  | Phase 2   |    |           |    |           |    |               |    |           |     |            |     |           |    |           |    |           |
|                                           |      |             |      |            |    |           |    | Phase 3   |    |           |    |               |    |           |     |            |     |           |    |           |    |           |
|                                           |      |             |      |            |    |           |    |           | i  | Phase 4   |    |               |    |           |     |            |     |           |    |           |    |           |
| Year                                      |      | e-Harvest   |      | Yr 1       |    | Yr 2      |    | Yr 3      |    | Yr 4      |    | Yr 5          |    | Yr 6      |     | Yr 7       |     | Yr 8      |    | Yr 9      |    | Yr 10     |
| Cumulative Acres Farmed                   | 8    | Period      |      | 500 ac     |    | 1,000 ac  |    | 1,500 ac  | 3  | 2,000 ac  |    | 2,000 ac      |    | 2,000 ac  | - ĝ | 2,000 ac   | - 3 | 2,000 ac  | 2  | 2,000 ac  |    | 2,000 ac  |
| DIRECT IMPACTS TO PORT DISTRICT           |      |             |      |            |    |           |    |           |    |           |    |               |    |           |     |            |     |           |    |           |    |           |
| Direct Revenues to Port District 1/       |      |             |      |            |    |           |    |           |    |           |    |               |    |           |     |            |     |           |    |           |    |           |
| SlipFees                                  | \$   | <b>2</b> 0  | \$   | 30,385     | \$ | 72,164    | \$ | 113,943   | \$ | 155,722   | \$ | 167,116       | \$ | 167,116   | \$  | 167,116    | \$  | 167,116   | \$ | 167,116   | \$ | 167,116   |
| Landing Fees                              |      | <del></del> |      | <b>T</b> ) |    | 365,625   |    | 731,250   |    | 1,096,875 |    | 1,462,500     |    | 1,462,500 |     | 1,462,500  |     | 1,462,500 |    | 1,462,500 |    | 1,462,500 |
| Compliance, Monitoring, Enforcement       |      | 20          |      | 99,800     |    | 162,470   |    | 225,140   |    | 287,810   |    | 250,680       |    | 250,680   |     | 225,510    |     | 200,340   |    | 175,170   |    | 150,000   |
| Total Revenues - Port District            | \$   | -           | \$   | 130,185    | \$ | 600,259   | \$ | 1,070,333 | \$ | 1,540,407 | \$ | 1,880,296     | \$ | 1,880,296 | \$  | 1,855,126  | \$  | 1,829,956 | \$ | 1,804,786 | \$ | 1,779,616 |
| Direct Costs to Port District             |      |             |      |            |    |           |    |           |    |           |    |               |    |           |     |            |     |           |    |           |    |           |
| Compliance, Monitoring, Enforcement       | \$   | -           | \$   | (99,800)   | \$ | (162,470) | \$ | (225,140) | \$ | (287,810) | \$ | (250,680)     | \$ | (250,680) | \$  | (225,510)  | \$  | (200,340) | \$ | (175,170) | \$ | (150,000) |
| Biological Monitoring Services 2/         |      | (28,940)    |      | (28,940)   |    | (28,940)  |    | (28,940)  |    | (28,940)  |    | (28,940)      |    | (28,940)  |     | (28,940)   |     | (28,940)  |    | (28,940)  |    | (28,940)  |
| Information Management Services 3/        |      | (47,430)    |      | (9,620)    |    | (9,620)   |    | (9,620)   |    | (9,620)   |    | (9,620)       |    | (9,620)   |     | (9,620)    |     | (9,620)   |    | (9,620)   |    | (9,620)   |
| Shellfish Sanitation Services 4/          |      | (150,800)   |      | (26,800)   |    | -         |    | 14        |    | 84        |    | (26,800)      |    | -         |     | ( <b>.</b> |     | (L)       |    | (26,800)  |    | ¥         |
| Staff Time Dedicated to VSE Activities 5/ |      |             |      | (42,483)   |    | (84,965)  |    | (127,448) |    | (169,931) |    | (169,931)     |    | (169,931) |     | (169,931)  |     | (169,931) |    | (169,931) |    | (169,931) |
| Pre-Harvest Direct Costs to District 6/   |      | (715,793)   |      | 2          |    | 2         |    | 12        |    | 84        |    | 6 <b>-</b> 63 |    | -         |     | 2.42       |     | (E)       |    | -         |    | 8         |
| Total Costs - Port District               | \$   | (942,963)   | \$   | (207,643)  | \$ | (285,995) | \$ | (391,148) | \$ | (496,301) | \$ | (485,971)     | \$ | (459,171) | \$  | (434,001)  | \$  | (408,831) | \$ | (410,461) | \$ | (358,491) |
| Net Revenue to Port District / (Net Cost) | \$   | (942,963)   | \$   | (77,458)   | \$ | 314,264   | \$ | 679,185   | \$ | 1,044,106 | \$ | 1,394,325     | \$ | 1,421,125 | \$  | 1,421,125  | \$  | 1,421,125 | \$ | 1,394,325 | \$ | 1,421,125 |
| CUMULATIVE 10-YEAR IMPACT                 | \$ 9 | 9,490,000   | (ro  | unded)     |    |           |    |           |    |           |    |               |    |           |     |            |     |           |    |           |    |           |
| IMPACTS TO LOCAL JURSIDICATIONS           |      |             |      |            |    |           |    |           |    |           |    |               |    |           |     |            |     |           |    |           |    |           |
| Tax Revenue to Local Jurisdictions        |      |             |      |            |    |           |    |           |    |           |    |               |    |           |     |            |     |           |    |           |    |           |
| Based on Ongoing Revenues 7/              | \$   | -           | \$   | 12,270     | \$ | 24,540    | \$ | 36,810    | \$ | 49,080    | \$ | 49,080        | \$ | 49,080    | \$  | 49,080     | \$  | 49,080    | \$ | 49,080    | \$ | 49,080    |
| Based on One-Time Capital Purchases 8/    | -    | -           | -    | 58,934     | -  | 58,934    | -  | 58,934    | -  | 58,934    | -  | -             | -  | -         | -   | -          | -   | -         |    | -         | -  | -         |
| Total Tax Revenue to Local Jurisdictions  | \$   | -           | \$   | 71,204     | \$ | 83,474    | \$ | 95,744    | \$ | 108,014   | \$ | 49,080        | \$ | 49,080    | \$  | 49,080     | \$  | 49,080    | \$ | 49,080    | \$ | 49,080    |
| CUMULATIVE 10-YEAR IMPACT                 | \$   | 653,000     | (roi | unded)     |    |           |    |           |    |           |    |               |    |           |     |            |     |           |    |           |    |           |

Notes

1/ Revenue estimates for slip and landing fees as well as payments to cover compliance, monitoring and enforcement activities are from the VSE proforma dated November 10, 2020. Excludes cost of Start-up Construction Wildlife Monitoring

2/ Source: Proposal for Biological Monitoring Services for the Ventura Shellfish Enterprise Project, Dudek - 8/21/2020

3/ Information Management Services for the Ventura Shellfish Enterprise Project, Dudek - November 2020

4/ Shellfish Sanitation Services for the Ventura Shellfish Enterprise: Supporting Company/Harvester Compliance with Regulatory Guidelines for Shellfish Sanitation and Public Health Safety, Integrative Biosciences Program at Coastal Marine Biolabs - July 2020

5/ Based on information detailed in Section 9 of the Ventura Shellfish Enterprise Operations Plan and information regarding annual wages for Port District staff (Source: Ventura Port District)

6/ Source: Ventura Port District

7/ Includes sales tax on business supplies and employee retail spending captured in area. Assumes that the City of Ventura would assess utility users tax to VSE businesses.

8/ Sales tax on purchases of capital equipment

### **Potential Downstream Impacts**

While the main focus of this analysis are the impacts directly associated with VSE grower businesses, they are only the first step in a multi-level production chain that includes seafood processors, distributors, restaurants and grocery stores.

As previously noted, mussels harvested in VSE plots will be transported to Ventura Harbor for sale and distribution. Growers will individually decide how their catch will be distributed. However as seen in other areas of California as well as other states with established shellfish operations, a portion of the catch typically winds up in local restaurants and grocery stores with the remaining portion going to local processing facilities for local or export sales. For example, a large percentage of the oysters harvested in Morro Bay are shipped directly to the Santa Monica Seafood's processing plant in Atascadero (San Luis Obispo County)<sup>27</sup>.

This distribution process creates its own economic impact activity as the wholesale sales by shellfish growers move down the food chain, create additional value and involve the activity of additional business and as well as associated job impacts. This process is illustrated in Exhibit 10 on the next page.

The relative shares of final VSE product that will ultimately be distributed among processing facilities and other associated sales outlets have yet to be determined. However, for purposes of providing an illustration of the relative importance of capturing the downstream impacts locally, information from a recent NOAA Technical Memorandum<sup>28</sup> has been used to provide a reasonable estimate of the chain of product distribution once the harvested mussels leave the Port property. Keeping production, distribution, processing and consumption "local" makes for a more sustainable system, less food miles traveled and more work for local employees.

### **Product Flow**

Product flow refers to the sale of fish and seafood products by harvesters, processors, and wholesalers/distributors. If fish or seafood products are sold to final consumers in the U.S. or exported, the opportunity for adding value and thereby creating new economic impacts ends.

Alternatively, when seafood products are sold to businesses that then add value, economic impacts are created. Product flow starts with harvesters who may sell to processors, wholesalers, grocers, restaurants, or directly to final consumers or exporters. Processors may sell to wholesalers, grocers, restaurants, or directly to final consumers or exporters.

 <sup>&</sup>lt;sup>27</sup> Morro Bay Commercial Fisheries – 2015 Economic Impact Report by Lisa Wise Consulting
 <sup>28</sup> An Approach to Determining Economic Impacts of U.S. Aquaculture - U.S. Department of Commerce, National Oceanic and Atmospheric Administration and the National Marine Fisheries Service. September 2019.
 Authors - Doug Lipton, Matt Parker, John DuBerg, and Michael Rubino.

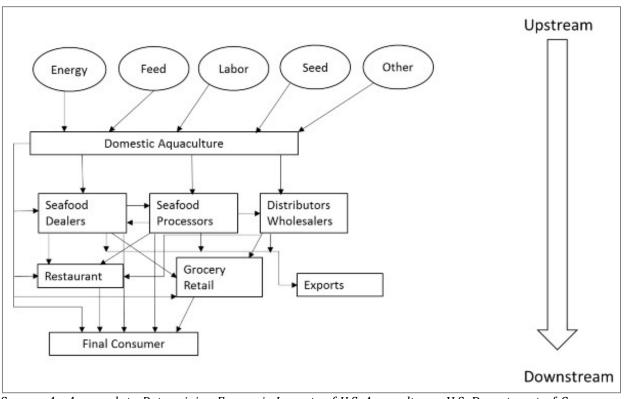



Exhibit 10 Schematic of the Domestic Aquaculture Seafood Market for Estimating Economic Impacts.

Source: *An Approach to Determining Economic Impacts of U.S. Aquaculture* - U.S. Department of Commerce, National Oceanic and Atmospheric Administration and the National Marine Fisheries Service. September 2019.

The NOAA Technical Memorandum references a study of seafood product flows for various types of products based on case studies in a number of regional markets<sup>29</sup>. In reality, flow of products is more complicated with product moving between processors or from processors to wholesalers to processors and so on. However, in the absence of other data, they represent the best picture of product flow currently available.

### Potential Job Impacts of Downstream Activity

Exhibit 11 provides an illustration of the potential local employment impacts associated with downstream activity. The initial proformas developed to illustrate grower business plans assume that on average, each grower is expected to generate nearly \$1.5 million in annual sales of product (all values are in year 2020 dollars). Collectively, all 20 plots should generate \$29.3 million in annual sales.

<sup>&</sup>lt;sup>29</sup> *The NMFS Commercial Fishing & Seafood Industry Input/Output Model* - Prepared for the National Marine Fisheries Service – August 2009. Author – James Kirkley, Virginia Institute of Marine Science.

## illuminas Consulting

Growers will likely sell their shellfish product to a number of sources including processors, wholesalers, direct sales to restaurants and retail markets and possibly directly to final consumers. Estimated shares for each of these segments follows the allocations suggested by the industry research reviewed in the NOAA Technical Memorandum. Note that these distributions are illustrative only and may not reflect the actual distribution pattern once the VSE project is operational.

The wholesale value allocated to each industry segment is adjusted by value markups typical for each type of business. For example, businesses involved in seafood wholesaling and distribution will typically mark up their purchases by 15 to 20 percent. In turn, if they sell product to restaurants, the restaurant will mark up their final sale price by 30 to 35 percent. On average for all segments, the value of the VSE shellfish product will increase by nearly 20 percent as it moves through processing and distribution to final consumption.

Finally, in order to provide a relatively conservative employment projection for the County, it is estimated 50 percent of the final shellfish product processing, 30 percent of wholesale and distribution activity and 25 percent restaurant, retail and final customer activity remain within Ventura. In total, it is assumed that 51 percent of direct economic impact associated with downstream activities remains within Ventura and 49 percent is exported outside the County either domestically or internationally.

The result, shown at the bottom of Exhibit 11, it that for every VSE grower job, an additional 1.4 jobs could be supported in local businesses that process, distribute and sell the resulting shellfish product. Accounting for the effect of downstream business activity, grower vendor spending and farm employee consumer purchases, and all resulting economic multiplier activity, the VSE project could support approximately 97 jobs in total within the greater Ventura County economy if there is a concerted effort to develop a local infrastructure to process, distribute and sell the shellfish product locally.

### ATTACHMENT 3 illuminas

## illuminas Consulting

### Exhibit 11 Illustrative Employment Impact of Up and Downstream Activity Totals Represent All Phases in Operation

Year 2020 dollars (no inflation)

|                            | Distribution of | Produc | t Value      | Price Margin    | s - Fina | I Sale     |
|----------------------------|-----------------|--------|--------------|-----------------|----------|------------|
|                            | Share           |        | Total        | Est Margin % 1/ |          | Value      |
| Grower Gross Revenues      |                 | \$     | 29,250,000   |                 |          |            |
|                            |                 |        | $\downarrow$ |                 |          |            |
| Distibution of Product 2/  |                 | - 142  | •            |                 |          |            |
| Processors                 | 40.0%           | \$     | 11,700,000   | 10%             | \$       | 13,000,000 |
| Wholesale / Distributors   | 45.0%           | \$     | 13,162,500   | 15%             | \$       | 15,485,294 |
| Restaurants / Food Service | 2.5%            | \$     | 731,250      | 35%             | \$       | 1,125,000  |
| Groceries / Retail Markets | 7.0%            | \$     | 2,047,500    | 45%             | \$       | 3,722,727  |
| Final Customers            | 5.5%            | \$     | 1,608,750    |                 | \$       | 1,608,750  |
| Total                      | 100.0%          | Ś      | 29,250,000   | 19.5%           | Ś        | 34,941,771 |

|                            |    | Economie   | Impact | - Output (Growe   | er impa   | ts + downstream      | impact  | (5)          |
|----------------------------|----|------------|--------|-------------------|-----------|----------------------|---------|--------------|
|                            |    | Direct     |        | Indirect          |           | Induced              |         | Total        |
| Growers 3/                 | \$ | 10,389,648 | \$     | 2,661,570         | \$        | 5,837,320            | \$      | 18,888,538   |
| Processors                 | \$ | 13,000,000 | \$     | 4,035,653         | \$        | 2,272,137            | \$      | 19,307,790   |
| Wholesale / Distributors   | \$ | 15,485,294 | \$     | 5,586,397         | \$        | 4,687,350            | \$      | 25,759,040   |
| Restaurants / Food Service | \$ | 1,125,000  | \$     | 378,795           | \$        | 445,959              | \$      | 1,949,754    |
| Groceries / Retail Markets | \$ | 3,722,727  | \$     | 1,122,419         | \$        | 1,491,497            | \$      | 6,336,644    |
| Final Customers            | \$ | 1,608,750  | 10     |                   |           |                      | \$      | 1,608,750    |
|                            | \$ | 45,331,419 | \$     | 13,784,834        | \$        | 14,734,263           | \$      | 73,850,516   |
|                            |    |            |        | Employme          | ent Imp   | act                  |         |              |
| Employment                 |    | Direct 3/  |        | Indirect 4/       |           | Induced 4/           |         | Total        |
| Growers (spending)         |    | 40.0       |        | 4.8               |           | 8.0                  |         | 52.8         |
| Processors                 |    | 15.2       |        | 9.1               |           | 7.4                  |         | 31.7         |
| Wholesale / Distributors   |    | 3.6        |        | 2.1               |           | 1.6                  |         | 7.2          |
| Restaurants / Food Service |    | 3.2        |        | 0.6               |           | 0.5                  |         | 4.3          |
| Groceries / Retail Markets |    | 0.7        |        | 0.4               |           | 0.3                  |         | 1.5          |
| Final Customers            | 12 |            | 1.2    |                   |           |                      | 12      |              |
| Total                      |    | 62.7       |        | 16.9              |           | 17.9                 |         | 97.5         |
| Calcluated Ratio           |    |            |        |                   |           |                      |         |              |
| Direct Grower Jobs         |    | 40         | Jobs a | ssociated with 20 | ) farms   | by build out         |         |              |
| Downstream Jobs            |    | 57         | Projec | cted upstream + o | lownstr   | eam jobs not incl    | uding g | rower jobs   |
| Full Multiplier            |    | 2.4        | Forev  | very direct growe | r job, 1. | 4 additional jobs of | could b | e supported. |

Notes

1/ Margin percentages represent the typical markup of prices for each business that purchases from the VSE growers. Restaurant margins include the final markup value from wholesale/distributors + an additional 20% to represent final restaurant prices. Grocery store margins include the final markup value from wholesale/distributors + an additional 30% to represent final grocery store prices.

2/ Source for illustrative distribution of wholesale aquaculture products - The NMFS Commercial Fishing & Seafood Industry Input/Output Model

- Prepared for the National Marine Fisheries Service - August 2009

3/ Grower direct, indirect and induced impacts are from Exhibit 7.

4/ Indirect and induced impacts estimated using IMPLAN multipliers.

Prepared By: Illuminas Consulting

Date: 11/13/2020

# **Appendix Exhibits**

Exhibit A1 - Business Proforma for a 100-acre Site

Exhibit A2 - Direct Impacts from VSE - All Phases - Ventura County

#### Exhibit A1

#### **Business Proforma for a 100-acre Site**

Year 2020 dollars (no inflation)

| Key Assumptions                      |        |        |
|--------------------------------------|--------|--------|
| Number of Market Longlines harvested |        | 24     |
| Number of Nursery Longlines cycles   |        | 4      |
| Total Long Lines installed           |        | 24     |
| Annual Production                    | 585,0  | 00 lbs |
| Wholesale price (\$/lbs.)            | \$2.50 | per Ib |
| Employees (FTE)                      |        | 2.0    |
| Direct Wages                         | \$ 12  | 5,750  |

| Longlines                        | \$<br>408,672   |
|----------------------------------|-----------------|
| Seeding and harvesting equipment | \$<br>170,000   |
| Service Vessel                   | \$<br>300,000   |
| Harvest Vessel                   | \$<br>1,500,000 |
| Escrow account                   | \$<br>80,000    |

| Operations                                    | Estimate      | Yea | r 5 Expenses |
|-----------------------------------------------|---------------|-----|--------------|
| Farming Expenses                              |               |     |              |
| Wages, salaries, benefits                     | Stablized Yr  | \$  | (126,750)    |
| Administration                                | Stablized Yr  | \$  | (15,000)     |
| Seed costs                                    | Stablized Yr  | \$  | (93,600)     |
| Property insurance - stock mortality          | Stablized Yr  | \$  | (73,125)     |
| Property insurance - land based equipment     | tbd           | \$  |              |
| Boat and vehicle insurance                    | Avg of 10 Yrs | \$  | (18,627)     |
| Utilities                                     | Stablized Yr  | \$  | (18,250)     |
| Fuel                                          | Stablized Yr  | \$  | (72,000)     |
| Repairs & maintenance                         | Stablized Yr  | \$  | (100,694)    |
| Marketing                                     | tbd           | \$  | -            |
| Slip Fees                                     | Stablized Yr  | \$  | (8,356)      |
| Landing Fees                                  | Stablized Yr  | \$  | (73,125)     |
| Sub-Total                                     |               | \$  | (599,526)    |
| Compliance, monitoring, enforcement           |               |     |              |
| Start-up Education and Training (1)           | Avg of 10 Yrs | \$  | (66)         |
| Start-up Construction Wildlife Monitoring (2) | Avg of 10 Yrs | \$  | (1,050)      |
| Baseline Substrate Sampling (+ coord, report) | Avg of 10 Yrs | \$  | (676)        |
| Laboratory testing (shellfish bio-toxin*)     | Avg of 10 Yrs | \$  | (7,500)      |
| Monitoring                                    | Avg of 10 Yrs | \$  | (3,020)      |
| Sub-Total                                     |               | \$  | (12,313)     |
| Lease Fees                                    |               |     |              |
| ACOE Lease Fee                                |               | \$  |              |
| CDFW Aquaculture Registration                 | Stablized Yr  | \$  | (1,243)      |
| Sub-Total                                     |               | \$  | (1,243)      |
| Total Operations Expense                      |               | \$  | (613,082)    |
| Annual Debt Service                           | 1st 10 Years  | \$  | (140,006)    |
| Annual Operating Costs                        |               | \$  | (753,089)    |

| Longlines                        | pergrower       |
|----------------------------------|-----------------|
| Seeding and harvesting equipment | pergrower       |
| Service Vessel                   | pergrower       |
| Harvest Vessel                   | 1 per 5 growers |
| Escrow account                   | pergrower       |

| Proforma Summary (Stabilize     | d Opera | ations)   |
|---------------------------------|---------|-----------|
| Operating Costs                 | \$      | (753,089) |
| Revenues                        | \$      | 1,462,500 |
| Net Profit (after debt service) | \$      | 709,411   |

| Purchases Assum      | ed Outside of Ventura | County |
|----------------------|-----------------------|--------|
| Seed costs           | \$                    | 93,600 |
| Other                | \$                    | -      |
| Total Outside Area F | Purchases \$          | 93,600 |

#### Notes

Source: Scott Lindell, Research Specialist - AOPE. Woods Hole Oceanographic Institution. 10 Year Business Plan for 100 Acre Lease site, assuming a 1-year build out with a service vessel purchased capable of managing seeding and maintenance. Separte boat is contracted for installing all anchors and gear, and/or part owned for servicing and harvesting 500 acres. Total startup loan of \$1,100,000 at 5% payed off at 10 years. Use 4 Nursery Longlines stocked once a year (in Q1, then each feeds 5 longlines beginning in Q2, 10 in Q3, 5 in Q4).

#### Exhibit A2

### Direct Impacts from VSE - All Phases - Ventura County

Year 2020 dollars (no inflation)

| Economic Inputs by Grower a         | nd Pha | ise        |
|-------------------------------------|--------|------------|
| Grower Expenses by Phase            |        | Totals     |
| Expenses Per Grower 1/              | \$     | 519,482    |
| Growers per Phase                   |        | 5 growers  |
| Expenses Per Phase                  | \$     | 2,597,412  |
| Startup Investments by Grower       |        |            |
| Longlines                           | \$     | 408,672    |
| Seeding and harvesting equipment    | \$     | 170,000    |
| Service Vessel                      | \$     | 300,000    |
| Escrow account 2/                   | \$     |            |
| Purchases by Each Grower            | \$     | 878,672    |
| Startup Investments by Phase        |        |            |
| Grower Equip / Service Vessels      | \$     | 4,393,360  |
| Shared Harvest Vessel (1 required)  | \$     | 1,500,000  |
| Total Startup Investments by Phase  | \$     | 5,893,360  |
| Total All Phases                    | \$     | 23,573,440 |
| Jobs and Wages Per Phase            |        |            |
| Employment per Grower (100 ac plot) |        | 2.0        |
| Employment Per Phase                |        | 10.0       |
| Wages Per Grower                    | \$     | 126,750    |
| Wages Per Phase                     | \$     | 633,750    |

|                                                                                      | Cum Site Area =              | 500 ac                 | Cum Site Area =            | 1,000 ac                     | Cum Site Area =            | 1,500 ac                                     | Cum Site Area =            | 2,000 ac                                                     |  |
|--------------------------------------------------------------------------------------|------------------------------|------------------------|----------------------------|------------------------------|----------------------------|----------------------------------------------|----------------------------|--------------------------------------------------------------|--|
|                                                                                      | Phase                        | e 1                    | Phas                       | se 2                         | Pha                        | se 3                                         | Phase 4                    |                                                              |  |
|                                                                                      |                              |                        | Direct Ec                  | onomic Outpu                 | it                         |                                              |                            |                                                              |  |
| Phases                                                                               | One-Time<br>Capital Invest I | Annual<br>Expenditures | One-Time<br>Capital Invest | Annual<br>Expenditures       | One-Time<br>Capital Invest | Annual<br>Expenditures                       | One-Time<br>Capital Invest | Annual<br>Expenditures                                       |  |
| Phase 1 operations<br>Phase 2 operations<br>Phase 3 operations<br>Phase 4 operations | \$ 5,893,360                 | \$ 2,597,412           | \$ 5,893,360               | \$ 2,597,412<br>\$ 2,597,412 | \$ 5,893,360               | \$ 2,597,412<br>\$ 2,597,412<br>\$ 2,597,412 | \$ 5,893,360               | \$ 2,597,412<br>\$ 2,597,412<br>\$ 2,597,412<br>\$ 2,597,412 |  |
| Totals by Phase                                                                      | \$ 5,893,360                 | \$ 2,597,412           | \$ 5,893,360               | \$ 5,194,824                 | \$ 5,893,360               | \$ 7,792,236                                 | \$ 5,893,360               | \$ 10,389,648                                                |  |

|                    | E          | irect Employment |        |        |
|--------------------|------------|------------------|--------|--------|
|                    | Onsite     | Onsite           | Onsite | Onsite |
| Phases             | Jobs       | Jobs             | Jobs   | Jobs   |
| Phase 1 operations | 10.0       | 10.0             | 10.0   | 10.0   |
| Phase 2 operations | Downer All | 10.0             | 10.0   | 10.0   |
| Phase 3 operations |            |                  | 10.0   | 10.0   |
| Phase 4 operations |            |                  |        | 10.0   |
| Totals by Phase    | 10.0       | 20.0             | 30.0   | 40.0   |

| Direct Wages                                                                         |                       |                          |                                        |                                                      |  |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------|--------------------------|----------------------------------------|------------------------------------------------------|--|--|--|--|--|
| Phases                                                                               | Total Direct<br>Wages | Total Direct<br>Wages    | Total Direct<br>Wages                  | Total Direct<br>Wages                                |  |  |  |  |  |
| Phase 1 operations<br>Phase 2 operations<br>Phase 3 operations<br>Phase 4 operations | \$ 633,750            | \$ 633,750<br>\$ 633,750 | \$ 633,750<br>\$ 633,750<br>\$ 633,750 | \$ 633,750<br>\$ 633,750<br>\$ 633,750<br>\$ 633,750 |  |  |  |  |  |
| Totals by Phase                                                                      | \$ 633,750            | \$ 1,267,500             | \$ 1,901,250                           | \$ 2,535,000                                         |  |  |  |  |  |

#### Notes:

1/ Assumes that seed purchases are made outside of Ventura County. Operations expenses do not include debt service on loans.

2/ This is a one-time cost to fund an account that may be required of the commercial operation to support the removal of any installed gear at the end of the lease term. For purposes of the economic impact analysis, it has been zeroed out since is not clear when it will be spent and what level of spending will actually be required.



10 Year Business Plan for 100 Acre Lease site, assuming a 1-year build out with a service vessel purchased capable of managing seeding and maintenance. Separte boat is contracted for installing all anchors and gear, and/or part owned for servicing and harvesting 500 acres. Total startup loan of \$1,100,000 at 5% payed off at 10 years. Use 4 Nursery Longlines stocked once a year (in Q1, then each feeds 5 longlines beginning in Q2, 10 in Q3, 5 in Q4).

| Description                                                                    | 1               | 2               | 3               |                 | 5               |                 |                 |                 |                 | 10              |
|--------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                                                                                |                 | 2               | 3               | *               |                 |                 |                 | 0               |                 | 10              |
| Key Assumptions                                                                |                 | 20              | 20              | 20              | 20              | 20              | 0               | 20              | 20              | ~               |
| Number of Market Longlines harvested                                           | 0               |                 |                 |                 |                 |                 | 20              |                 |                 | -               |
| Number of Nursery Longlines cycles                                             | 4.0             | 4.0             | 4.0             | 4.0             | 4.0             | 4.0             | 4.0             | 4.0             | 4.0             | D 4.0           |
| Total Long Lines installed                                                     | 24              | 24              | 24              | 24              | 24              | 24              | 24              | 24              | 24              | 4 24            |
| Annual Production (lbs.)                                                       |                 | 585,000         | 585,000         | 585,000         |                 | 585,000         | 585,000         |                 | 585,000         |                 |
| Wholesale price (\$ /lbs.)                                                     | \$ 2.50         | \$ 2.50         | \$ 2.50         | \$ 2.50         | \$ 2.50         | \$ 2.50         | \$ 2.50         | \$ 2.50         | \$ 2.50         | \$ 2.50         |
| Initial Loan Amount at 5% interest                                             |                 | \$ 1,100,000.00 |                 |                 |                 |                 |                 |                 |                 |                 |
| Start-up Investments                                                           | Year 1          | Year 2          |                 |                 |                 |                 |                 |                 |                 |                 |
| Longlines -                                                                    | \$ 408,672.00   | s -             | \$-             | s -             | \$-             | s -             | \$-             | \$-             | s -             | \$-             |
| Specialized Seeding (Y1) and Harvesting (Y2) Eqpt                              | \$ 20,000.00    | \$ 150,000.00   | \$-             | \$-             | \$-             | \$-             | \$-             | \$-             | s -             | \$-             |
| Service vessel (Y1), 1/5th of Harvest vessel (Y2)                              | \$ 300,000.00   | \$ 300,000.00   | \$-             | \$ -            | \$ -            | \$ -            | \$ -            | \$ -            | \$-             | \$ -            |
| Decommissioning Escrow account -                                               | \$ 80,000.00    | \$-             | \$-             | s -             | \$-             | s -             | \$-             | \$-             | s -             | \$ -            |
| Total Startup Investment -                                                     | \$ 808,672.00   | -\$ 450,000.00  | \$-             | \$-             | \$-             | \$-             | \$-             | \$-             | \$-             | \$-             |
| Operational Expenses                                                           |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Farming costs                                                                  |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| -<br>Wages, salaries, benefits -                                               | \$ 65,000.00    | -\$ 126,750.00  | -\$ 126,750.00  | -\$ 126,750.00  | -\$ 126,750.00  | -\$ 126,750.00  | -\$ 126,750.00  | -\$ 126,750.00  | -\$ 126,750.00  | -\$ 126,750.00  |
| - Administration -                                                             | \$ 15,000.00    |                 |                 | -\$ 15,000.00   |                 |                 |                 |                 |                 |                 |
| Seed costs                                                                     | \$ 93,600.00    |                 |                 | -\$ 93,600.00   |                 |                 |                 |                 |                 |                 |
| Property insurance - stock mortality                                           | s -             | -\$ 73,125.00   |                 |                 |                 |                 |                 |                 |                 |                 |
| Property insurance - land based equipment t                                    | bd              | thd             | tbd             | thd             | thd             | thd             | thd             | tbd             | tbd             | thd             |
| Vessel insurance (Hull & Machinery, + \$1M of P & I)                           | \$ 11,600.00    | -\$ 24,700.00   |                 | -\$ 21,830.98   | -\$ 20,994.71   | -\$ 19,875.23   | -\$ 18,534.28   | -\$ 17,041.70   |                 | -\$ 13,885.91   |
| Utilities                                                                      | \$ 18,250.00    |                 |                 | -\$ 21,000.00   |                 |                 |                 |                 |                 |                 |
|                                                                                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Fuel -                                                                         | \$ 72,000.00    |                 |                 | -\$ 72,000.00   |                 | -\$ 72,000.00   |                 |                 |                 |                 |
| Repairs & maintenance                                                          | s -             | -\$ 64,693.76   |                 | -\$ 100,693.76  |                 |                 | -\$ 100,693.76  |                 |                 |                 |
| 5                                                                              | tbd             |
| Slip Fees -                                                                    | \$ 6,077.00     |                 | -\$ 8,355.80    | -\$ 8,355.80    |                 | -\$ 8,355.80    |                 |                 |                 |                 |
| VPD Landing Fees                                                               | \$-             | \$ 73,125.00    |                 | -\$ 73,125.00   |                 |                 |                 |                 |                 |                 |
| Sub-Total Farming costs                                                        | \$ 281,527.00   | -\$ 569,599.56  | -\$ 603,235.56  | -\$ 602,730.54  | -\$ 601,894.27  | -\$ 600,774.79  | -\$ 599,433.84  | -\$ 597,941.26  | -\$ 596,368.99  | -\$ 594,785.47  |
| Monitoring & Compliance                                                        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Start-up Education and Training (1)                                            | \$ 663.00       | \$-             |                 |                 |                 |                 |                 |                 |                 |                 |
| Start-up Construction Wildlife Monitoring (2)                                  | \$ 10,500.00    | \$ -            |                 |                 |                 |                 |                 |                 |                 |                 |
| Baseline Substrate Sampling (plus coordination and reporting) (3a + 3c + 4)    | \$ 6,763.00     | \$ -            |                 |                 |                 |                 |                 |                 |                 |                 |
| Laboratory testing (shellfish bio-toxin*)                                      | \$ 7,500.00     | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    |
| Monitoring (Benthic and WQ sample collection, Gear Inspections^) (3b + 3c + 4) | \$ 5,034.00     |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Project Coordination, Analysis and Reporting (3c)                              | \$ -            |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Sub-Total Monitoring & Compliance                                              | \$ 30,460.00    | -\$ 12,534.00   | -\$ 12,534.00   | -\$ 12,534.00   | -\$ 12,534.00   | -\$ 12,534.00   | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    |
|                                                                                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Lease Fees                                                                     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| ACOE Lease Fee                                                                 |                 | \$ -            | \$ -            | s -             | ş -             | \$ -            | <b>\$</b> -     | <b>\$</b> -     | \$-             | \$ -            |
| CDFW Aquaculture Registration -                                                | \$ 1,243.00     |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Sub-Total Lease Fees                                                           | \$ 1,243.00     | -\$ 1,243.00    | -\$ 1,243.00    | -\$ 1,243.00    | -\$ 1,243.00    | -\$ 1,243.00    | -\$ 1,243.00    | -\$ 1,243.00    | -\$ 1,243.00    | -\$ 1,243.00    |
| Debt Repayment                                                                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Yearly Payments -                                                              | \$ 140,006.48   | -\$ 140,006.48  | -\$ 140,006.48  | -\$ 140,006.48  | -\$ 140,006.48  | -\$ 140,006.48  | -\$ 140,006.48  | -\$ 140,006.48  | -\$ 140,006.48  | -\$ 140,006.48  |
| Total Operational Expenses -                                                   | \$ 453,236.48   | -\$ 723,383.04  | -\$ 757,019.04  | -\$ 756,514.02  | -\$ 755,677.75  | -\$ 754,558.27  | -\$ 748,183.32  | -\$ 746,690.74  | -\$ 745,118.47  | -\$ 743,534.95  |
| Total Revenue                                                                  | \$-             | \$ 1,462,500.00 | \$ 1,462,500.00 | \$ 1,462,500.00 | \$ 1,462,500.00 | \$ 1,462,500.00 | \$ 1,462,500.00 | \$ 1,462,500.00 | \$ 1,462,500.00 | \$ 1,462,500.00 |
| Pretax Profit                                                                  | \$ 1,261,908.48 | \$ 289,116.96   | \$ 705,480.96   | \$ 705,985.98   | \$ 706,822.25   | \$ 707,941.73   | \$ 714,316.68   | \$ 715,809.26   | \$ 717,381.53   | \$ 718,965.05   |
|                                                                                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| Pretax Cumulative Profit                                                       | \$ 1,261,908.48 | -\$ 972,791.52  | -\$ 267,310.56  | \$ 438,675.42   | \$ 1,145,497.67 | \$ 1,853,439.40 | \$ 2,567,756.08 | \$ 3,283,565.34 | \$ 4,000,946.87 | \$ 4,719,911.92 |



Key assumptions made and ranges for 100 acre mussel farm.

| Row # | INVESTMENT                                                                            | Range                                                                                                                                        | Assumption |                    |
|-------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|
| 1     | Annual production per longline                                                        | 4-8 lbs. per foot - assume 6 lbs. on 12 mo. cycle from seed to market                                                                        |            | 29250.00           |
| 2     | Length of continuous mussel rope per longline (feet)                                  | 2880 - 6720 feet                                                                                                                             |            | 4875.00            |
| 3     | Length of seeded mussel rope per longline (feet)                                      | 195 droppers at 30' each per nursery LL                                                                                                      |            | 5850.00            |
| 4     | Total number of longlines required                                                    | Plant 4 seed nursery LL in Q1, transplant 5 grow lines in Q2, 10 in Q3, 5 in Q4.                                                             |            | 20                 |
| 5     | Total number of nursery cycles required (1 cycle per line per year)                   | 4 nursery longlines with 1 cycle per year                                                                                                    |            | 4.0                |
| 6     | Longline (575'), all ropes, buoys, anchors                                            | \$15,000 - 20,000 per longline (not including BOAT and specialty weights (\$45K) for install.                                                | \$         | 17,028.00          |
| 7     | Seeding, harvesting equipment                                                         | \$120,000 -200,000                                                                                                                           | \$         | 170,000.00         |
| 8     | Service vessel (owned and operated by 100-acre farm)                                  | \$200,000-400,000                                                                                                                            | \$         | 300,000.00         |
| 9     | Harvest vessel (shared & services 500 acres)                                          | \$500,000-2,000,000 (assume \$300K for service boat & \$1.5M for harvest boat)                                                               | \$         | 1,500,000.00       |
| 10    | Decommisioning Escrow account <sup>AA</sup>                                           | \$50,000 to \$100,000                                                                                                                        | \$         | 80,000.00          |
| 11    | Permitting                                                                            | tbd                                                                                                                                          |            | -                  |
|       | FARMING COSTS                                                                         |                                                                                                                                              |            |                    |
| 12    | Seed Cost                                                                             | \$4 /ft.                                                                                                                                     | \$         | 4.00               |
|       | Seed assumption, 5:1, 5 final growout lines from 1 hatchery seed line Insurance Costs | 3:1 - 5:1 (SBM est. 10' seed to 1K lbs harvest vs. Taylor est. 150 lbs harvest)                                                              |            | 5.00               |
|       | General liability insurance                                                           | tbd                                                                                                                                          |            | tbd                |
|       | Property insurance - stock mortality                                                  | 4-5%                                                                                                                                         |            | 5.00%              |
|       | Property insurance - offshore rigging                                                 | thd                                                                                                                                          |            | tbd                |
|       | Property insurance - land base equipment                                              | 1-2%                                                                                                                                         |            | 2.00%              |
| 18    | Vessel insurance (Hull & Machinery, \$1M of P & I)                                    | 3% of value plus \$2K P&I per vessel                                                                                                         |            | 3.00%              |
|       | Farm Operations                                                                       |                                                                                                                                              |            |                    |
|       | Av. annual staff pay + benefits                                                       | \$40,000 to \$80,000                                                                                                                         | \$         | 65,000.00          |
|       | Productivity ( lbs. / man year)                                                       | 100,000 to 500,000                                                                                                                           |            | 300,000            |
|       | Annual farm office / administration                                                   | 10000-20000<br>25-50                                                                                                                         | \$<br>\$   | 15,000.00<br>50.00 |
|       | Utilities \$ per day                                                                  | \$50                                                                                                                                         | \$         | 50.00              |
|       | CDFW Lease Fee (per acre) -N/A for federal farm lease                                 |                                                                                                                                              |            |                    |
|       | CDFW Privilege Tax -N/A for federal farm lease?<br>Slip Fees                          | \$0.0625 per 100 mussels<br>Vessel length 35-80 feet, assume 40' service boat in Y1 (per farm), then purpose-built boat of 75 feet @ \$12.66 |            | 11.394.00          |
|       | VPD Landing                                                                           | 3 to 5% of gross - assume 5%                                                                                                                 | s          | 0.13               |
|       | Annual Consumable cost                                                                | 3 to 5% of gross - assume 5%                                                                                                                 | \$         | 0.13               |
|       |                                                                                       | \$3/ gal x 20-40 GPH (2 hours full then 10 gph idle for 6 hours) = \$360 per trip x 4 per wk                                                 | s          | 360.00             |
|       | Repairs & maintenance (% of capital invest./ yr)                                      | 5-10%                                                                                                                                        | *          | 8%                 |
|       | Start-up and Annual Compliance, monitoring, testing                                   | 3-10 /8                                                                                                                                      |            | 0 /0               |
|       |                                                                                       | \$13,260 divided by 20 farms (one-time fee)                                                                                                  | s          | 663.00             |
|       | Start-up Construction Wildlife Monitoring (2)                                         | \$10,500 over 5 days                                                                                                                         | •          | 10,500.00          |
|       |                                                                                       | \$21,385 (sampling) plus \$6,200 (coord., report) plus \$6,230 (lab) per 500 acres (one-time)                                                |            | 6,763.00           |
|       | Laboratory testing (shellfish bio-toxin*)                                             | Biotoxin (\$144/sample incl. S&H, x 52 wks= \$7,500)                                                                                         | е<br>с     | 7,500.00           |
|       |                                                                                       | \$12,740 (sampling) plus \$6,200 (coord., report) plus \$6,230 (lab) per 500 acres (Y1 - Y6)                                                 | •          | 5,034.00           |
|       | Project Coordination, Analysis and Reporting (3c)                                     | Removed. Included in costs above.                                                                                                            | ¢          | 5,034.00           |
|       | CDFW Aquaculture Registration                                                         | Not clear if these apply - R. Lovell is checking                                                                                             | s          | 1.234.00           |
|       | Debt Repayment                                                                        | 10 Year, \$1,100,000 at 5% interest                                                                                                          | s          | 11,667.21          |
|       |                                                                                       | 20% first year, 5% there after                                                                                                               | ·          | 20-5%              |
|       |                                                                                       | 20% inst year, 5% there after<br>\$2 - \$3                                                                                                   |            | \$2.50             |
|       | Rate of Inflation                                                                     | 2-5%                                                                                                                                         |            | 0.00%              |

Phased expansion 2 nursery lines are planted in Q3 and seed 10 Prod. LL in Q4 2 nursery lines are planted in Y2 Q1 and seed 10 Prod LL in Y2 Q2 2 other nursery lines are planted in Y2 Q3 and seed 10 Prod. LL in Y2 Q4 assumes nursery cycle of 4 to 6 months. So 2 nursery lines capable of seeding 22 LL

Can we depend on just 2 nursery lines? Depends on reliability of seed from hatchery. May want to strategically order more seed than necessary in most reliable seasons. Use nursery lines to buffer planting and harvest cycles

Or conservatively plan to stock 4 LL with nursery seed - see alternative Proforma projections

MBiggest expense will be for removal of anchors; this requires a large boat with >20 ton winch. Est. \$15K/d for 3 or 4 days (removal of 2 per h).

|                                                |                                                                                                                | Who pays?                   |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|
| Task 1 Mandatory Worker Training               | \$13,260 (one-time cost)                                                                                       | 100% growers one time       |
| Task 2 Marie Wildlife watching - construction  | \$10.5K per 100 acre farm assuming \$1,530/per day for a 5-day construction schedule (consecutive or non-conse | cutiv 100% growers one time |
| Task 3 Substrate Monitoring (Tasks 3a, 3b, 3c) | \$21,385 (baseline); \$12,40 (operational); \$6,200 (coord., report). Baseline sampling 1x per year.           | 100% growers one time       |
| Task 4 Lab Analysis                            | \$890 per composite sample                                                                                     | 100% growers one time       |
| Task 5 Project Management and Meetings         | \$28,940 - assumes VPD covers these costs                                                                      | 100% VPD                    |

1/20 Slip fees are \$11.61/ft for 35 to 45' boats, and \$12.66 for 55 to 80' boats

\* based on use of CA State lab for biotoxin testing per est. costs for oyster farmer

^assumes no additional expense to farmer other than time conducting regular sonar/depth finder and surface surveys as part of farm maintenance Water quality testing

| Deprecaition year 1<br>Depreciation there after       |                 | 20.00%<br>2.00%             |                       |                                            |                                                  |                       |                                            |                       |                                            |                                                  |                                                  |                                                  |                                           |                                           |
|-------------------------------------------------------|-----------------|-----------------------------|-----------------------|--------------------------------------------|--------------------------------------------------|-----------------------|--------------------------------------------|-----------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|
| Year<br>Service vessel (40')<br>Harvest vessel (1/5th | \$              | 1<br>300,000.00             | \$                    | 2<br>240,000.00                            | \$<br>3<br>235,200.00                            | \$                    | 4<br>225,886.08                            | \$                    | 5<br>212,602.17                            | \$<br>6<br>196,097.47                            | \$<br>7<br>177,256.58                            | \$<br>8<br>157,021.39                            | \$<br>9<br>136,314.28                     | \$<br>10<br>115,971.15                    |
| share)<br>Equipment<br>Total Value                    | \$<br><b>\$</b> | 20,000.00<br><b>320,000</b> | \$<br>\$<br><b>\$</b> | 300,000.00<br>150,000.00<br><b>690,000</b> | \$<br>240,000.00<br>136,000.00<br><b>611,200</b> | \$<br>\$<br><b>\$</b> | 235,200.00<br>133,280.00<br><b>594,366</b> | \$<br>\$<br><b>\$</b> | 225,886.08<br>128,002.11<br><b>566,490</b> | \$<br>212,602.17<br>120,474.56<br><b>529,174</b> | \$<br>196,097.47<br>111,121.90<br><b>484,476</b> | \$<br>177,256.58<br>100,445.40<br><b>434,723</b> | 157,021.39<br>88,978.79<br><b>382,314</b> | 136,314.28<br>77,244.76<br><b>329,530</b> |

10 Year Fixed Rate, compound interest of 5%, option for balloon payment

| Annual Interest Rate    | 5.00%          |
|-------------------------|----------------|
| Effective Interest Rate | 0.42%          |
| Duration of Loan        | 10             |
| Monthly Payment         | \$11,667.21    |
| Actual Monthly          |                |
| Number of Payments      | 120            |
| Loan Amount             | \$1,100,000.00 |

|                                                      | Budget for Offsho    | ore Mussel Fai | rm with 24 L   | onglines    | 15% more LL fo   | r droppers than design 2   |                                                                                                                              |
|------------------------------------------------------|----------------------|----------------|----------------|-------------|------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------|
| INVESTMENT                                           |                      | Assumption     |                |             |                  | of droppers lbs/ft yield   |                                                                                                                              |
| Annual production volume (pounds)                    |                      | 585000         |                |             |                  |                            |                                                                                                                              |
| Longline (575' horizontal - 575' useable) installed  | \$15,000 to 20,000   | 16500 s        | ee Cap Cost sl | heet        |                  |                            | Low, 15x4 Hi, 35x8                                                                                                           |
| Annual production per line (pounds)                  | 29250                |                |                |             | 25               | 195 6                      | Range: 11,520 53,760                                                                                                         |
| Total number of longlines required                   |                      | 24             | 17,028         |             | 16.6 % lines (4) | used just for nursery seed | Alternatively just 2 nursery lines can be used with seed deliveries in October and February (Gordon (King, Taylor Shellfish) |
| Investment in longlines                              |                      |                |                | 408,672     |                  |                            |                                                                                                                              |
| Seeding, harvesting, bulk processing equipment       | \$100.000 to 200.000 | 150000         |                | 150.000     |                  |                            |                                                                                                                              |
| Support vessel                                       | 500,000-2,000,000    | 1500000        |                | 1,500,000   |                  |                            |                                                                                                                              |
| TOTAL FIXED CAPITAL INVESTMENT                       | ,,                   |                |                | 2.058.672   |                  |                            |                                                                                                                              |
| FARMING COSTS                                        |                      |                |                | Annual cost | % farm cost      | % total cost               |                                                                                                                              |
| Average wt mussel/line                               |                      | 29250          |                |             |                  |                            |                                                                                                                              |
| Feet of hatchery seed per 1K lbs harvested           | *10 to 70            | 40             |                |             |                  |                            |                                                                                                                              |
| Number of LLs seeded by 1 hatchery LL                |                      | 5.0            |                |             |                  |                            | Assumes 195 seeded droppers 30' long 5760                                                                                    |
| Seed Price/Foot                                      | \$2 to \$5           | 4              |                |             |                  |                            |                                                                                                                              |
| Seed Cost per LL                                     | += +                 | 4680           |                |             |                  |                            | *Bernard's estimate is 10' of seed rope yields 1,000 lbs so need 576 droppers or 4 data from 2016/17 - may need updating     |
| Annual cost of seed per farm (22 LL harvested)       |                      |                |                | 93,600      | 11.7%            | 10.2%                      | Gordon King's estimate is 10' of seed rope yields 150 lbs.                                                                   |
| Av. annual staff pay + benefits                      | \$40,000 to \$80,000 | 65000          |                | 50,000      | 11.1 /0          | 10.270                     | Condon King s estimate is to of seed type fields too lbs.                                                                    |
| Productivity ( lbs / man year)                       | 100,000 to 500,000   | 300000         |                |             |                  |                            |                                                                                                                              |
| Annual payroll cost                                  | 100,000 10 500,000   | 300000         | 126,750        | 126,750     | 15.9%            | 13.8%                      |                                                                                                                              |
| Crop Insurance (% annual prod'n valued @ \$.45/lb)   | 3% to 6%             | 4.00           | 126,750        | 120,750     | 15.9%            | 13.0%                      | W                                                                                                                            |
| Other insurance (% of capital investment)            | 1% to 3%             | 2.00           | 41,173         |             |                  |                            | vv                                                                                                                           |
| Annual insurance cost                                | 1 % 10 3 %           | 2.00           | 41,173         | 41.173      | 5.2%             | 4.5%                       |                                                                                                                              |
|                                                      | £000 £400            | 360.00         | 70.000         | 41,173      | 5.2%             |                            |                                                                                                                              |
| Farm operations - fuel \$ per day                    | \$200-\$400          |                | 72,000         |             |                  | Assumes we                 | ather and closures allows for 200 days per year (estimated need for 24 lines (approx. 4 d/wk)                                |
| Repairs & maintenance (% of capital invest./ yr)     | 5 to 10              | 7.00           | 144,107        |             |                  |                            |                                                                                                                              |
| Other (utilities, monitoring) \$ per day             | 25-50                | 50.00          | 18,250         |             |                  |                            |                                                                                                                              |
| Lease Fee (100/acre)                                 |                      |                | 10,000         |             |                  |                            |                                                                                                                              |
| Annual cost of operations                            |                      |                |                | 244,357     |                  | 26.6%                      |                                                                                                                              |
| Annual farm office / administration                  | 10000-20000          | 15000.00       |                | 15,000      |                  | 1.6%                       |                                                                                                                              |
| Depreciation (% of capital investment)               | 5% to 20%            | 10.00          |                | 205,867     |                  | 22.4%                      |                                                                                                                              |
| Farm profit margin %                                 | 5% to 30%            | 10.00          |                | 72,675      | 9.1%             | 7.9%                       |                                                                                                                              |
| TOTAL FARMING COSTS                                  |                      |                |                | 799,422     | 100.0%           | 87.1%                      |                                                                                                                              |
| Cost of production including profit (bulk processed) |                      |                | 1.37           |             |                  |                            |                                                                                                                              |
| POST HARVEST COSTS                                   |                      |                | Cost per lb    | Annual cost | Farm/processo    | r                          |                                                                                                                              |
| Raw material cost into processing                    |                      |                | 1.37           | 799,422     | -                |                            |                                                                                                                              |
| Processing cost per finished lb                      | .015 to .03          | 0.015          |                | 8.775       | 8.75%            | 1.0%                       |                                                                                                                              |
| Packaging cost per finished lb                       | .01 to .02           | 0.015          |                | 8.775       |                  | 0.6%                       |                                                                                                                              |
| Finished goods production cost                       |                      |                | 1.40           | 816,972     |                  | 89.0%                      |                                                                                                                              |
| Selling cost and general admin, % of production cost | 3% to 10%            | 7.000          |                | 57.188      |                  | 6.2%                       |                                                                                                                              |
| Freight to wholesaler per lb                         | \$0.05 - \$0.10      | 0.075          |                | 43,875      |                  | 4.8%                       |                                                                                                                              |
| Delivered cost - wholesaler                          |                      |                | 1.57           | 918.036     |                  | 11.0%                      |                                                                                                                              |
| Selling price to wholesaler                          | \$2.00 to \$2.50     | 2.50           |                | 1,462,500   |                  |                            |                                                                                                                              |
| Revenue minus costs                                  | 41.00 to 41.00       | 2.50           |                | 544,464     |                  |                            |                                                                                                                              |
| Total profit (Farm +Process)                         |                      |                |                | 617,139     |                  |                            |                                                                                                                              |
| Return on investment                                 |                      |                |                | 22%         |                  |                            |                                                                                                                              |
| Return on investment                                 |                      |                |                | ZZ%         | 1                |                            |                                                                                                                              |

Not including Shoreside investments, docking, storage Monitoring and sub-permit maintenance Special anchor installation weight and rigging = \$45K

(one time cost for local contractor?)

### 0.7: 1 0.65:1

|                             | Ur     | nit Cost NZ | Unit Cost NZ | Total Cost  | Total Cost  | Total Cost USD | D Total Cost                                                                                                                       |
|-----------------------------|--------|-------------|--------------|-------------|-------------|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| Equiptment                  | QTY '1 | 7           | '19          | '17         | '19         | '17            | USD '19 Comments                                                                                                                   |
| Declumper Infeed Conveyer   | 1      | \$12,750.00 |              | \$12,750.00 | \$12,750.00 | \$8,925.00     | 0 \$8,287.50 est. assume no change (except exchange rate)                                                                          |
| AND600-W Declumper          | 1      | \$37,800.00 | \$48,800.00  | \$37,800.00 | \$48,800.00 | \$26,460.00    | 0 \$31,720.00 4 to 6 ton/hr capacity                                                                                               |
| Davit-Double Winch          | 2      | \$24,600.00 | \$43,200.00  | \$49,200.00 | \$42,800.00 | \$34,440.00    | 0 \$27,820.00 Each rated for 1,500 kg (3MT total)                                                                                  |
| Davit-Single Winch          | 1      | \$24,600.00 |              | \$24,600.00 | \$24,000.00 | \$17,220.00    | 0 \$15,600.00 est. assume no change (except exchange rate)                                                                         |
| ANG7/3 Cam Grader           | 1      | \$44,500.00 | \$41,800.00  | \$44,500.00 | \$41,800.00 | \$31,150.00    | 0 \$27,170.00 -7000kg/hr capacity , -3x grades-fully adjustable (small, medium & large), -2x chutes either sides (smalls, mediums) |
| AND650 Seeder w/ Bag Frame  | 1      | \$18,850.00 | \$24,950.00  | \$18,850.00 | \$24,950.00 | \$13,195.00    | 0 \$16,217.50 includes seed rope counter                                                                                           |
| Bag Filling Elevator        | 1      | \$18,900.00 | 26,500.00    | \$18,900.00 | \$26,500.00 | \$13,230.00    | 0 \$17,225.00                                                                                                                      |
| Single Driven Walking wheel | 1      | \$9,500.00  | \$16,000.00  | \$9,500.00  | \$16,000.00 | \$6,650.00     | 0 \$10,400.00 est.                                                                                                                 |
| Single Idler Walking wheel  | 2      | \$2,200.00  | \$4,000.00   | \$4,400.00  | \$4,000.00  | \$3,080.00     | 0 \$5,200.00 est.for 2 units                                                                                                       |
| Socking loading machine     |        |             | \$4,500.00   | )           |             |                | \$2,925.00                                                                                                                         |
| Hauling post, rope washer   |        |             | \$10,300.00  | )           |             |                | \$6,695.00                                                                                                                         |
| Grader outfeed conveyor     |        |             | \$2,800.00   | )           |             |                | \$1,820.00 -2x conveyors (smalls, mediums)                                                                                         |
|                             |        |             |              | Sum         |             | \$154,350.00   | <b>o</b> \$171,080.00                                                                                                              |

| Alternatve lower cost grader and declumper (save abo<br>Scroll Grader | ut \$18,000)<br>26300 | 17095 Up to 3 tons/hr capacity (depending on product size) - 2 grade sizes. Option to grade straight into bags or bins via chutes (no conveyors) |
|-----------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| AND450-W Declumper                                                    | 36800                 | 23920 2 ton/hr capacity                                                                                                                          |

| Capital costs of 1 longline x |           |                 |               |         |                |               |                        | x 24 | (whole farm) |                                                                                                              |  |  |  |  |
|-------------------------------|-----------|-----------------|---------------|---------|----------------|---------------|------------------------|------|--------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                               |           | Units           | Specs.        | \$ each | # req.         | cost          | sum Reference          |      |              | Notes                                                                                                        |  |  |  |  |
| Anch                          | ors       | Fixed           | 6m helix      | 1666    | .666667        | 48            | 80000 Fielder Marine 2 | 2(\$ | 80,000       |                                                                                                              |  |  |  |  |
|                               |           | Variable        |               |         |                |               |                        | \$   | 43,000       | travel, set up etc. (NOT INCLUDING BOAT, or \$45K of specialty weights and rigging for anchor installation)) |  |  |  |  |
| Chaiı                         | า         |                 | ?             |         |                |               |                        |      |              | not needed?                                                                                                  |  |  |  |  |
| Long                          | line      | feet            | 1.5" diam.``  |         | 0.36           | 1200          | 432 2015 QE, NZ        | \$   | 10,368       | See QE quote tab for aggregated 2019 pricing                                                                 |  |  |  |  |
| Corn                          | er/Surfa  | ce Buoys        | 300 L black   |         | 163            | 12            | 1956 Hesp 2017         | \$   | 46,944       |                                                                                                              |  |  |  |  |
| Anch                          | or Buoys  | 5               | 420 L black   |         | 250            | 2             | 500                    | \$   | 12,000       |                                                                                                              |  |  |  |  |
| Subr                          | nerged B  | Buoys           | 120 L black   |         | 100            | 40            | 4000 Hesp 2017         | \$   | 96,000       |                                                                                                              |  |  |  |  |
| Buoy                          | shipping  | g               |               |         |                |               | Hesp 2017              | \$   | 15,000       |                                                                                                              |  |  |  |  |
| Hatc                          | hery Rop  | e (Feet))       | for 4 LL      | \$      | 1.80           | 5800          | 10440 2015 QE, NZ      | \$   | 41,760       | See QE quote tab for aggregated 2019 pricing                                                                 |  |  |  |  |
| Grow                          | / Ropes ( | (feet)          | for 20 LL     | \$      | 1.10           | 5800          | 6380 2015 QE, NZ       | \$   | 127,600      | weighs 150kg per 500m                                                                                        |  |  |  |  |
| Expe                          | ndables   |                 |               |         |                |               | 800 2015 QE, NZ        | \$   | 16,000       | See QE quote tab for aggregated 2019 pricing                                                                 |  |  |  |  |
|                               |           |                 | Cotton sockir | ng      |                |               |                        |      |              |                                                                                                              |  |  |  |  |
|                               |           |                 | danlash       | based   | on approx. 10% | 6 of rope cos | sts                    |      |              |                                                                                                              |  |  |  |  |
|                               |           |                 |               |         |                |               |                        | ¢    | 408,672      | per line \$ 17,028.00                                                                                        |  |  |  |  |
| Anch                          | or Instal | II. special equ | linmont       | ¢       | 45,000         |               | Fielder Marine         | φ    | 400,072      |                                                                                                              |  |  |  |  |
| Anch                          |           | • •             | •             | φ       | 43,000         |               |                        |      |              |                                                                                                              |  |  |  |  |
|                               |           | one time loo    | ai expense    |         |                |               |                        |      |              |                                                                                                              |  |  |  |  |

812

QUALITY EQUIPMENT (1989) LIMITED

New Zealand Rope and Twine Manufacturers Auckland Branch : 70 Hillside Road, Glenfield, P O Box 40154, Auckland, New Zealand. Phone (09) 444 7742, Fax (09) 444 5872, www.qe.co.nz

### PROFORMA QEVH190711 24LL

| To: | Ventura Harbour Project | Date: | 11-Jul-19 |
|-----|-------------------------|-------|-----------|
|     | Califorina<br>USA _     |       |           |

We have pleasure in confirming the following products under the terms and conditions as stated.

| 1 Payment:   | TT When ready to ship |              |                                 |
|--------------|-----------------------|--------------|---------------------------------|
| 3 Loading:   | Auckland              | 4 Discharge: | LA<br>USA                       |
| 5 shipping : | ТВА                   | Terms:       | CIF<br>(Cost plus Sea freight.) |
| 7 Origin:    | Made in New Zealand   |              | (Cost plus Sea freight.)        |

|      |                                         |                           | 11.2            | <b>T</b> + 1   | 11.7        | τ. |              | 1                 |                |
|------|-----------------------------------------|---------------------------|-----------------|----------------|-------------|----|--------------|-------------------|----------------|
| Item | Description,                            | Quantity                  | Unit            | Total          | Unit        | r  | NZ\$ Dollars |                   |                |
|      |                                         |                           | weight (KG)     | weight (KG)    | price       |    |              | -                 |                |
|      | Mussel Fram full set up equipment.      |                           |                 |                |             |    |              |                   |                |
|      | Block set up. 24 MEDIUM density, 200    |                           |                 |                |             |    |              |                   |                |
|      | (all simallar Rope formats as used on 0 | Catalina farm, but inst   | alled by protes | sionals.)      |             |    |              |                   |                |
|      |                                         | _                         |                 |                |             |    |              |                   |                |
| 1    | Anchor Lines x 65mtr                    | 2                         |                 |                |             |    |              |                   |                |
| ļ    | (suitable to max 24 mtr water depth)    |                           |                 |                |             |    |              |                   |                |
|      | Mainline x 185mtr                       | 1                         |                 |                |             |    |              |                   |                |
|      | (Must be spliced into Anchor Lines)     |                           |                 |                |             |    |              |                   |                |
|      | Weighted Crop Rope x 2000mtrs           | 1                         |                 |                |             |    |              |                   |                |
|      | (Must be weighted if taken small hatche | ery seed due to light w   | weight.)        |                |             |    |              |                   |                |
| 4    | Dropper lashing                         | 1                         |                 |                |             |    |              |                   |                |
|      | (needs to be cut at 1.8mtrs)            |                           |                 |                |             |    |              |                   |                |
| 5    | Waka 220L Floats                        | 32                        |                 |                |             |    |              |                   |                |
|      | (preferable used on the Vertical)       |                           |                 |                |             |    |              |                   |                |
| 6    | Float strop for above.                  | 1                         |                 |                |             |    |              |                   |                |
|      | (needs to be cut at about 7mtrs)        |                           |                 |                |             | 1  |              |                   |                |
| ļ    |                                         |                           |                 |                |             | 1  |              |                   |                |
|      | Total Mussel Farming Rope value per l   | Long line.                |                 |                | \$11,626.00 |    |              |                   |                |
| A    | Total for 24 Long Lines                 |                           |                 |                |             |    | \$279,024.00 |                   |                |
|      |                                         |                           |                 |                |             |    |              | 1                 |                |
|      | My estimate for Hatchery Ropes as use   | ed by Whiskey Creek       |                 |                |             |    |              |                   |                |
|      | Cut Loop Weighted x 1000m               | 10                        |                 |                |             |    |              |                   |                |
| В    | Total to provide enough spats for 24 lo | ongs lines at 6mm see     | d.              |                |             | 1  | \$18,650.00  |                   |                |
|      |                                         |                           |                 |                |             | 1  |              | 1                 |                |
|      |                                         |                           |                 |                |             | 1  |              |                   |                |
|      | Steel Screw Anchors as used by CSR      | and Offshore Devon.       |                 |                |             | 1  |              |                   |                |
|      | FMS x Type 20,000kg Tuq.                |                           |                 |                |             |    |              |                   |                |
|      | Total for 24 Long Lines                 |                           |                 |                |             | 1  | N/a          | 1                 |                |
| -    |                                         |                           |                 |                |             | 1  |              | 1                 |                |
| ļ    | Installation of Ropes and Anchors to be | e quoted seperately.      |                 |                |             |    |              |                   |                |
| ļ    | Vessel provided by others and importin  | ng and re exporting Dr    | rillina Ria.    |                |             |    |              |                   |                |
|      |                                         | 5 1 5                     | 5 5             |                |             |    |              |                   |                |
|      |                                         |                           |                 |                |             |    |              |                   |                |
| D    | International Freight (I calculate      | e total 5.5 x 40ft contai | iners)          |                | estimate    | \$ | 24,750.00    | 1                 |                |
|      |                                         |                           |                 |                |             | 1  |              | 1                 |                |
|      |                                         |                           |                 |                |             |    |              |                   |                |
|      |                                         | Total                     |                 | Total          | Total       |    |              | 1                 |                |
|      |                                         | Quantity                  |                 | Weight         | CIF         |    |              |                   |                |
|      |                                         | 0.00                      |                 | 0.00           | NZ\$        | \$ | 322,424.00   | NZ                |                |
|      |                                         |                           |                 |                |             | \$ | 210,000.00   |                   |                |
|      |                                         |                           |                 | plus anchors a | and install | \$ | 123,000.00   |                   | Marine         |
|      |                                         |                           |                 | plus expendat  |             | \$ | 16,000.00    |                   | ng etc.        |
|      |                                         |                           |                 |                | TOTAL:      | \$ |              | divide by 24 LL = | \$14,540 per L |
| -    | Chinned as E E v 40ft UC Container      |                           |                 | Pollor         |             |    | ,            | ,                 |                |

Shipped as 5.5 x 40ft HC Container. Container Number TBA Seal Number TBA

Seller Quality Equipment Ltd Joe Franklin Director Bank of New Zealand. 02 0278 0086400-00

Swift BKNZNZ22

VGM

The Gross Cargo Weight : TBA The Dunnage Weight: TBA The Tare Weight: TBA The VGM : TBA



10 Year Business Plan for 100 Acre Lease site, assuming a 2 year build out with a service vessel purchased capable of installing all anchors and gear, and servicing 500 acres. Total startup loan of \$1,700,000 at 5% with a balloon payment at 10 years. Use just 2 Nursery Longlines stocked twice a year (feed 5 + longlines each beginning in Q1.

|                                                    |                  |                                |                 |                  |                 | 0               |                 |                 |                 |                 |  |
|----------------------------------------------------|------------------|--------------------------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| Description                                        |                  |                                |                 |                  |                 |                 | -               |                 |                 |                 |  |
| Description                                        | 1                | 2                              | 3               | 4                | 5               | 6               | (               | 8               | 9               | 10              |  |
| Key Assumptions                                    |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Number of Market Longlines harvested               | 0                | 15                             | 22              | 22               | 22              |                 | 22              | 22              | 22              | 22              |  |
| Number of Nursery Longlines cycles                 | 3.0              |                                | 4.0             | 4.0              | 4.0             |                 | 4.0             | 4.0             | 4.0             |                 |  |
| Total Long Lines installed                         | 24               | 24                             | 24              | 24               | 24              |                 | 24              | 24              | 24              | 24              |  |
| Annual Production (lbs.)                           |                  | 438,750                        | 643,500         | 643,500          | 643,500         | 643,500         | 643,500         | 643,500         | 643,500         | 643,500         |  |
| Wholesale price (\$ /lbs.)                         |                  | \$ 2.50                        | \$ 2.50         | \$ 2.50          | \$ 2.50         | \$ 2.50         | \$ 2.50         | \$ 2.50         | \$ 2.50         | \$ 2.50         |  |
| Vessel Purchase                                    | \$ 500,000.00    |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Initial Loan Amount at 5% interest                 | \$ 1,100,000.00  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Startup Investment                                 |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Longlines                                          | -\$ 408,672.00   |                                |                 | \$-              | s -             | \$ -            | \$-             | \$-             | \$ -            | \$ -            |  |
| Seeding, harvesting equipment                      | -\$170,000.00    |                                | \$-             | \$-              | s -             | \$ -            | \$-             | \$-             | \$ -            | \$ -            |  |
| Support vessel Year 1                              | -\$ 500,000.00   |                                | \$ -            | \$ -             | \$ -            | \$ -            | \$ -            | s -             | \$ -            | \$ -            |  |
| Escrow account                                     | -\$ 80,000.00    | s -                            | \$ -            | \$ -             | \$ -            | \$ -            | \$ -            | s -             | \$ -            | \$ -            |  |
| Total Startup Investment                           | -\$ 1,158,672.00 | s -                            | s -             | s -              | s -             | s -             | s -             | s -             | s -             | s -             |  |
|                                                    |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Operational Expenses                               |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Farming costs                                      |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Wages, salaries, benefits                          | -\$ 47,531.25    | -\$ 95,062.50                  | -\$ 139,425.00  | -\$ 139,425.00   | \$ 139,425.00   | -\$ 139,425.00  | -\$ 139,425.00  | -\$ 139,425.00  | -\$ 139,425.00  | -\$ 139,425.00  |  |
| Administration                                     | -\$ 47,531.25    |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Seed costs                                         |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Seed costs<br>Property insurance - stock mortality |                  | -\$ 93,600.00<br>-\$ 54,843.75 |                 |                  |                 |                 |                 |                 |                 |                 |  |
|                                                    |                  | -\$ 54,643.75                  |                 |                  |                 |                 | -\$ 80,437.50   | -\$ 00,437.50   | -\$ 00,437.50   | -\$ 00,437.50   |  |
| Property insurance - land based equipment          |                  | tDd 7 000 00                   |                 |                  |                 |                 |                 | .D0             | -\$ 4,089.43    | .DO             |  |
| Boat and vehicle insurance                         |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Utilities                                          |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Fuel                                               |                  |                                | -\$ 72,000.00   |                  | \$ 72,000.00    |                 |                 |                 |                 |                 |  |
| Repairs & maintenance                              |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
|                                                    |                  | tbd                            |                 |                  | tbd             | tbd             | tbd             |                 |                 | tbd             |  |
| Slip Fees                                          | -\$ 11,394.00    |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| VPD Landing Fees                                   |                  | -\$ 54,843.75                  |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Sub-Total Farming costs                            | -\$ 316,069.01   | -\$ 494,887.76                 | -\$ 590,293.76  | -\$ 590,014.34   | \$ 589,615.83   | -\$ 589,120.68  | -\$ 588,555.46  | -\$ 587,948.40  | -\$ 587,327.19  | -\$ 583,237.76  |  |
| Compliance, monitoring, enforcement                |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Laboratory testing                                 | -\$ 7,500.00     | -\$ 7,500.00                   | -\$ 7,500.00    | -\$ 7,500.00     | \$ 7,500.00     | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    | -\$ 7,500.00    |  |
| Monitoring                                         | -\$ 5,034.00     | -\$ 5,034.00                   | -\$ 5,034.00    | -\$ 5,034.00     | \$ 5,034.00     | -\$ 5,034.00    | -\$ 5,034.00    | -\$ 5,034.00    | -\$ 5,034.00    | -\$ 5,034.00    |  |
| Enforcement                                        | -\$ 663.00       | -\$ 663.00                     | -\$ 663.00      | -\$ 663.00       | \$ 663.00       | -\$ 663.00      | -\$ 663.00      | -\$ 663.00      | -\$ 663.00      | -\$ 663.00      |  |
| Enforcement Credit                                 | \$ 663.00        | \$ 663.00                      | \$ 663.00       | \$ 663.00        | \$ 663.00       | \$ 663.00       | \$ 663.00       | \$ 663.00       | \$ 663.00       | \$ 663.00       |  |
| Sub-Total Compliance, monitoring, enforcement      |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Lease Fees                                         |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| ACOE Lease Fee                                     | \$-              | s -                            | \$-             | \$-              | \$-             | s -             | \$-             | s -             | s -             | \$ -            |  |
| CDFW Aquaculture Registration                      |                  |                                | -\$ 1,243.00    |                  |                 |                 |                 |                 | -\$ 1,243.00    | -\$ 1,243.00    |  |
| Sub-Total Lease Fees                               |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Daht Banaumant                                     |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Debt Repayment<br>Yearly Payments                  | -\$ 140,006.48   | -\$ 140,006.48                 | -\$ 140,006.48  | -\$ 140,006.48   | \$ 140,006.48   | -\$ 140,006.48  | -\$ 140,006.48  | -\$ 140,006.48  | -\$ 140,006.48  | -\$ 140,006.48  |  |
| Balloon Payment                                    | • ••••,•••••     | •                              | •               | • •••,••••       | • •••••••••     | • •••••••••     | •               | • ••••••••••    | • ••••,••••••   | • ••••,••••••   |  |
| Total Operational Expenses                         | -\$ 470,172.99   | -\$ 649,334.24                 | -\$ 744,740.24  | -\$ 744,460.82   | \$ 744,062.31   | -\$ 743,567.16  | -\$ 743,001.94  | -\$ 742,394.88  | -\$ 741,773.67  | -\$ 737,684.24  |  |
|                                                    | -9 470,172.33    | -9 043,034.24                  | -0 /44,/40.24   | -\$ /44,400.02 : | -9 /44,002.31   | -9 /43,567.16   | -\$ 743,001.34  | φ 142,334.00    | -9 141,113.01   | φ 131,004.24    |  |
| Paulania                                           |                  |                                |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Revenue<br>Sales                                   | \$-              | \$ 1,096,875.00                | \$ 1,608,750.00 | \$ 1,608,750.00  | \$ 1,608,750.00 | \$ 1,608,750.00 | \$ 1,608,750.00 | \$ 1,608,750.00 | \$ 1,608,750.00 | \$ 1,608,750.00 |  |
|                                                    |                  | •                              |                 |                  |                 |                 |                 |                 |                 |                 |  |
| Total Revenue                                      | \$-              | \$ 1,096,875.00                | \$ 1,608,750.00 | \$ 1,608,750.00  | \$ 1,608,750.00 | \$ 1,608,750.00 | \$ 1,608,750.00 | \$ 1,608,750.00 | \$ 1,608,750.00 | \$ 1,608,750.00 |  |
| Pretax Profit                                      | -\$ 1,628,844.99 | \$ 447,540.76                  | \$ 864,009.76   | \$ 864,289.18    | \$ 864,687.69   | \$ 865,182.84   | \$ 865,748.06   | \$ 866,355.12   | \$ 866,976.33   | \$ 871,065.76   |  |
| Pretax Cumulative Profit                           | -\$ 1,628,844.99 | -\$ 1,181,304.23               | -\$ 317,294.47  | \$ 546,994.71    | \$ 1,411,682.40 | \$ 2,276,865.24 | \$ 3,142,613.30 | \$ 4,008,968.42 | \$ 4,875,944.75 | \$ 5,747,010.51 |  |
|                                                    |                  |                                |                 |                  |                 |                 |                 |                 |                 | -               |  |



# BOARD OF PORT COMMISSIONERS

# NOVEMBER 18, 2020

# Standard Agenda Item 2

# APPROVAL OF NOTICE OF

COMPLETION FOR THE VENTURA HARBOR VILLAGE PAINTING PROJECT

### **VENTURA PORT DISTRICT**

### STANDARD AGENDA ITEM 2

 BOARD COMMUNICATION
 Meeting Date: November 18, 2020

 TO:
 Board of Port Commissioners

 FROM:
 Todd Mitchell, Business Operations Manager

 Joe Gonzalez, Capital Improvements Manager

 SUBJECT:
 Approval of Notice of Completion for the Ventura Harbor Village Painting

 Project

### **RECOMMENDATION:**

That the Board of Port Commissioners adopt Resolution No. 3401:

- a) Accepting the work of Garland/DBS, Inc. for the Ventura Harbor Village Painting Project; and
- b) Authorize staff to prepare and record a Notice of Completion with the Ventura County Recorder.

### SUMMARY:

On September 4, 2019, the Board of Port Commissioners awarded a contract in the amount of \$1,197,977 for the subject project to Garland/DBS, Inc. The work is now complete, and the final contact cost is \$1,260,587.





### LONG-TERM GOALS:

- Goal 3: Economic Vitality
  - Increase economic development, vitality, and diversity of the District through effective leasing and marketing strategies.

### **5-YEAR OBJECTIVES:**

- Objective V: Harbor Village
  - Maintain and improve Harbor Village infrastructure and enhance the overall visitor experience.
    - 1: Complete Harbor Village refresh programs

### **BACKGROUND:**

The Ventura Harbor Village needs new paint. It's been over ten years since the last major paint job on the buildings was performed. Garland will be using a tuff-coat material that comes with a

ten-year warranty. Additionally, two new decks will be part of this bid. A recent test confirmed that both decks at 1449 Spinnaker Drive and 1559 Spinnaker Drive have failed. The existing waterproofing top layer will be completely removed from these two decks, and a new ten-year warranty waterproofing system will be applied. The remaining eight buildings will come with a ten-year warranty as well and includes upper level balconies, walkways, and staircases which will have a special waterproofing nonskid waterproofing system/material.

Buildings included in this bid are as followed: 1431,1449,1559,1567A,1567B,1567C, 1575,1583,1591, 1691 Spinnaker Drive.

### FISCAL IMPACT:

The contract awarded to Garland for the project was for the amount of \$1,197,977 plus a 10% contingency for potential change orders related to unforeseen conditions. The total budgeted amount was \$1,318,000 per the FY19-20 Mid-year Budget.

There were significant dry rot and rusted metal that was exposed during this project that needed to be repaired/replaced. The following are the change orders approved by staff:

- \$ 1,560.00 Dry rot repairs at 1591, 1567 Buildings
- \$11,550.00 Decking flashing, Stucco repairs 2<sup>nd</sup> level at building 1559
- \$18,150.00 Dry rot repairs 1559, 1567 # A building
- \$ 9,350.00 Significant dry rot repairs at 1449 west side staircase
- \$18,150.00 1449 decking, flashing, staircase (east side) it included wood topping replacement on the entire pony 2<sup>nd</sup> level decking wall.
- \$ 3,850.00 1567 B & C buildings, window metal flashings replacements, mostly all on first level.

The total for all change orders was \$ 62,610. This cost is below the anticipated 10% threshold for change orders and unforeseen repairs that were set in the budget, brining the final project cost to \$1,260,587 and \$ 57,413 below budget.

### ATTACHMENTS:

Attachment 1 – Resolution No. 3401 Attachment 2 – Notice of Completion



### **RESOLUTION NO. 3401**

### RESOLUTION OF THE BOARD OF PORT COMMISSIONERS OF THE VENTURA PORT DISTRICT ACCEPTING THE WORK OF GARLAND/DBS, INC. FOR THE VENTURA HARBOR VILLAGE PAINTING PROJECT

WHEREAS, Brian D. Pendleton, General Manager of the Ventura Port District, advised the Board of Port Commissioners of said District that the work of Garland/DBS, Inc., on the project entitled "Ventura Harbor Village Painting Project" described in the Agreement between Garland/DBS, Inc. and the Ventura Port District, hereinafter referred to as "District", dated October 16, 2019 has been completed and recommends that said work be accepted.

NOW, THEREFORE, BE IT RESOLVED that the Board of Port Commissioners DETERMINES and ORDERS as follows:

- 1. Said work is hereby accepted.
- 2. Pursuant to the conditions and specifications of the Agreement and upon the recommendation of the General Manager, Garland/DBS, Inc. is released from the obligations under said contract, except as to the conditions of the performance bond, required guarantees and correction of faulty work after payment.
- 3. The General Manager of the District is hereby directed to execute on behalf of the District, or cause to be executed on behalf of the District, and be recorded in the office of the Ventura County Recorder a Notice of Completion of said work.
- 4. The General Manager is hereby directed to send a copy of this Resolution to Garland/DBS, Inc. as the District's Notice of Acceptance of said work.

PASSED, APPROVED and ADOPTED this 18th day of November 2020.

Chris Stephens, Chairman

Attest:

Jackie Gardina, Secretary

STATE OF CALIFORNIA)COUNTY OF VENTURA) ss.CITY OF SAN BUENAVENTURA)

I, Jackie Gardina, Secretary of the Ventura Port District, a public corporation, do hereby certify that the above and foregoing Resolution No. 3401 was duly passed and adopted by the Board of Port Commissioners of said District at a regular meeting thereof held on the 18th day of November 2020, by the following vote:

AYES: NOES: ABSENT: ABSTAINED:

IN WITNESS WHEREOF, I have hereunto set my hand and affixed the official seal of said District this 18th day of November 2020.

Jackie Gardina, Secretary

RECORDING REQUESTED BY: Ventura Port District

AND WHEN RECORDED MAIL TO: Ventura Port District 1603 Anchors Way Drive Ventura, CA 93001-4229

## NOTICE OF COMPLETION

(Notice pursuant to Civil Code Section 3093, must be recorded within 10 days after completion)

### NOTICE IS HEREBY GIVEN THAT:

- 1. The undersigned is an agent of the owner of the interest stated below.
- 2. The full name of the owner is Ventura Port District, a public benefit corporation and independent special district organized and existing under the laws of the State of California.
- 3. The full address of the owner is 1603 Anchors Way Drive, Ventura, CA 93001-4229.
- 4. The nature of the interest or estate is: fee simple.
- 5. The full name and full addresses of all co-owners who hold any title or interest with the above-named owner in the property are: Not applicable; there are no co-owners.
- 6. A work of improvement on the property hereinafter described was completed on October 21, 2020.
- 7. The work accomplished consisted of painting buildings and waterproofing two decks.
- 8. The name of the contractor for the Ventura Harbor Village Painting Project is Garland/DBS, Inc. pursuant to the Agreement, dated October 16, 2019.
- 9. The property on which said work of improvement was completed is in the City of San Buenaventura, County of Ventura, State of California, and is described as Ventura Harbor Village.

Ventura Port District

Date: \_\_\_\_\_

By: \_\_\_\_\_\_ Brian D. Pendleton, General Manager

### VERIFICATION

I, the undersigned, say that I am the General Manager of the declarant of the foregoing completion; I have read said Notice of Completion and know the contents thereof; the same is true of my own knowledge.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on \_\_\_\_\_, at Ventura, California.

Brian D. Pendleton, General Manager



# BOARD OF PORT COMMISSIONERS

# NOVEMBER 18, 2020

# STANDARD AGENDA ITEM 3 REJECTION OF BIDS FOR THE VENTURA HARBOR VILLAGE RESTROOM ADA REMODEL

### **VENTURA PORT DISTRICT**

**BOARD COMMUNICATION** 

STANDARD AGENDA ITEM 3

Meeting Date: November 18, 2020

|          | 5                                                                     |
|----------|-----------------------------------------------------------------------|
| TO:      | Board of Port Commissioners                                           |
| FROM:    | Todd Mitchell, Business Operations Manager                            |
|          | Joe Gonzalez, Capital Projects Manager                                |
| SUBJECT: | Rejection of Bids for the Ventura Harbor Village Restroom ADA Remodel |

### **RECOMMENDATION:**

That the Board of Port Commissioners reject all bids received for the Ventura Harbor Village ADA Restroom Remodel for 1559 Spinnaker Drive.

### SUMMARY:

The District published the request for bids for the Ventura Harbor Village ADA Restroom Remodel for 1559 Spinnaker Drive (ADA Remodel) on September 20, 2020. A public bid opening was held on October 21, 2020 per District policy.

While the District was reviewing qualifications of the lowest bidder, one of the bidders requested copies of the two lowest bids and protested the bids on the grounds of being non-responsive. The District had the consulting architect Rasmussen & Associates review all bids for errors and omissions and determined that all eight bids were non-responsive. All bidders were notified that all bids were deemed non-responsive and each bidder was advised of the error/omission with their bid.

Staff is recommending rejection of all bids and rebidding the project on November 19<sup>th</sup> with bids due December 7, 2020. There is no significant impact to the District in schedule or cost.

### LONG-TERM GOALS:

- Goal 3: Economic Vitality
  - Increase economic development, vitality, and diversity of the District through effective leasing and marketing strategies.

### **5-YEAR OBJECTIVES:**

- Objective V: Harbor Village
  - Maintain and improve Harbor Village infrastructure and enhance the overall visitor experience.
    - 1: Complete Harbor Village refresh programs

### **BACKGROUND:**

The Americans with Disabilities Act (ADA) provides civil rights protections for individuals with disabilities. The purpose of the ADA is to provide a "clear and comprehensive national mandate for the elimination of discrimination against individuals with disabilities." 42 U.S.C.A § 12101(b)(1). The ADA prohibits discrimination in employment, public accommodations, government services, public transportation, and telecommunications.

In 2014 and 2015, the District surveyed buildings and facilities within Ventura Harbor and Ventura Harbor Village with the aid of a consultant to assist the District in achieving compliance with local, state and federal laws and regulations. This included surveys of District assets as well as review of policies, programs, and procedures. The surveys identified physical barriers in Harbor Village buildings and facilities based on ADA Accessibility Guidelines and Title 24 standards. The list of facilities surveyed included:

- District-owned buildings
- District-owned parking lots
- District-owned beaches

The remodel of the 1559 Spinnaker Drive restrooms for ADA compliance is to be completed before the end of the FY20-21 Fiscal Year and is on the Capital Improvement Plan budget passed by the Board of Commissioners on July 1, 2020.

With the assistance of the design architect, the District published the request for bids using the CyberCopy Public Plan Room Access website on September 23<sup>rd</sup>. An on-site preconstruction meeting was held at 1559 Spinnaker Drive on September 29<sup>th</sup>.

The District held an outdoor public bid opening on October 21, 2020 at the District office. Eight bids were received and the price for each bid was read aloud per District policy.

The Capital Projects Manager began to review the qualifications, licenses, and references of the lowest bidder.

On Monday, October 26<sup>th</sup>, RK & G Construction, Inc. (RK&G) requested copies of the two lowest bids as per their right under the Freedom of Information Act. On Tuesday, October 27<sup>th</sup>, RK&G notified the District that they formally contested the bids. The District had Rasmussen review all bids to determine responsiveness. The determination of Rasmussen was that none of the bids was responsive. Issues identified included:

- Failure to use the provided bid sheet
- Failure to complete all items in the provided bid sheet
- Failure to include the corporate seal
- Errors in completing the bid bond
- Failure to address the requirements in all addendums

The District prepared letters to each bidder and sent them out on November 2 advising them of the deficiency of their bid and that Staff would recommend rejecting all bids and rebidding the project.

### FISCAL IMPACT:

The project has been approved in the FY20-21 Capital Improvements and ADA Improvements Plan in the amount of \$110,000. Rebidding the project will result in additional time for the architect and publishing a second notice in the Ventura County Star totaling approximately \$2,500.

### ATTACHMENTS:

None.